用户名: 密码: 验证码:
高速铁路宽带无线接入网络架构与性能分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:无线通信的发展始终朝着一个目标演进,那就是让人们能够在任何时间、任何地点与任何人进行通信。高速列车作为现代重要交通工具,与人们的生活息息相关。在长达数小时的旅程中,乘客所需的通信服务一般包括语音、电子邮件、上网浏览和流媒体等多种业务。为高速移动中的乘客提供信息化服务,已成为移动通信发展中新的热点。高速铁路宽带无线接入网络存在信道快变、多普勒频谱扩展大、切换频繁、频谱受限、电波干扰复杂、可靠性要求高等特点。然而,现有无线通信系统均无法很好地解决这些问题。因此,需要研究和分析与高速移动环境相适应的新一代高速铁路宽带无线接入网络架构及其性能。
     本文利用概率论和随机矩阵等理论工具,对高速铁路宽带无线接入网络进行研究。针对高速铁路场景,分析信道特性,提出适用的网络架构,研究高铁网络中的各项性能指标。基于一般的高铁信道模型,本文给出了信道容量、中断率、误码率、差错指数、截止速率、删除指数和有效速率等数学表达式。研究成果能够解析地评估高铁网络系统性能,揭示高铁网络的性能受限规律,把握影响网络性能的系统参数,为今后高速铁路宽带网络的设计、规划和优化提供理论依据,具有现实意义。具体来说,本文的主要工作有:
     1.在高铁场景信道特性和系统架构方面,本文首先根据实际测量数据,分析了高铁信道的大尺度和小尺度衰落参数的统计特性。针对高铁信道的复杂多样性,引入了两种一般的小尺度信道衰落模型:η-μ和κ-μ分布,并分别给出其信号包络和功率的概率密度表达式,为后文的性能分析提供了数学基础。通过改变它们的参数能够较好地描述高铁各种场景中的小尺度衰落特性,具有一般性。具体来说,η-μ分布包括Hoyt、Rayleigh和Nakagami-m分布;κ-μ分布包括Ricea、One-Side Gaussian、Rayleigh和Nakagami-m分布等。然后,本文分析了各种现有高速铁路接入网络技术方案(例如卫星通信、漏泄电缆和WiMAX等)的优缺点。在此基础上,提出了基于车载基站和RoF的高铁网络方案。通过在列车顶部架设天线,车载基站直接与轨边射频拉远单元进行通信,并将接收信号进行处理后,通过分布于车厢内部的天线,覆盖车厢内的用户终端。该方案成本较低,能够支持多种通信制式,切换管理简单,实现平滑切换,降低切换时延,切换成功率高,减小对其他网络的干扰。更重要的是,该网络架构能够把复杂的时变信道估计算法和抗多普勒效应算法移到车载基站上,解决了用户终端功率和性能受限的难题。
     2.在高铁宽带无线接入网络的性能分析方面,本文首先分析RAU与车载基站之间无线链路的经典性能。在综合考虑路径损耗、阴影衰落和小尺度衰落基础上,提出一种一般的η-μ/Gamma复合信道模型。根据这种混合信道的瞬时接收功率的概率密度函数和累积分布函数解析表达式,给出了中断概率和误码率的准确表达式。进一步,推导了不同发送机制下η-μ/Gamma复合衰落模型的信道容量表达式。然后,本文还分析了高铁网络的差错指数和有效速率两个性能指标。通过研究MIMO STBC系统在η-μ和κ-μ信道下的差错指数,分析收发天线数、相干时间、编码长度、阴影衰落及小尺度信道参数对差错指数的影响。另外,还给出了信道容量、截止速率和删除指数等准确和高信噪比下渐进的解析表达式。最后,通过研究MISO系统在η-μ和κ-μ信道下的有效速率准确和渐进表达式,将物理层的信道传输速率与数据链路层的QoS要求结合起来。本文得到的各种表达式包括和验证了前人对于Nakagami-m、Rician和Raileigh等信道模型的研究结果,具有一般性。
     3.针对高速铁路中占主要部分的高架桥场景,提出了一种使MIMO系统达到最大信道容量的收发天线间距准则。在具有强直射路径的场景中,传统MIMO系统中由于各天线相隔较近,往往导致信道相关矩阵不满秩,降低了系统容量。为了使相关矩阵满秩,本文首先分析了双发双收MIMO系统的天线间距准则,推导得到收发天线间距之积sls2与载波频率、收发信机距离以及天线倾斜角度有关,而与收发天线的高度差无关。然后,将该准则推广到任意收发天线个数的普遍情况,得到条件s1s2仍与发射天线数成反比。最优容量MIMO机制在高铁场景具有很大优势,这是由于与传统用户终端(如手机等)不同,高速列车顶部面积较大,不受尺寸限制,可以安装间距较远的多根微型天线。另外,本文还探讨了该准则在实际高铁Rician信道和弯道处的性能。仿真结果表明,本文提出的最优容量MIMO准则不仅能够在直线场景中获得较大的速率,而且适用于弯道场景。
ABSTRACT:The evolution of wireless communications has a goal, which is that people can communicate with any one at any place and for any time. As one of the most impor-tant modern transportation vehicles, high-speed trains are closely connected with human. In the journey of several hours, the passengers would like using their mobile terminals to enjoy many kinds of wireless communication service, for example call, emails, internet and live video games. It has been a new and hot topic that providing information service to the passengers onboard high-speed trains. There are many challenges in this area, such as fast varying fading channels, doppler shift, fast handover, limited spectrum, complex interference and high reliability. However, existing wireless systems can not handle these problems. Therefore, under the condition of high mobility, it is significant to investigate the new architecture and performance of public broadband wireless access network for high-speed railways.
