无线分组通信系统跨层模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球移动通信和互联网的兴起,使得宽带化、个人化、分组化成为大势所趋。如何在宽带无线分组移动网络中提供更多丰富可靠的多媒体业务,如:数据业务、流媒体业务、视音频广播业务、VoIP业务等等,成为无线移动通信领域内的研究热点。本论文正是在国家“十五”863计划重大课题“新一代蜂窝移动通信系统无线传输链路技术研究(2001AA123014)”、“TDD系统高层协议、自适应链路和编译码设计与实现”(编号2003AA12331005)和国家自然科学基金重大项目“未来移动通信系统基础理论与技术研究”子课题“基于MIMO-OFDM系统的空中接口自适应技术研究(60496310)”的资助下,针对无线分组通信系统中的若干问题,如多载波多业务的QoS保障、多天线多载波多业务的QoS保障、多用户多业务的QoS保障以及支持无线移动的高效TCP/IP协议栈架构等进行了研究。全文研究共分为六部分。
     第一部分分析了用户评价体系。论文讨论了用户侧对通信过程的观察与体验,提炼出四个评价指标,并根据用户对业务体验差别,提出四种评价函数。用户评价最大化是综合用户对各类业务的评价过程,对通信系统的参数和结构调整具有指导意义。最后讨论了跨层优化的一般准则。
     第二部分分析了单用户多载波多业务系统的跨层优化问题。在确定此类问题的约束条件后,一般是业务QoS约束和空口资源约束,以用户评价最大化为优化目标,推导资源分配算法。根据空口资源的差异性,证明了最佳信道分配给最紧迫分组算法在资源利用上的最优性。根据上述算法,调度以用户评价的最大化为目标,对各个业务分组实时进行资源调配,从而最终使得用户评价最大化,即也保障了业务的QoS。
     第三部分分析了单用户多载波多天线多业务系统的跨层优化问题,以OSTBC-OFDM系统为实例进行了深入研究。分析了OSTBC的分集增益与信道矩阵的F范数的关系;同时根据数据链路层的时延特性分析,获取业务分组的权重,并根据业务分组的权重推导业务分组的PSR需求;结合上述信道矩阵增益和PSR需求,同时遵循第二部分中所论述的多载波分配准则,以用户评价最大化为目标进行资源调度,进而保障用户业务的QoS。
     第四部分扩展了第三部分的结论,考虑多用户场景,并将空口资源定义为多维空间,不限定于时、频、空域范围内,只约定资源空间为正交的结构固定的多维空间。以多用户评价平均值最大化为优化准则,即MUER准则,在策略控制约束下,设计实现两级调度框架,第一级为用户的业务分组调度,第二级为多用户间的业务分组调度。以策略控制影响多用户评价的平均值,使得调度器在多用户之间在资源争用时具有偏向性的选择,进而平衡用户的公平性和业务的QoS保障,最终达到多用户评价平均值最大化。
     第五部分分析了TCP/IP协议栈架构,提出了支持无线移动的高效跨层空口协议栈架构。该协议栈架构采用跨层思想,创新性地提出了移动链路(ML)和镜像TCP(mTCP)的概念,使得空口的数据链路层与IP层和TCP层密切配合,借助PID的设计,以有线网络增加很少的负荷为代价,避免了IP分组在HA到FA间的隧道传输,优化了移动IP的时延特性。借助ML的信令,mTCP镜像维护移动节点TCP状态信息,进而可以过滤掉所有的TCP确认报文段,并且在TCP报文段需要重传时,mTCP和ML配合,可以只将相应的DLL层PDU或者IP层分组进行重传,从而节省空中接口资源和有线网络资源。
     第六部分是全文总结与展望。对今后跨层领域的发展提出了若干建设性的思路和方法,如用户策略方面的研究、部分信息下的跨层优化以及异构网络下的跨层优化等。
Global mobile communications and the rise of the Internet, making broadband, personal, and packet have become the trend of the times. How to provide more abundant and reliable multimedia services such as: data services, streaming media, video and audio broadcasting, VoIP, and so on, in the broadband wireless mobile networks is become research focus in wireless mobile communications areas. Our work is supported by the National High Technology Research and Development Program of China under Grant No. 2001AA123014, No.2003AA12331005 and National Science Foundation of China under Grant No. 60496310. Regarding to some issues in wireless packet communications systems, such as multi-carrier multi-service QoS guaranteed, multi-antenna of the multi-carrier multi-service QoS guaranteed, multi-user multi-service QoS guaranteed and support of wireless mobile efficient TCP / IP protocol stack structure, we make an in-depth studies. In this dissertation, there are five parts.
