无线局域网的网络流量特性与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前无线局域网的发展趋势表明,迅速增加的笔记本电脑和PDA的用户迫切要求为他们提供灵活的宽带无线服务。要想满足这一需求,研究无线局域网的流量特性和流量模型就显得十分重要,这也是本文研究的目的。
     受到有线网络流量具有自相似性的启发,本文针对Standford大学无线局域网的流量测试结果做了大量的分析,首次发现无线局域网的真实流量特性在不同的时间尺度下都呈现出显著的自相似性。
     为考察无线链路的流量是否也具有自相似性,本文进行了无线链路流量特性若干项测试,首次验证了无线链路的流量具有自相似性。本文认为这是无线局域网的流量具有自相似性的首要原因。
     不仅无线链路的流量具有自相似性,我们还知道无线局域网的流量就是由各条无线链路上的流量汇聚、叠加而形成的,而汇聚、叠加是产生自相似的重要原因,本文认为这是无线局域网的流量呈现出典型自相似特征的另外一个原因。
     Hurst系数、信息维数和盒维数是反映分形特性的重要指标,本文总结了Hurst系数、信息维数和盒维数在不同时间尺度下的变化规律,并结合无线局域网的用户行为方式给出了部分解释。
     本文计算并绘制出了无线局域网流量的多重分形谱,从而首次发现无线局域网的真实流量具有多重分形的典型特征。
     作为建立基于自相似理论的无线链路特性的数学模型的初步尝试,本文给出并验证了丢包率PLR的一个近似的计算公式。该公式的参数是Hurst系数、Buffer容量大小和该无线链路服务率。
     鉴于无线局域网流量自相似性的发现,本文使用了两种基于分形理论的预测算法用于预测无线局域网流量,并与非分形的预测算法在预测效果上进行了比对,证实了基于分形理论的预测算法在预测无线局域网流量时的优越性。实际体现了发现无线局域网流量自相似性的意义。本文还对分段变维分形插值预测法进行了改进,提高了预测精度,克服了原方法的缺陷。
     本文讨论了无线局域网可采用的提高性能可靠性的各种措施。并且,为在蓝牙应用层提高可靠性,本文研究并部分实现了支持断点续传的高可靠的新型蓝牙文件传输协议。
Current trends in wireless local area networks (WLAN) indicate an exigent demand to provide broadband wireless services to growing users of mobile laptop and PDA. To meet this need, it is very important to study the traffic characteristics and traffic model of WLAN, which is the purpose of this thesis.
     Illumined by the findings of self-similarity in wired networks, and after analysing the real WLAN traffic test results in Stanford University, this thesis discovers, for the first time, that the real traffic in WLAN also exhibits obvious self-similarity.
     Why does the self-similarity exist in WLAN? One conjecture is that the bottom-level wireless links maybe have self-similarity. To verify whether a wireless link also has self-similar characteristic, some traffic tests are performed over wireless links. In consequence, the traffic between point-to-point wireless devices also has distinct self-similarity, and it is the first reason of the self-similar traffic in WLAN.
     As we known, the traffics over all of the wireless links are coverged and superposed into the traffic of WLAN. And covergence and superposition is an important condition to form self-similar traffic. So, we think it is another reason of the self-similar traffic in WLAN.
     Then, this thesis obtains the Hurst coefficients, Information-dimension and Box-dimension of the Standford WLAN traffic traces at different time scales and analyzes the trends and regular rules of the above coefficients results. Accoding to the behaviours of the WLAN users, this thesis elementaryly explains these trends and rules.
     Moreover, this thesis calculates and plots the multifractal spectrums of the Standford WLAN traffic data. The multifractal spectrums show, for the first time, that the WLAN traffic also has typical multifractal spectrum characteristic.
     According to the above results, using self-similar theory, this thesis establishes and verifies a close-form approximate formula for PLR (Packet Loss Rate) over a wireless link, whose input variables are Hurst parameter, buffer size, and service rate.
     At last, this thesis uses 2 fractal-based methods to predict the traffic in WLAN. The accuracy of the methods is verified by comparing with the original data, and the comparing results show that the fractal prediction methods are better than others. Additionally, by overcoming the blemish of one of the old method, this thesis improves the old prediction method and enhances the precision.