     The architecture and performance analysis of public broadband wireless access net-work for high-speed railways have been studied by using tools of special functions, prob-ability theory and random matrix. For the scenarios of high-speed railway, we analysis the characters of channel model, propose a new network architecture, study the key per-formance of high-speed railway network. Based on generalized fading models, we derive the expressions of channel capacity, outage probability, bit error rate (BER), error expo-nent, cutoff rate, expurgated exponent and effective rate. From these significant formulas, we can evaluate the performance of high-speed railway wireless systems, find the law of limited performance, get the effect of system and channel parameters on network. Our results can provide a theory foundation for the design, optimization of high-speed railway network. Moreover, the main contributions of this thesis include:
     1. For the channel model and system architecture, based on the measured data, we analysis the statistic characteristics of large-and small-scale fading channels of high-speed railway scenarios. Because of the complexity and diversity of scenar-ios, the η-μ and K-μ distributions have been used in this thesis as generalized small-scale fading models. The probability density functions (PDFs) of the envelope and power of η-μ and k-μ random variables are provided as mathematical tools for the performance analysis. The η-μ and K-μ distributions can include several common distributions as special cases. For example, the η-μ distribution cover-s Hoyt, Rayleigh and Nakagami-m distributions and the k-μ distribution includes Ricean, One-Side Gaussian, Rayleigh and Nakagami-m distributions. Then, we analysis pros and cons of the existing wireless systems for high-speed railways, such as satellite communications, leaky cable, UMTS and WiMAX. Furthermore, the network scheme based on vehicle-mounted base station (BS) and radio over fiber (RoF) has been proposed in this paper. With the antennas mounted on the top of trains, the BS communicates with the track-side radio antenna unit (RAU) directly, decodes the received signal and transmits it to the users'terminals by the antennas distributed in the carriage. The proposed scheme has low cost, handover time, and low interference. It can support many communication systems. More importantly, the complex algorithms for estimation time-varying channels and anti-doppler effect are moved to the vehicle-mounted BS, which is more powerful than the common terminals. In addition, the handover of this scheme is simple and can be successful with a high probability.