     In first part, we analyse the user evaluation system, extracting four evaluation indexes for the communications process of observation and experience on the user side. And in accordance with the user experience on the services differences, a four evaluation functions are proposed. User evaluation function maximization is a mixed process of evaluating varies traffics, and it is the general guidelines for cross-layer optimization on parameters and structures adjustment.
     In part II, we analyze the single-user multi-carrier multi-service system of cross-layer optimization problem. In determining such issues constraints, generally the service QoS constraints and resource constraints, maximizing the user evaluation function is the optimal objective. the allocation of resources derived algorithm. According to the differences of air interface resources, the best channel allocated to the most emergent packet algorithm is the optimal utilization of resources. According to the algorithm, the system schedules the packet to vary traffics based on user evaluation function,. It eventually allows user to maximize evaluation, and also protects the service QoS.
     In part III, we analyze the single-user multi-carrier multi-antenna multi-service system of cross-layer optimization problem regard to an OSTBC-OFDM system as a instance. Based on analyzing the relationship between OSTBC diversity gain and channel marix F norm, ans also the analyzing the latency characters, we design a kind of weight measurement for traffic packet. According to the weight of traffic packet, the requirement of each packet PSR is derived. Followed by the criteria in the second part, considering the channel matrix gain and the requirement of the packet PSR, the system can schedule the resource with maximizting the user evaluation function and also with serices QoS guaranteed.
     In part IV, we extend the theory of the third part, with considering multi-user scenario and defining the air interface resource as an multi-dimensional spaces without constraining on time, frequency and space. We design a two-stage scheduling structure under the restraints of the control strategy aiming to maximize the multi-user average evaluation function which named MUER criteria. The first-stage is user packet scheduling. The second-stage is inter-user scheduling. Control strategy affects multi-user evaluation function. It makes inter-user scheduling biasess when there is the competition existed among users. It can protect the users’balance and fairness with maximzing the users’average evaluation function and also with service QoS guaranteed.
     In part V, we analyze the structure of the traditional TCP/IP protocol stack, and propose an effective cross-layer air interface protocol stack for supporting mobile wireless communicating. The protocol stack for cross-layer ideas, put forward innovative mobile links (ML) and the concept of mirror TCP (mTCP), making the data link layer and the TCP/IP layer close coordination in air interface. With the PID designed, by increasing a few cable network’s load as the cost, it avoids the HA to the FA tunnel transmission, reduce the delay on mobile IP layer. By ML signaling, mTCP maintains the MN’s TCP windows state. It help the mTCP filters most of reverse TCP-ACK messages. And also, when TCP need retransmission, mTCP can retransmit the related packet but not the integrated TCP packet by cooperation with ML layer. It can save a volume of air interface resource.
     Part VI is the full text of summary and prospects. On the future developments in the field of cross-layer, we show a number of constructive ideas and methods, such as user strategy, the cross-layer optimization under partial channel information and heterogeneous network of cross-layer optimization.
引文
[1]郑祖辉.移动通信的代.中国无线电管理, 2003, 1: 56~60.
    [2] Pahlavan K., and Levesque, A.H. Wireless Information Networks. New York: Wiley& Sons, 1995.