引文
[1] IEEE Std 802.11-1999 Standard for information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications.
    [2] IEEE 802.11b-1999 Supplement to IEEE 802.11-1999: High-Speed Physical Layer (PHY) Extension in the 2.4GHz Band.
    [3] IEEE 802.11a-1999 Supplement to IEEE 802.11-1999: High Speed Physical Layer (PHY) in the 5GHz Band.
    [4] IEEE Local and Metropolitan Area Network Standards Committee, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std 802.11-1997, The Institute of Electrical and Electronics Engineers, New York, 1997.
    [5] Jim Geier, “Wireless LANs: implementing interoperable networks,” Macmillan Technical Publishing, Hardcover, November 1998.
    [6] Pahlavan K, Probert T. H., and Chase M. E. “Trends in local wireless networks,” IEEE Communication Magazine, 1995
    [7] K. Chen, “Medium Access Control of Wireless LANs for Mobile Computing,” IEEE Network, September / October, 1994.
    [8] 杨学贤, “无线局域网技术的研究,”博士后出站报告, 中国科学院计算技术研究所, 2003 年 1 月.
    [9] Bluetooth SIG, “Sepcification of the Bluetooth System, Sepcification volume 1: Core,” version 1.1. Feb. 2001.
    [10] Bluetooth SIG, “Sepcification of the Bluetooth System, Sepcification volume 2: Profiles,” version 1.1. Feb. 2001.
    [11] 金纯, 许光辰, 孙睿, “蓝牙技术,” 电子工业出版社, 2001.
    [12] Nathan J. Muller, “蓝牙揭密,” 人民邮电出版社, 2001.
    [13] 张禄林, 雷春娟, 朗晓虹, “蓝牙协议及其实现,” 人民邮电出版社, 2001.
    [14] 崔伟东, 李星, “基于 ATM 的无线宽带网络,” 电讯技术, vol. 39, no. 5, 1999
    [15] 吴晓文,吴诗其,李乐民, “无线 ATM 通信网的关键技术与研究现状,” 电信科学, vol. 12, no. 11, pp. 39~46, 1996.
    [16] Almudena Konrad, Ben Y. Zhao, Anthony D. Joseph, and Reiner Ludwig, “A Markov-Based Channel Model Algorithm for Wireless Networks,” In Proc. of Fourth ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2001).
    [17] Giao T. Nguyen, Randy Katz, and Brian Noble, “A trace-based approach for modeling wirelesschannel behavior,” In Proceedings of the Winter Simulation Conference, pp. 597–604, Dec. 1996.
    [18] Hari Balakrishnan and Randy Katz, “Explicit loss notification and wireless web performance,” in Proc. of the IEEE GLOBECOM Internet Mini-Conference, Nov. 1998.
    [19] K. K. Leung, W. A. Massey, W. Whitt, “Traffic Models for Wireless Communication Networks,” IEEE Journal of Selected Areas in Communication, vol. 12, no. 8, pp. 1353-1364, Oct. 1994-
    [20] Marwan M. Krunz, Jeong Geun Kim, “Fluid Analysis of Delay and Packet Discard Performance for QoS Support in Wireless Networks,” IEEE Journal On Selected Areas In Communications, pp. 329–343, June 1999.
    [21] Jeong Geun Kim and Marwan Krunz, “Bandwidth allocation in wireless networks with guaranteed packet loss performance,” IEEE/ACM Transactions on Networking, vol. 8, no. 3, pp. 337-349, June 2000.
    [22] A. Mohammadi, S. KuMar, and D. Klynmyshyn, “Characterization of effective bandwidth as a metric of quality of service for wired and wireless ATM networks,” in IEEE ICC. 1997, vol. 2, pp. 1019-1024, 1997.
    [23] M. Zukerman, P. L. Hiew, and M. Gitlits, “FEC code rate and bandwidth optimization in WATM networks in Multiaccess, Mobility, and Teletraffic: Advances in Wireless Networks, ” D Everitt and M. Rumsewicz, Eds, pp. 207--220. Kluwer, Boston, 1998.