     2. For the performance analysis of high-speed railway wireless systems, we analysis the classic Shannon metrics of the link between the RAU and the vehicle-mounted BS. A generalized η-μ/Gamma composite fading model has been proposed by con-sidering path loss, shadowing and small-scale fading. Based on the PDF and CDF expressions of the power, the exact outage probability and BER formulas have been provided. Moreover, we exploit the performance metrics of high-speed railway net-work in terms of error exponent and effective rate. The relationship between the number of antennas, coherence time, length of codeword, shadowing, parameters of small-scale fading and random coding error exponent (RCEE) has been investigat-ed for multiple-input multiple-output (MIMO) Space Time Block Coding (STBC) systems. Furthermore, we provide the exact and approximated analytical expres-sions for the channel capacity, cutoff rate and expurgated exponent. The exact and approximated analytical expressions for the effective rate of multiple-input single-output (MISO) systems over η-μ and k-μ fading channels are derived to combine the Quality of Service (QoS) of data link layer and transmit rate of physical lay-er. These universal results include and validate previous works on Nakagami-m, Rician and Raileigh fading channels.
     3. For the viaduct scenario of high-speed railway, we prove a spacing of antennas based scheme which maximizes the channel capacity of MIMO systems. The con- ventional MIMO system can not achieve full capacity because of the singular cor-relation matrix in the line of sight (LoS) environment. In order to get a full rank correlation matrix, an antennas spacing law has been proposed for2x2MEMO systems. The product of the spacing of transmitted antennas s1and the spacing of received antennas52is correlated with carrier frequency, the distance between transmitter and receiver, and the angle of antennas, while is independent of the height of antennas. Then, we extend this scheme to the case of any number of antennas and find that the product s1s2increases with the reduction of transmitter antennas. The maximize capacity MIMO scheme has huge advantage when applied in the scenario of high-speed railway. The top area of high-speed trains is large to mount many antennas, which is different from common user terminals. Moreover, we discuss the application of this scheme in the LoS channel and the curve of rail-way. The simulation results demonstrate the advantage of our proposed generalized scheme, which can derive high rate and is suitable for viaduct scenario.
引文
[1]中华人民共和国铁道部.中长期铁路网规划(2008年调整).人民铁道,2008,11(4):46-53.
    [2]Ohmori S, Yamao Y, Nakajima N. The future generations of mobile communications based on broadband access technologies. IEEE Commun. Mag.,2000,38(12):134-142.
    [3]Fokum D T, Frost V S. A survey on methods for broadband internet access on trains. IEEE Commun. Surveys Tuts.,2010,12(2):171-185.
    [4]Goldsmith A. Wireless communications. Cambridge university press,2005.
    [5]He R, Zhong Z, Ai B, et al. Measurements and analysis of propagation channels in high-speed railway viaducts. IEEE Trans. Wireless Commun.,2013,12(2):794-805.
    [6]Rappaport T S. Wireless communications:principles and practice. Upper Saddle River, NJ: Prentice Hall,2002.
    [7]Lee W C Y. Estimate of local average power of a mobile radio signal. IEEE Trans. Veh. Technol.,1985,34(1):22-27.
    [8]杨大成.移动传播环境:理论基础、分析方法和建模技术.北京:机械工业出版社,2003.
    [9]刘留,陶成,邱佳慧,et al.高速铁路宽带无线信道测量方法研究.铁道学报,2011,33(5):48-53.
    [10]Cox D. Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment. IEEE Trans. Antennas Propag.,1972,20(5):625-635.
    [11]Thoma R, Hampicke D, Richter A, et al. Identification of time-variant directional mobile radio channels. Instrumentation and Measurement, IEEE Transactions on,2000,49(2):357-364.
    [12]De Lacerda R, Cardoso L S, Knopp R, et al. EMOS platform:real-time capacity estimation of MTMO channels in the UMTS-TDD band. Proceedings of Wireless Communication Systems, 2007. ISWCS 2007.4th International Symposium on. IEEE,2007.782-786.
    [13]Elektrobit. Propsound CS:The ultimate technology in radio propagation measurement. Tech-nical report,2005.
    [14]周涛,陶成,刘留,et al.基于WCDMA的高铁宽带无线信道测量方法研究.铁道学报,2012,34(10):55-60.