    [3] Sreetharan, M. and Kumar R. Cellular Digital Packet Data. Artech House, 1996.
    [4] Forum C. CDPD System Specification, Release 1.1 ed. Jan. 19, 1995.
    [5] ETSI, General Packet Radio Service (GPRS), Overall description of the GPRS radio interface, Stage 2. GSM 03.64, Version 6.0.1 ed., 1998.
    [6] ETSI, General Packet Radio Service (GPRS), Service description of the GPRS radio interface, Stage 2. GSM 03.60, Version 7.4.0 ed., 1998.
    [7] Gohring N. TDMA Leaps to EDGE. Telephony, 1999, 236(4): 10~14.
    [8] Maucksch T. 3G Transmits a Positive Message. Telecommunications, 2000, 34(8): 36~40.
    [9] Murray K., Pesch, D. Neural Network Based Adaptive Radio Resource Management for GSM and IS136 evolution. in: VTC 2001 Fall. IEEE VTS 54th, 2001, 4: 2108~2112.
    [10] Parasad R.第三代移动通信:欧洲的先进技术(上、下卷).电子工业出版社, 2002.
    [11]尤肖虎,曹淑敏,李建东.第三代移动通信系统发展现状与展望.电子学报, 1999, 27(supp 11).
    [12]李建东,杨家玮.个人通信.人民邮电出版社, 1995.
    [13]汤申生.第三代移动通信系统无线传输技术的发展.电信科学, 1998, 14(10): 12~15.
    [14]王平. IMT-2000移动通信系统的无线传输技术的发展.电信科学, 1998, 10(2): 21~25.
    [15]胡捍英,杨峰义.第三代移动通信系统.人民邮电出版社, 2001.
    [16]杨大成. CDMA2000技术.北京邮电大学出版社, 2000.
    [17] 3GPP2. cdma2000 Standard for Spread Spectrum Systems, Revision D, Feb. 2004.
    [18] Parasad R. WCDMA for 3rd Generation Mobile Communications. Artech House, 1998.
    [19] Parasad R.第三代移动通信:欧洲的先进技术(上、下卷).电子工业出版社, 2002.
    [20] Esmailzadeh R. M. N., Sourour E. Time-Division Duplex CDMA Communications. IEEE Personal Communications, 1997, 4: 51~56.
    [21] Povey G. H. H., Toskala A. TDD-CDMA Extension to FDD-CDMA Based Third Generation Cellular System. in: Proceeding of ICUPC, San Diego, Calfornia, USA,1997: 813~817.
    [22] Miao Qingyu W. W., Yang Dacheng. An Analysis of the Interference in the TDD-CDMA. in: Proceedings of TENCON’2000 Malasia, 2000.
    [23]王文博.时分双工CDMA移动通信技术.北京邮电大学出版社, 2001.
    [24] 3GPP2. 1xEV-DV Evaluation Methodology, v13.1 ed. 2003.
    [25] 3GPP. HSDPA standard,3G TR25.848, V0.4.0[s] ed. 2001.
    [26] Annoni M., Hancock, R., Paila, T., et al. Radio Access Network Beyond 3G: A First Comparison of Architectures. in: Personal, Indoor and Mobile Radio Communications, 2001 12th IEEE International Symposium on, 2001: 133~140.
    [27] Steele R. Beyond 3G. Broadband Communications. in: Proceedings, 2000 International Zurich Seminar on, 2000: 1~7.
    [28] Annoni M., Hancock R., Paila T., et al. Radio Access Network Beyond 3G: A First Comparison of Architectures. in: Personal, Indoor and Mobile Radio Communications, 2001 12th IEEE International Symposium on, 2001:133~140.
    [29] Chuang J., Sollenberger N. Beyond 3G: Wideband Wireless Data Access Based on OFDM and Dynamic Packet Assignment. IEEE Communications Magazine, 2000, 38(7): 78~87.