    [24] H. M. Chaskar, T. V. Lakshman, and U. Madhow, “TCP over wireless with link level error control: analysis and design methodology, ” IEEE/ACM Trans. Networking, vol. 7, no. 5, pp. 605-615, Oct. 1999.
    [25] H. M. Chaskar and U. Madhow, “Traffic multiplexingand service guarantees on a Rayleigh faded wireless downlink, ” in ICUPC '98, vol. 1, pp. 463-467, Oct. 1998.
    [26] 严德政, 黄爱苹, 仇佩亮, 吴征, “多个蓝牙皮克网共存的系统建模与性能仿真,” 通信学报, vol. 23, no. 3, pp. 35-43, Mar. 2002.
    [27] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar nature of Ethernet traffic (extended version), ” IEEE/ACM Trans. Networking, vol. 2, no. 1, pp. 1-15, Feb. 1994.
    [28] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson modeling,” in Proc. ACM SIGCOMM’94, London, U.K., Aug. 1994, pp. 257 -268.
    [29] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level,” IEEE/ACM Trans. Networking, vol. 5, pp. 71 - 86, Feb. 1997.
    [30] W. Willinger, M. S. Taqqu, W. E. Leland, and D. V. Wilson, “Self-similarity in high-speed packet traffic: analysis and modeling of Ethernet traffic measurements,” Statistical Science, vol. 10, no. 1, pp. 67 - 85, 1995.
    [31] http://mosquitonet.standford.edu/
    [32] 许铭, “蓝牙技术的原理与实现,” 硕士学位论文, 中国科学院计算技术研究所, 2002 年 5 月.
    [33] Matt Ziegler, “An Overview of Bluetooth: Architecture, Power Consumption and Performance,” EE613 – Communication Systems Engineering, End-of-Term Report, 2002,www.ece.virginia.edu/~mmz4s/papers/ ECE613project_bluetooth.pdf.
    [34] Jesung Kim, Junam Kim, Yujin Lim, Jihyuk Yoon, Sang Lyul Min, Joong Soo Ma, “A Bluetooth-based high-performance LAN access point incorporating multiple radio units,” in Proceedings of the Second International Conference on Communications in Computing (CIC' 2001), Las Vegas, NV, U.S.A., pp. 113-119, 2001.
    [35] Jesung Kim, Yujin Lim, Yongsuk Kim, and Joong Soo Ma, “An adaptive segmentation scheme for the Bluetooth-based wireless channel,” in Proceedings of the 10th IEEE International Conference on Computer Communications and Networks (ICCCN 2001), Scottsdale, AZ, U.S.A., 2001.
    [36] Tolga ?RS, “Traffic and congestion control for ATM over satellite to provide QoS,” Ph.D. Thesis, University of Surrey, Dec. 1998.
    [37] Jeong Geun Kim and Marwan Krunz, “Effective Bandwidth in Wireless ATM Networks,” in Proceeding of the IEEE/ACM MobiCom’98 Conference, pp. 233-241, Oct. 1998.
    [38] Weinmiller J, Schlager M, Festag A, Wolisz A., “Performance study of access control in wireless LANs IEEE 802.11 DFWMAC and ETSI RES 10 HIPERLAN,” ACM Mobile Networks and Applications (Special Issue on Channel Access), 1997.
    [39] Crow BB, “Performance evaluation of the IEEE 802.11 wireless local area network protocol,” Master Thesis, Department of Electrical and Computer Engineering, University of Arizona, 1996.
    [40] Kahol A, Khurana S, Jayasumana AP. “Effect of hidden terminals on the performance of IEEE 802.11 MAC protocol,” in Proceedings of 23rd IEEE Annual Conference on Local Computer Networks (LCN +98), 1998.
    [41] James C. Chen, Jeffrey M. Gilbert, “Measured performance of 5-GHz 802.11a wireless LAN systems,” 802.11a White Papers, Atheros Communication, Inc. Aug. 2001.
    [42] H. Balakrishnan, V. N. Padmanabhan, S. Seshan and R. H. Katz, “A comparison of mechanisms for improving TCP performance over wireless links,” in Proc. of ACM SIGCOM ‘96, 1996.