    [15]36211 T. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and mod-ulation. Technical report,3GPP,2012. http://www.3gpp.org/.
    [16]章嘉懿,谈振辉,于晓溪,etal.高速铁路公众宽带通信接入体制与关键技术综述.铁道学报,2012,34(1):46-53.
    [17]Li G, Steuber G L. Orthogonal frequency division multiplexing for wireless communications. Springer,2006.
    [18]肖建华,张志敏,高疆,et al.高速铁路场景下TD-SCDMA网络设计的关键问题及解决措施.电信技术,2009,2:33-34.
    [19]Molisch A F. Wireless communications. Wiley,2010.
    [20]Liu L, Tao C, Qiu J, et al. Position-Based Modeling for Wireless Channel on High-Speed Railway under a Viaduct at 2.35 GHz. IEEE J. Sel. Areas Commun.,2012,30(4):834-845.
    [21]He R, Zhong Z, Ai B, et al. Measurements and analysis of short-term fading behavior for high-speed rail viaduct scenario. Proceedings of Communications (ICC),2012 IEEE International Conference on. IEEE,2012.4563-4567.
    [22]Lienard M, Betrencourt S, Degauque P. Theoretical and experimental approach of the propaga-tion at 2.5 GHz and 10 GHz in straight and curved tunnels. Proceedings of Vehicular Technol-ogy Conference,1999. VTC 1999-Fall. IEEE VTS 50th, volume 4. IEEE,1999.2268-2271.
    [23]Lienard M, Degauque P. Propagation in wide tunnels at 2 GHz:A statistical analysis. IEEE Trans. Veh. Technol.,1998,47(4):1322-1328.
    [24]TR25104. Technical specification group radio access network, base station (BS) radio trans-mission and reception (FDD). Technical report,3GPP,2009. http://www.3gpp.org/.
    [25]D112 I W. WINNER II Channel Models. Technical report, WINNER,2007. https://www.ist-winner.org/WINNER2-Deliverables/D 1.1.2v 1.1.pdf.
    [26]He R, Zhong Z, Ai B, et al. An empirical path loss model and fading analysis for high-speed railway viaduct scenarios. IEEE Antennas Wireless Propag. Lett.,2011,10:808-812.
    [27]He R, Zhong Z, Ai B, et al. Short-term fading behavior in high-speed railway cutting sce-nario:Measurements, analysis, and statistical models. IEEE Trans. Antennas Propag.,2012, 61(4):2209-2222.
    [28]Burnham K P, Anderson D R. Model selection and multi-model inference:a practical information-theoretic approach. Springer,2002.
    [29]钟章队,李旭,蒋文怡.铁路GSM-R数字移动通信系统.中国铁道出版社,2007.
    [30]Van Quickenborne F, De Greve F, De Turck F, et al. A tunnel-based QoS management frame-work for delivering broadband internet on trains. Proceedings of Information Networking. Advances in Data Communications and Wireless Networks. Springer,2006:552-561.
    [31]Ishizu K, Kuroda M, Harada H. Bullet-train network architecture for broadband and real-time access. Proceedings of Computers and Communications,2007. ISCC 2007.12th IEEE Symposium on. IEEE,2007.241-248.
    [32]Yeh C H, Chow C W, Liu Y L, et al. Theory and technology for standard WiMAX over fiber in high speed train systems. Journal of Lightwave Technology,2010,28(16):2327-2336.
    [33]Guan K, Zhong Z, Ai B. Assessment of LTE-R using high speed railway channel model. Pro-ceedings of Communications and Mobile Computing (CMC),2011 Third International Con-ference on. IEEE,2011.461-464.
    [34]Sniady A, Soler J. Performance of LTE in high speed railway scenarios. Proceedings of Communication Technologies for Vehicles. Springer,2013:211-222.
    [35]Wang Q, Ren G, Tu J. A soft handover algorithm for TD-LTE system in high-speed railway scenario. Proceedings of Signal Processing, Communications and Computing (ICSPCC),2011 IEEE International Conference on. IEEE,2011.1-4.