    [30] Robles T., Kadelka A., Velayos H., et al. QoS support for an all IP system beyond 3G. IEEE Communications Magazine, 2001, 39(8): 64~72.
    [31] Geier J.无线局域网.人民邮电出版社, 2001.
    [32]刘元安.宽带无线接入网和无线局域网.北京邮电大学出版社, 2000.
    [33]朱洪波,傅海阳.无线接入网.人民邮电出版社, 2000.
    [34] B. Crow, et al. IEEE 802.11 Wireless Local Area Networks. IEEE Communication Magazine, 1997, 35(9): 116~126.
    [35] Grass E., Tittelbach-Helmrich K., Jagdhold U., et al. On The Single-Chip Implementation of a Hiperlan/2 and IEEE 802.11a Capable Modem. IEEE Personal Communications, 2001 8(12): 48~57.
    [36] Hwang G.-H. and Cho D.-H. Adaptive Radom Channel Allocation Scheme in HIPERLAN Type 2. IEEE Communications Letters, 2002, 6: 40~42.
    [37] Doufexi A., Armour S., Butler M., et al. A Comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN Standards. IEEE Communications Magazine, 2002, 40(5): 172~180.
    [38]金纯,许光辰,孙睿.蓝牙技术.电子工业出版社, 2001.
    [39] Ghosh A., Wolter D.R., Andrews J.G., Chen R. Broadband wireless WiMax/802.16: current performance benchmarks and future potential. IEEE Communications Magazine, 2005, 43(2): 129~136.
    [40]周宗仪. WiMAX系统及其设备研发,中兴通讯技术, 2005, 11: 8~13.
    [41] IEEE Standard for Local and metropolitan area networks -Part 16: Air Interface for Fixed Broadband Wireless Access Systems, 2004.
    [42] IEEE Standard for Local and metropolitan area networks -Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Vorrigendum 1, 2006.
    [43]陈杰华. Mobile WiMAX优势分析,通信世界, 2006,7: 19~22.
    [44]李文宇,顾昕钰.超IMT-2000的远景框架和发展趋势.中国无线电管理, 2002: 29~31.
    [45] Sun J.-Z., Sauvola J. and Howie. D. Features in future 4G visions from a technical perspective, in: IEEE Global Telecommunications Conference, 2001: 3533~3537.
    [46] Hui S. Y. and Yeung K. H. Challenges in the migration to 4G mobile systems. IEEE Communications Magazine, 2003, 41(12): 54~59.
    [47] Zahariadis T. Trends in the path to 4G. Communications Engineer, 2003: 12~15.
    [48]刘海文.第四代移动通信技术初探.电信快报, 2002, 1: 22~25.
    [49] Liu Q., Zhou S., and Giannakis G. B. Cross-layer scheduling with prescribed QoS guarantees in adaptive wireless networks. Selected Areas in Communications, IEEE Journal on, 2005, 23(5): 1056~1066.
    [50] Nakagami M. The m-Distribution -- A General Formula of Intensity Distribution of Rapid Fading, in: Statistical Methods of Radio Wave Propagation, W. C. H. (ed.), Ed. New York: Pergamon Press, 1960: 3~36.
    [51] Hayes J. F. Adaptive feedback communications. IEEE Trans. Commun. Technol., 1978, 16(1): 29~34.
    [52] Goldsmith A. J., Chua G., Variable-rate variable-power MQAM for fading channels. IEEE Trans. Commun., 1997, 45(10): 1218~1230.
    [53] Cavers J. K. Variable-rate transmission for Rayleigh fading channels. IEEE Trans. Commun., 1972, 20(1): 15~22.
    [54] Webb W. T., Steele R. Variable rate QAM for mobile radio. IEEE Trans. Commun., 1995, 43(7): 2223~2230.
    [55] Vucetic B. An adaptive coding scheme for time-varying channels. IEEE Trans. Commun., 1991, 39(5): 653~663.