    [43] Apurva Kumar, Rajeev Gupta, “Capacity Evaluation of Frequency Hopping Based ad-hoc networks,” in ACM SIGMETRICS 2001.
    [44] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey, “Enhancing Performance of Asynchronous Data Traffic over the Bluetooth Wireless Ad-hoc Network,” in Proceedings of IEEE INFOCOM 2001,vol. 1, pp. 591--600, Apr. 2001.
    [45] A. S. Tanenbaum, “Computer Networks,” Prentice Hall, 1996.
    [46] 于晓梅, 张军, 郑明春, “无线网上丢包问题的解决,” 第十二届中国计算机学会网络与数据通信学术会议, pp. 1134-1139, 中国武汉, 2002 年 12 月.
    [47] P. Sinha, N. Venkitaraman, R. Sivakumar and V. Bharghavan, “WTCP: A reliable transport protocol for wireless wide-area networks,” in Proc. 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom'99), Seattle, U.S.A., pp. 231-241, August 1999.
    [48] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A Comparison of Mechanisms for Improving TCP Performance over Wireless Links,” IEEE/ACM Trans. on Networking, vol. 5, no. 6, pp. 756-769, 1997.
    [49] C. Barakat, E. Altman, and W. Dabbous, “On TCP Performance in a Heterogeneous Network: A Survey,” IEEE Communications Magazine, vol. 38, no. 1, pp. 40-46, Jan. 2000.
    [50] H. Balakrishnan, V. Padmanabhan, and R. H. Katz, “The Effects of Asymmetry on TCP Performance,” in Proceedings of ACM/IEEE MOBICOM'97, Budapest, Hungary, Sept. 1997.
    [51] S. Floyd, “A Report on Some Recent Developments in TCP Congestion Control,” IEEE Communication Magazine, vol. 39, no. 4, pp. 84-90, Apr. 2001.
    [52] M. Allman, S. Dawkins, D. Glover, D.Tran, T. Henderson, J. Heidemann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and J. Semke, “Ongoing TCP Research Related to Satellites,” IETF RFC 2760, 2000.
    [53] A. Zanella, G. Procissi, M. Gerla, and M. Y. Sanadidi, “TCP Westwood: Analytic Model and Performance Evaluation,” In Proceedings of IEEE GLOBECOM, pp. 1703-1707, 2001.
    [54] Claudio Casetti, Mario Gerla, Saverio Mascolo, M.Y. Sansadidi, and Ren Wang, “TCP Westwood: End-to-End Congestion Control for Wired/Wireless Networks,” In Wireless Networks Journal 8, pp. 467-479, 2002.
    [55] A. Ewerlid, “Reliable communication over wireless links,” Nordic Radio Symposium NRS01, Nynashamn, Apr. , 2001.
    [56] Maulin Patel, Nisarg Tanna, Pratik Patel, Raja Banerjee, “TCP over Wireless Networks: Issues, Challenges and Survey of Solutions,” Nov. 2001, http://www.utdallas.edu/~sudha/TCP_Over_Wireless.pdf.
    [57] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving Reliable Transport and Handoff Performance in Cellular Wireless Networks,” ACM Wireless Networks, vol. 1, no. 4, Dec. 1995.
    [58] P. Reinbold and O. Bonaventure, “A Comparison of IP Mobility Protocol,” Technique Report, Infonet-TR-2001-07, University of Namur, Infonet Group, June 2001, http://www.infonet.fundp.ac.be/doc/tr/.
    [59] R. Caceres and V. N. Padmanabhan, “Fast and Scalable Wireless Handoffs in Supports of Mobile Internet Audio,” ACM Mobile Networking and Applications (MONET), pp. 351- 363, vol. 3, Issue 4, 1999.
    [60] C. K. Toh, B. Akyol, “A Survey of Handover Techniques for Wireless ATM Networks,” International Journal of Wireless Information Networks, vol. 5, no. 1, pp. 43-60, 1998.
    [61] 吴晓文, 吴诗其, 李乐民, “无线 ATM 通信网的越区切换控制,” 通信技术与发展, no. 6, pp. 6-9, 1997.