    [36]Gao T, Sun B. A high-speed railway mobile communication system based on LTE. Proceed-ings of Electronics and Information Engineering (ICEIE),2010 International Conference On, volume 1. IEEE,2010. V1-414.
    [37]Du Q, Wu G, Yu Q, et al. ICI mitigation by Doppler frequency shift estimation and pre-compensation in LTE-R systems. Proceedings of Communications in China (ICCC),2012 1st IEEE International Conference on,2012.469-474.
    [38]Wang J, Zhu H, Gomes N J. Distributed antenna systems for mobile communications in high speed trains. IEEE J. Sel. Areas Commun.,2012,30(4):675-683.
    [39]Hou H A, Wang H H. Analysis of distributed antenna system over high-speed railway commu-nication. Proceedings of Personal Indoor and Mobile Radio Communications (PIMRC),2012 IEEE 23rd International Symposium on. EEE,2012.1300-1305.
    [40]Lee D, Seo H, Clerckx B, et al. Coordinated multipoint transmission and reception in LTE-advanced:deployment scenarios and operational challenges. IEEE Commun. Mag.,2012, 50(2):148-155.
    [41]Zhang J Y, Tan Z H, Zhong Z D, et al. A multi-mode multi-band and multi-system-based access architecture for high-speed railways. Proceedings of Vehicular Technology Conference Fall (VTC 2010-Fall),2010 IEEE 72nd. IEEE,2010.1-5.
    [42]Series M. Guidelines for evaluation of radio interface technologies for IMT-Advanced. Tech-nical report, ITU, Tech. Rep,2009.
    [43]Telatar E. Capacity of Multi-antenna Gaussian Channels. Europ. Trans. Telecommun.,1999, 10(6):585-595.
    [44]Chiani M, Win M Z, Zanella A. On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Trans. Inform. Theory,2003,49(10):2363-2371.
    [45]McKay M R, Collings I B. Capacity and performance of MIMO-BICM with zero-forcing receivers. IEEE Trans. Commun.,2005,53(1):74-83.
    [46]Wei H, Zhong Z, Guan K, et al. Path loss models in viaduct and plain scenarios of the high-speed railway. Proceedings of Communications and Networking in China (CHENACOM), 2010 5th International ICST Conference on. IEEE,2010.1-5.
    [47]Kang M, Alouini M S. Capacity of MIMO Rician channels. IEEE Trans. Wireless Commun., 2006,5(1):112-122.
    [48]Jin S, Gao X, You X. On the ergodic capacity of rank-1 Ricean-fading MIMO channels. IEEE Trans. Inform. Theory,2007,53(2):502-517.
    [49]Zanella A, Chiani M, Win M Z. On the marginal distribution of the eigenvalues of Wishart matrices. IEEE Trans. Commun.,2009,57(4):1050-1060.
    [50]McKay M R, Collings I B. General capacity bounds for spatially correlated Rician MEMO channels. IEEE Trans. Inform. Theory,2005,51(9):3121-3145.
    [51]Sarris I, Nix A. Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component. IEEE Trans. Veh. Technol.,2007,56(4):2194-2202.
    [52]Bohagen F, Orten P, Oien G. Design of Optimal High-Rank Line-of-Sight MIMO Channels. IEEE Trans. Wireless Commun.,2007,6(4):1420-1425.
    [53]Bohagen F, Orten P, Oien G E, et al. Exact capacity expressions for dual-branch ricean MIMO channels. IEEE Trans. Commun.,2008,56(12):2214-2222.
    [54]Matthaiou M, De Kerret P, Karagiannidis G K, et al. Mutual information statistics and beam-forming performance analysis of optimized LoS MIMO systems. IEEE Trans. Commun.,2010, 58(11):3316-3329.
    [55]Zhang J, Tan Z, Yu X. Coverage efficiency of radio-over-fiber network for high-speed railways. Proceedings of 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2010, Chengdu, China,2010.
    [56]于晓溪,谈振辉,章嘉懿,et al.一种适合高速铁路的宽带无线接入网络架构.电信科学,2010,26(7):15-20.