    [56] Goldsmith A. J., Chua S. Adaptive coded modulation for fading channels, IEEE Trans. Commun., 1998, 46(5): 595~602.
    [57] Goldsmith A. J., Chua S. Degrees of freedom in adaptive modulation: a unified view. IEEE Trans. Commun., 2001, 49(9): 1561~1571.
    [58] Molisch. A. F., Win M. Z. MIMO systems with antenna selection. IEEE Microwave Magazine, 2004, 5(1): 46~56.
    [59] Zhou S. and Giannakis G. B., Optimal Transmitter Eigen-Beamforming and Space-Time Block Coding based on Channel Mean Feedback, IEEE Transactions on Signal Processing, 2002, 50: 2599~2613.
    [60] Goldsmith A. J. G., Varaiya P. Capacity of fading channels with channel side information, IEEE Trans. Inform. Theory, 1997, 43(6): 1986~1992.
    [61] Czylwik A. Adaptive OFDM for wideband radio channels. in: Proc.IEEE Global Telecom. Conf. (GLOBECOM 96), London U.K, 1996: 713~718.
    [62] Day J. D., and Zimmermann H. The OSI Reference Model. in: Proc. of the IEEE, 1983, 71(12): 1334~1340.
    [63] Clark D. D. The Design Philosophy of the DARPA Internet Protocols. in: Proc. SIGCOMM'88 Conf, 1988: 106~114.
    [64] Srivastava V. and Motani M. Cross-layer design: a survey and the road ahead. IEEE Communications Magazine, 2005, 43(12): 112~119.
    [65] Yamao Y. Technical Impact of New Generation Mobile Communications System. in: International Forum on 4G Mobile Communications, 2002.
    [66] Shakkottai S. T. and Karlsson P. C. Cross-layer Design for Wireless Networks. IEEE Communications Magazine, 2003, 41(10): 74~80.
    [67] Tanenbaum A. S.计算机网络. 3 ed.清华大学出版社, 1998.
    [68] Liu Q., Zhou S., and Giannakis G. B. Queuing with adaptive modulation and coding over wireless links: cross-Layer analysis and design. IEEE Transactions on Wireless Communications, 2005, 4(5): 1142~1153.
    [69] Hui D. S. W., Lau V. K. N., and Lam W. H. Cross Layer Designs for OFDMA Wireless Systems with Heterogeneous Delay Requirements. in: 2006 IEEE International Conference on Communications, 2006: 5325~5330.
    [70] Jeong S. S., Jeong D. G., and Jeon W. S. Cross-layer Design of Packet Scheduling and Resource Allocation in OFDMA Wireless Multimedia Networks. in: Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd, 2006: 309~313.
    [71] Elatty S. M. A. Efficient Packet Scheduling with Pre-defined QoS using Cross- Layer Technique in Wireless Networks. in: Computers and Communications, 2006. ISCC '06. Proceedings. 11th IEEE Symposium on, 2006: 820~826.
    [72] Jiang H. and Zhuang W. Cross-layer resource allocation for integrated Voice/Data traffic in wireless cellular networks. IEEE Transactions on Wireless Communications, 2006, 5(2): 457~468.
    [73] Song G. and Li Y. Utility-based resource allocation and scheduling in OFDM-based.Wireless broadband networks, Communications Magazine, IEEE, 2005, 43(12): 127~134.
    [74] Song G. and Li Y., Cross-Layer Optimization for OFDM Wireless Networks– Part I: Theoretical Framework, Wireless Communication. Wireless Communication, IEEE Transactions on, 2005, 4(3): 614~624.
    [75] Song G. and Li Y., Cross-Layer Optimization for OFDM Wireless Networks– Part II: Algorithm Development, Wireless Communication, IEEE Transactions on, 2005, 4(3): 625~634.