    [62] 樊昌信等, “通信原理(第五版),” 国防工业出版社, May 2001.
    [63] Jeong Geun Kim and Marwan Krunz, “Delay analysis of selective repeat ARQ for transporting Markovian sources over a wireless channel,” IEEE Trans. on Vehicular Technology, vol. 49, no. 5, pp. 1968-1981, Sept. 2000.
    [64] Addie R, et al. “Fractal traffic: measurements, modeling and performance evaluation,” in Proc. Of INFOCOM’95, pp.977~984, 1995.
    [65] Beran J, et al. “Long-Range dependence invariable bit rate video traffic,” IEEE Transactions on Communications, 43(4), pp. 1566~1579, 1995.
    [66] Crovella M E,et al, “Self-similarity in world wide web traffic evidence and possible causes”. Proceeding of the 1996 ACM SIGMETRICS, pp.160~169, 1996.
    [67] Klivansky S., et al., “Long-range dependence in NSFNET traffic,” Technical Report, Georgia Institute of Technology, GIT-CC-94-61, 1994.
    [68] 王东生, 曹磊, “混沌、分形及其应用,” 中国科学技术大学出版社, 1995 年 6 月.
    [69] 林夏水, 董光璧, 梁芳, “分形的哲学漫步,” 首都师范大学出版社, 1999 年 11 月.
    [70] William Stallings, “High-speed networks: TCP/IP and ATM design principles,” Prentice-Hall, Inc. New Jersey, U.S.A., 1998.
    [71] William Stallings, 齐望东等[译], “高速网络 TCP/IP 和 ATM 的设计原理,” 电子工业出版社, 2000.
    [72] Kenneth J. Falconer, 曾文曲等[译], “分形几何-数学基础及其应用,” 东北大学出版社, Sept. 2001.
    [73] 张济忠, “分形,” 清华大学出版社, 1995 年 8 月
    [74] 刘式达, 刘式适, “分形和分维引论,” 气象出版社, Sept. 2001.
    [75] W. Willinger, D. Wilson, M. Taqqu, “Self-similar Traffic Modeling for High-speed Networks,” ConneXions, Nov. 1994.
    [76] M. W. Garrett and W. Willinger, “Analysis, modeling and generation of self-similar VBR video traffic,” In Proc. ACM SIGCOMM '94, pp. 269-280, London, U.K., 1994.
    [77] I. Norros, “A storage model with self-similar input,” Queueing Systems, vol. 16, pp. 387-396, 1994.
    [78] I. Norros, “On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks,” IEEE/ACM Journal on Selected Areas in Communications, 13, pp. 953-942, Aug. 1995.
    [79] N. Likhanov, B. Tsybakov, and N. Georganas, “Analysis of an ATM Buffer with Self-Similar (Fractal) Input Traffic,” in Proc. IEEE INFOCOM '95, Apr. 1995.
    [80] Droz P, Boudec L., “A high speed self-similar ATM VBR traffic generator,” Proceeding of INFOCOM’96, 1996.
    [81] Cai H, Chen H M, Li YD., “Self-similar traffic-A new model for next generation ATM switch,” IEEE ICIT’96, Beijing, 1996.
    [82] 汪小帆, 卢俊国, 王执铨, “Internet 业务流的自相似性—建模、分析与控制,” 控制与决策, vol. 17, no. 1, Jan. 2002.
    [83] Cox D R. “Long-range dependence: a review,” Statistics Proceeding 50 th Anniversary Conference, 1984.
    [84] Wing C L, Ashok E, Jonathan W, et al. “Self similar traffic generation: the random midpoint displacement algorithm and its properties,” Proceeding of ICC 95, Seattle, pp. 466-472, 1995.
    [85] Paxson V. “Fast approximate synthesis of fractional gaussian noise for generating self-similarnetwork traffic,” J.Computer communication review, pp. 5-18, Oct. 1997.
    [86] Garret M, Willinger W. “Analysis, modeling and generation of self-similar VBR video traffic,” in Proceeding of SIGCOM 94, 1994.
    [87] Lowen, S. B. and Teich, M. C. “Doubly stochastic Poisson point process driven by fractal shot noise,” Phy. Rev. A, 43: pp. 4192–4215, 1991.