    [57]Zhang J, Matthaiou M, Tan Z, et al. Performance analysis of digital communication systems over composite η-μ/gamma fading channels. IEEE Trans. Veh. Technol.,2012,61(7):3114-3124.
    [58]Zhang J, Matthaiou M, Karagiannidis G K, et al. Gallager's exponent analysis of STBC MEMO systems over η-μ and k-μ fading channels. IEEE Trans. Commun.,2013,61(3):1028-1039.
    [59]Zhang J, Matthaiou M, Karagiannidis G K, et al. Gallager's error exponent analysis of STBC systems over η-μ fading channels. Proceedings of IEEE Int. Conf. Commun. (ICC). IEEE, 2013.5829-5834.
    [60]Zhang J, Matthaiou M, Tan Z, et al. Effective rate analysis of MISO η-μ fading channels. Proceedings of IEEE Int. Conf. Commun. (ICC), Budapest, Hungary,2013.
    [61]Zhang J, Tan Z, Wang H. Optimum capacity of MIMO systems for high-speed railway with spare antenna array. Proceedings of IEEE Vehicular Technology Conference, San Francisco, CA, United states,2011.
    [62]Zhang J, Tan Z, Wang H. On the upper bound of capacity for composite MIMO Ricean and gamma fading channels. Proceedings of 2011 Cross-Strait Conference on Information Science and Technology, Taibei,2011.1-5.
    [63]熊磊,路晓彤,钟章队,et al.高速铁路GSM-R系统无线信道特性仿真.中国铁道科学,2010,31(005):84-89.
    [64]Paier A, Karedal J, Czink N, et al. Characterization of vehicle-to-vehicle radio channels from measurements at 5.2 GHz. Wireless personal communications,2009,50(1):19-32.
    [65]Stein S. Fading channel issues in system engineering. IEEE J. Sel. Areas Commun.,1987, 5(2):68-89.
    [66]Parsons J D, Parsons P J D. The mobile radio propagation channel, volume 2. Wiley New York,2000.
    [67]Yacoub M D. The k-μ distribution and the η-μ distribution. IEEE Antennas Propag. Mag., 2007,49(1):68-81.
    [68]Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. Orlando, Florida:Aca-demic Press,2000.
    [69]Ermolova N Y, Tirkkonen O. The η-μ fading distribution with integer values of μ. IEEE Trans. Wireless Commun.,2011,10(6):1976-1982.
    [70]Peppas K P, Lazarakis F, Zervos T, et al. Sum of non-identical independent squared η-μ variates and applications in the performance analysis of DS-CDMA Systems. IEEE Trans. Wireless Commun.,2010,9(9):2718-2723.
    [71]Peppas K P. Sum of Nonidentical Squared k-μ Variates and Applications in the Performance
    Analysis of Diversity Receivers. IEEE Trans. Veh. Technol.,2012,61(1):413-419.
    [72]Wyne S, Singh A P, Tufvesson F, et al. A statistical model for indoor office wireless sensor channels. IEEE Trans. Wireless Commun.,2009,8(8):4154-4164.
    [73]Wang H, Yu F R,Zhu L, et al. Modeling of Communication-Based Train Control (CBTC) Radio Channel With Leaky Waveguide. IEEE Antennas Wireless Propag. Lett.,2013.12:1061-1064.
    [74]Pareit D, Velde E, Naudts D, et al. A novel network architecture for train-to-wayside commu-nication with quality of service over heterogeneous wireless networks. EURASIP Journal on Wireless Communications and Networking,2012,2012(1):1-30.
    [75]Schena V, Ceprani F. FIFTH project solutions demonstrating new satellite broadband commu-nication system for high speed train. Proceedings of Vehicular Technology Conference,2004. VTC 2004-Spring.2004 IEEE 59th, volume 5. IEEE,2004.2831-2835.
    [76]钟章队,艾渤,刘秋妍,et al.铁路数字移动通信系统(GSM-R)应用基础理论.清华大学出版社,2009.