    [76] Zhang Y. J. and Letaief K. B. Cross-Layer Adaptive Resource Management for Wireless Packet Networks With OFDM Signaling. Wireless Communications, IEEE Transactions on, 2006, 5(11): 3244~3254.
    [77] Kwon H., Kim T. H., Choi S., and Lee B. G.. A Cross-Layer Strategy for Energy-Efficient Reliable Delivery in Wireless Sensor Networks. Wireless Communications, IEEE Transactions on, 2006, 5(12): 3689~3699.
    [78] Kozat U. C., Koutsopoulos I., and Tassiulas L. Cross-Layer Design for Power Efficiency and QoS Provisioning in Multi-Hop Wireless Networks. Wireless Communications, IEEE Transactions on, 2006, 5: 3306~3315.
    [79] Brownfield M. I., Fayez A. S., Nelson T. M., and Davis N. IV. Cross-layer wireless sensor network radio power management, in Wireless Communications and Networking Conference, 2006. WCNC IEEE, 2006: 1160~1165.
    [80] Madan R., Cui S., Lall S., and Goldsmith A. Cross-Layer Design for Lifetime Maximization in Interference-Limited Wireless Sensor Networks. Wireless Communications, IEEE Transactions on, 2006, 5(11): 3142~3152.
    [81] Kong I.-Y. and Hwang W.-J. Lifetime Maximization by Cross-Layer Interaction in Wireless Sensor Networks. in: Advanced Communication Technology, 2006. ICACT 2006. The 8th International Conference, 2006: 2055~2060.
    [82] Johnsson K. B. and Cox D. C. An adaptive cross-layer scheduler for improved QoS support of multiclass data services on wireless systems. Selected Areas in Communications, IEEE Journal on, 2005, 23(2): 334~343.
    [83] 3GPP2, Physical Layer Standard for cdma2000 Spread Spectrum Systems, in C.S0002-0, Version 1.0 ed, 1999.
    [84] Nanda S., Balachandran K., and Kumar S. Adaptation techniques in wireless packet data services. IEEE Commun. Mag., 2000, 38(1): 54~64.
    [85] Alouini M. S. and Goldsmith A. J. Adaptive modulation over Nakagami fading channels, Kluwer J. Wireless Commun., 2000, 13(5): 119~143.
    [86] Duel-Hallen A., Hu S., and Hallen H. Long-range prediction of fading signals. IEEE Signal Process. Mag., 2000, 17(5): 62~75.
    [87] Malkamaki E. and Leib H. Performance of truncated type-II hybrid ARQ schemes with noisy feedback over block fading channels, IEEE Trans. Commun., 2000, 48(9): 1477~1487.
    [88] Knopp R. and Humblet P. Information capacity and power control in single-cell multiuser communications, in: Proc. Int. Conf. Communications, Seattle, WA, 1995: 331~335.
    [89] Chang L. F., Qiu X., Chawla K., and Cai J. Providing differentiated services in EGPRS through radio resource management, in Proc. ICC, Helsinki, Finland, 2001: 2296~2301.
    [90] Pang Q., Bigloo A., Leung V. C. M., and Scholefield C. Service scheduling for general packet radio service classes, in: Proc. WCNC, New Orleans, LA, 1999.
    [91] Parekh A. K. and Gallager R. G. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single-Node Case. IEEE/ACM Trans. Net, 1993, 1(6): 347~357.
    [92] Parekh A. K. and Gallager R. G. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Multiple Node Case. IEEE/ACM Trans. Net., 1994, 1(4): 137~150.
    [93] Demers A., Keshav S., and Shenker S. Analysis and Simulation of a Fair Queueing Algorithm. in: Proceedings of SIGCOMM.89, 1989: 1~12.
    [94] Bennett J. C. R. and Zhang H. WF2Q:Worst-Case Fair Weighted Fair Queueing. in: IEEE INFOCOM.96, 1996,1: 120~128.