    [88] Lowen, S. B. “Fractal renewal processes as a model of charge transport in amorphous semiconductors,” Phys. Rev. B, 46: pp. 1816–1819, 1992.
    [89] Lowen, S. B. Fractal Stochastic Processes. PhD thesis, Columbia University, 1992.
    [90] Lowen, S. B. and Teich, M. C. “Fractal renewal processes generate 1/f noise,” Phy. Rev. E, 47: pp. 992–1001, 1993.
    [91] Lowen, S. B. and Teich, M. C. “Estimation and simulation of fractal stochastic point processes,” Fractals, 3: pp. 183–210, 1995.
    [92] B. Ryu. “Fractal Network Traffic: From Understanding to Implications,” PhD thesis, Columbia University, 1992.
    [93] B. Ryu and S. B. Lowen, “Point Process models for Self-Similar Network Traffic, with Applications,” Stochastic Models, vol. 14, pp. 735-762, 1998.
    [94] S. Robert and J.-Y. Le Boudec, “New models for pseudo self-similar traffic,” Performance Evaluation, vol. 30, (no. 1-2): pp. 57-68, Elsevier, July 1997,
    [95] Makoto Maejima, and Sato, K. “Semi-selfsimilar processes,” J. Theoret. Probability., pp. 347-373, Dec. 1999.
    [96] Diane Tang, Mary Bakerker, “Analysis of a Local-Area Wireless Network,” in Proceedings of Mobicom 2000, Boston, Aug. 2000.
    [97] Diane Tang, “Analysing Wireless Networks,” Ph.D. Thesis, Univ. of Standford, Oct. 2000.
    [98] Michael Jiang, Ljiljana Trajkovic, “Impact of Self-similarity On Wireless Data Network Performance,” in Proc ICC2001, pp.477-481, Helsinki, Finland, June 2001.
    [99] B. S. Tsybakov, “Probability of heavy traffic period in third generation CDMA mobile communication,” Special issue on Mobile Multimedia Communications (MOMUC '99), vol. 6, Issue 5, Sept. 2001.
    [100] 陈惠民, 蔡弘, 李衍达, “突发业务的多重分形建模及其参数估计,” 电子学报, vol. 27, no. 4, 1999
    [101] Adrian Popescu, “Traffic Self-Similarity,” the IEEE International Conference on Telecommunications, ICT2001, Bucharest, Romania, June 2001.
    [102] 张鹏, 廖建新, 程时端, “自相似流量的多重分形分析,” 电子学报, vol. 28, no. 1, pp. 96-98, 2000.
    [103] Rudolf H. Riedi and Jacques Levy Vehel, “TCP traffic is multifractal: A numerical study,” IEEE Transaction of Networking, Dec. 1997.
    [104] 罗恒端, 吴诗其, “数据分组网中自相似业务模型的研究进展,” 通信学报, vol. 23, no. 7, pp. 107-115, July 2002.
    [105] M. Taqqu et al. “Is network traffic self-similar or multifractal?” Journal of Fractals, 1997, 5(1): 63~74.
    [106] Reidi, R. H. and Crouse, M. S., “A Multifractal Wavelet Model with Application to Network Traffic,” IEEE Transactions on Information Theory, vol. 45, no. 3, pp. 992-1018, 1999.
    [107] Feldmann W., Gilbert A. C., Willinger W., “Data networks as cascades: investigating the multigractal nature of Internet WAN traffic,” ACM SIGCOMM’98 Conference, Vancouver, BC, Canada, 1998.
    [108] Gilbert A. C., Willinger W., Feldmann W., “Scaling analysis of conservative cascades, with applications to network traffic,” IEEE Trans on Information Theory, 45: pp. 971-991, 1999.
    [109] Gao J B, Rubin I. “Multifractal modeling of counting processes of long-range dependent network traffic,” in Proceedings SCS Advanced Simulation Technologies Conference, San Diego, CA, 1999.
    [110] Gao J B, Rubin I., “Statistical properties of multiplicative multifractal processes in modeling telecommunications traffic streams,” Electronics Letter, vol. 36, pp. 101-102, 2000.