    [77]Lannoo B, Colle D, Pickavet M, et al. Radio-over-fiber-based solution to provide broadband internet access to train passengers [Topics in Optical Communications]. IEEE Commun. Mae.. 2007,45(2):56-62.
    [78]Aguado M, Onandi O, Agustin P, et al. WiMax on Rails. IEEE Veh. Technol. Mae..2008. 3(3):47-56.
    [79]禹培栋,王国忠,陈明华,et al.光开关技术进展.半导体光电,2001,22(3):149-154.
    [80]Matthaiou M, Chatzidiamantis N D, Karagiannidis G K, et al. On the Capacity of Generalized-K Fading MIMO Channels. IEEE Trans. Signal Process.,2010,58(11):5939-5944.
    [81]Shankar P. Statistical models for fading and shadowed fading channels in wireless systems:A pedagogical perspective. Wireless Personal Communications,2011,60(2):191-213.
    [82]Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. Seventh ed.. San Diego. CA:Academic Press,2007.
    [83]Adamchik V, Marichev O. The algorithm for calculating integrals of hypergeometric type func-tions and its realization in REDUCE system. Proceedings of Intern. Conf. Symbolic Algebraic Computation,1990.212-224.
    [84]Wolfram. The Wolfram functions site. Available:http://functions.wolfram.com.
    [85]Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.9th edition ed., Dover,1964.
    [86]Matthaiou M, Chatzidiamantis N D, Karagiannidis G K, et al. ZF detectors over correlated K fading MIMO channels. IEEE Trans. Commun.,2011,59(6):1591-1603.
    [87]Simon M K, Alouini M S. Digital communication over fading channels. Jone Wilev & Sons 2005.
    [88]Alouini M S, Goldsmith A J. Capacity of Rayleigh fading channels under different adap-tive transmission and diversity-combining techniques. IEEE Trans. Veh. Technol-1999 48(4):1165-1181.
    [89]Prudnikov A P, Brychkov I U A, Marichev O I. Integrals and Series, Volume 3:More Special Functions. Gordon and Breach,1990.
    [90]Efthymoglou G P, Ermolova N Y, Aalo V A. Channel capacity and average error rates in generalised-K fading channels. IET Commun.,2010,4(11):1364-1372.
    [91]Prudnikov A P, Brychkov I U A, Marichev O I. Integrals and Series, Volume 2:Special Func-tions. Gordon and Breach,1986.
    [92]Goldsmith A, Varaiya P. Capacity of fading channels with channel side information. IEEE Trans. Inform. Theory,1997,43(6):1986-1992.
    [93]Cheng J, Berger T. Capacity of a class of fading channels with channel state information (CSI) feedback. Proceedings of 39th Annu. Allerton Conf. on Commun. Control and Computing (Allerton), Allerton Park, IL,2001.1152-1160.
    [94]Laourine A, Alouini M S, Affes S, et al. On the capacity of generalized-K fading channels. IEEE Trans. Wireless Commun.,2008,7(7):2441-2445.
    [95]Trigui I, Laourine A, Affes S, et al. Performance Analysis of Mobile Radio Systems over Composite Fading/Shadowing Channels with Co-located Interference. IEEE Trans. Wireless Commun.,2009,8(7):3448-3453.
    [96]Wang Z, Giannakis G B. A simple and general parameterization quantifying performance in fading channels. IEEE Trans. Commun.,2003,51(8):1389-1398.
    [97]Peppas K P. Capacity of η-μ fading channels under different adaptive transmission techniques. IET Commun.,2010,4(5):532-539.
    [98]Costa D B, Yacoub M D. Average channel capacity for generalized fading scenarios. IEEE Trans. Commun.,2007,11(12):949-951.
    [99]Shannon C E. Probability of error for optimal codes in a Gaussian channel. Bell Syst. Tech. J., 1959,38(3):611-656.
    [100]Gallager R S. Information Theory and Reliable Communication. New York:Wiley,1968.
    [101]Shin H, Win M Z. Gallager's exponent for MIMO channels:A reliability-rate tradeoff. IEEE Trans. Commun.,2009,57(4):972-985.