    [111] Gao J B, Rubin I., “Multifractal analysis and modeling of VBR video traffic,” Electronics Letter, 36, pp. 278-279, 2000.
    [112] Kaplan L M, Kuo C-C J. “Fractal estimation from noisy data via discrete fractional Gaussian noise (DFGN) and the Haar basis,” IEEE Trans. on Signal Proc, pp.3554-3562, Dec.1993
    [113] 张骏温, 陈海文, 陈常嘉, “因特网流量多重分形性本质成因的研究,” 软件学报, vol. 13, no. 3, pp. 470-474, 2002.
    [114] Mondragon R J. “Intermittency maps and queues: modelling self-similar traffic and its performance,” http://www2.elec.qmul.al.uk/~raul/ChaosProject/GroupPublications.html, 1999.
    [115] 王祖林,周荫清, “多重分形谱及其计算,” 北京航空航天大学学报, vol. 26, no. 3, 2000.
    [116] D.Anick, D. Mitra and M.M.Sondhi, “Stochastic theory of a data-handling system with multiple sources,” BELL System Technique Journal, vol. 61, pp. 1871-1894, 1982.
    [117] A. Elwalid, D. Heyman, T.V. Laksman, D. Mitra and A. Weiss, “Fundamental Bounds and Approximations for ATM Multiplexers with Applications to Video Teleconferencing,” IEEE Journal of Selected Areas in Communications, vol. 13, no. 6, pp. 1004-1016, 1995.
    [118] G. L. Choudhury, D. M. Lucatoni, and W. Whitt, “Squeezing the most out of ATM,” IEEE Trans. on Communications, vol. 44, no. 2, pp. 203-217, Feb. 1996.
    [119] 付昱华, “分形方法分析和预测月平均海面水温,” 海洋预测, vol. 12, no. 1, pp. 49-53, 1995.
    [120] 付昱华, “加权分形分析和预测月平均海面水温,” 海洋通报, vol. 15, no. 2, pp. 69-75, 1996.
    [121] 付昱华, “用分形方法分析和预测墨西哥湾平台价格,”中国海上油气(工程), 1996 年第 2 期.
    [122] 舒炎泰, 王雷, 张连芳, 薛飞, 金志刚, Oliver Yang, “基于 FARIMA 模型的 Internet 网络业务预报,” 计算机学报, vol. 24, no. 1, Jan. 2001.
    [123] 张连芳, 薛飞, 王雷, 刘嘉焜, 舒炎泰, “自相似网络业务的一个 FARIMA 模型,” 计算机研究与发展, vol. 37, no. 9, Sept. 2000.
    [124] Hosking J R M., “Fractional diffenencing,” Journal of Biometri-ka, 1981, 68(1), pp.165-176.
    [125] Andersen A, Nielsen B., “An application of superpositions of two states Markovian sources to the modeling of self-similar behavior,” in Proc. IEEE INFOCOM'97, pp. 196-204, Kobe, Japan, 1997.
    [126] B. Melamed, D. Raychaudhuri, B. Sengupta, and J. Zdepski, “TES-Based Video Source Modeling for Performance Evaluation of Integrated Networks,” IEEE Trans. Comm., vol. 42, no. 10, pp. 2773-2777, Oct. 1994.
    [127] 薛飞, “自相似网络业务的建模分析与性能评价研究,” 博士学位论文, 天津大学, 1998.
    [128] Akaike H. “Time Series Analysis and Control Through Parametric Models, Applied Time Series Analysis,” New York, Academic Press, 1978.
    [129] Brockwell P, Davis R. “Time Series: Theory and Methods (2nded),” New York: Springer Verlag, 1991.
    [130] Wilfrid J. Dixon and Frank J. Massey. “Introduction to Statistical Analysis,” McGraw-Hill Book Company, Third Edition, 1983.
    [131] Dongxu Shen, Joseph L. Hellerstein. “Predictive Models for Proactive Network Management: Application to a Production Web Server,” NOMS’2000, April 2000, Hawii.
    [132] 邹柏贤, 刘强, “基于 ARMA 模型的网络流量预测,”计算机研究与发展, vol.39, no.12, Dec. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700