    [102]Ericson T. A Gaussian channel with slow fading. IEEE Trans. Inform. Theory,1970, 16(3):353-355.
    [103]Ahmed W K M, McLane P J. Random coding error exponents for two-dimensional flat fad-ing channels with complete channel state information. IEEE Trans. Inform. Theory,1999, 45(4):1338-1346.
    [104]Shin H, Lee J H. Capacity of multiple-antenna fading channels:Spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inform. Theory,2003,49(10):2636-2647.
    [105]Xue J, Sarkar M Z I, Ratnarajah T. Random coding error exponent for OSTBC Nakagami-m fading MIMO channel. Proceedings of IEEE Veh. Technol. Conf.,2011.
    [106]Xue J, Sarkar M Z I, Zhong C, et al. Error exponent for orthogonal STBC generalized-K fading MIMO channels. Proceedings of IEEE Wireless Commun. Netw. Conf. (WCNC),2012.
    [107]Sandhu S, Paulraj A. Space-time block codes:A capacity perspective. IEEE Trans. Commun., 2000,4(12):384-386.
    [108]Maaref A, Aissa S. Performance analysis of orthogonal space-time block codes in spatially cor-related MIMO Nakagami fading channels. IEEE Trans. Wireless Commun,2006,5(4):807-817.
    [109]Prudnikov A P, Brychkov I U A, Marichev O I. Integrals and Series, Volume 4:Direct Laplace Transforms. Gordon and Breach,1992.
    [110]Wu D, Negi R. Effective capacity:A wireless link model for support of quality of service. IEEE Trans. Wireless Commun.,2003,2(4):630-643.
    [111]Liu L, Chamberland J. On the effective capacities of multiple-antenna Gaussian channels. Pro-ceedings of Information Theory,2008. ISIT 2008. IEEE International Symposium on. IEEE, 2008.2583-2587.
    [112]Matthaiou M, Alexandropoulos G C, Ngo H Q, et al. Analytic framework for the effective rate of MISO fading channels. IEEE Trans. Commun.,2012,60(6):1741-1751.
    [113]Lozano A, Tulino A M, Verdu S. Multiple-antenna capacity in the low-power regime. IEEE Trans. Inform. Theory,2003,49(10):2527-2544.
    [114]Verdu S. Spectral efficiency in the wideband regime. IEEE Trans. Inform. Theory,2002, 48(6):1319-1343.
    [115]Matthaiou M, Alexandropoulos G, Ngo H, et al. Analytic framework for the effective rate of MISO fading channels. IEEE Trans. Commun.,2012,60(6):1741-1751.
    [116]McNamara D, Beach M, Fletcher P, et al. Capacity variation of indoor multiple-input multiple-output channels. Electronics Letters,2000,36(24):2037-2038.
    [117]Tsai L S, Shiu D s. Capacity scaling and coverage for repeater-aided MIMO systems in line-of-sight environments. IEEE Trans. Wireless Commun.,2010,9(5):1617-1627.
    [118]Nishimori K, Honma N, Seki T, et al. On the transmission method for short-range MIMO communication. IEEE Trans. Veh. Technol.,2011,60(3):1247-1251.
    [119]Rusek F, Persson D, Lau B K, et al. Scaling up MIMO:Opportunities and challenges with very large arrays. IEEE Signal Process. Mag.,2013,30(l):40-60.
    [120]Hoydis J, Hosseini K, Brink S t, et al. Making smart use of excess antennas:Massive MIMO, small Cells, and TDD. Bell Labs Technical Journal,2013,18(2):5-21.
    [121]Studer C, Larsson E G. PAR-aware large-scale multi-user MTMO-OFDM downlink. IEEE J. Sel. Areas Commun.,2013,31(2):303-313.
    [122]Larsson E G, Tufvesson F, Edfors O, et al. Massive MIMO for next generation wireless sys-tems. IEEE Commun. Mag.,2013,61(9):1976-1982.
    [123]Tulino A M, Verdu S. Random matrix theory and wireless communications, volume 1. Now Publishers Inc,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700