    [95] Floyd S. and Jacobson V. Link-Sharing and Resource Management Models for Packet Networks. IEEE/ACM Transactionson Networking, 1995, 3(4):365~386.
    [96] F. Kelly, Charging and rate control for elastic traffic, Eur. Trans. Telecommun., 1997, 8: 33~37.
    [97] Bertsekas D. and Gallager R. Data Networks, 1st ed. Englewood Cliffs, NJ: Prentice-Hall, 1987.
    [98] Zhang L. Virtual Clock: A new traffic control algorithm for packet switching networks. ACM Trans. Computer Syst., 1991, 9(5): 101~124.
    [99] Ferrari D., Banerjea A., and Zhang H. A scheme for real-time channel establishment in wide-area networks. IEEE J. Select. Areas Commun., 1990, 8(4): 368~379.
    [100] Wang Z., Internet QoS: Architectures and Mechanisms for Quality of Service: Morgan Kaufmann Publishiers, 2002.
    [101] Floyd S. and Jacobson V. Radom Early Detectioin Gateways for Congestion Avoidance. IEEE/ACM Transactionson Networking, 1993, 1(4): 391~413.
    [102] Chengyu Z., Yang O. W. W., Aweya J., Ouellette M., and Montuno D. Y. A comparison of active queue management algorithms using the OPNET Modeler.Communications Magazine, IEEE, 2002, 40(6): 158-167.
    [103] Ott T. J., Lakshman T. V., and Wong L. SRED : Stabilized RED, in Proc IEEE Infocom’99, 1999: 1346~1355.
    [104] Feng W.-c., DKandlur D., and Saha D. BLUE : A New Class of Active Queue Management Algorithms, in Technical Report CSE-TR-387-99, University of Michigan, 1999.
    [105] Floyd S., Gummadi R., and Shenker S. Adaptive RED: An Algorithm for Increasing the Robustness of RED's Active Queue management, in http://www.icir.org/floyd/papers/adaptiveRed.pdf, 2001.
    [106] Jiang H., Zhuang W., and Shen X. Cross-layer design for resource allocation in 3G wireless networks and beyond, Communications Magazine, IEEE, 2005, 43(12): 120~126.
    [107] Reis J. and Gameiro A. Cross-Layer Scheduling and Adaptive Modulation for QoS Support on Wireless Multimedia Networks. in: Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on, 2006: 1~4.
    [108] Arora D. and Agathoklis P. Quality of service oriented scheduling algorithms for a cross-layer downlink wireless system, Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, 2006, 4: IV-269~IV-272.
    [109] Koutsopoulos I. and Tassiulas L. Cross-Layer Adaptive Techniques for Throughput Enhancement in Wireless OFDM-Based Networks, Networking, IEEE/ACM Transactions on, 2006, 14(10): 1056~1066.
    [110] Chen W., Letaief K.B., and Cao Z.G. A Cross Layer Method for Interference Cancellation and Network Coding in Wireless Networks. in: Communications, 2006 IEEE International Conference on, 2006, 8: 3693-3698
    [111] Mao S., Lin S., Panwar S. S., Wang Y., and Celebi E. Video Transport over Ad Hoc Networks: Multistream Coding with Multipath Transport. Selected Areas in Communications, IEEE Journal on, 2003, 21(12): 1721~1737.
    [112] Setton E., Zhu X., and Girod B. Congestion-optimized scheduling of video over wireless ad hoc networks. IEEE International Symposium on Circuits and Systems, 2005, 4: 3531~3534.
    [113] Ahmed U. and Salim J. Performance Evaluation of Explicit Congestion Notification (ECN) in IP Network. RFC 2884, July 2000.
    [114] Ahn G., Campbell A. T., Veres A. et. al. Supporting Service Differentiation for Real-Time and Best Effort Traffic in Stateless Wireless Ad Hoc Networks (SWAN). IEEE Transactions on Mobile Computing, 2002, 1(3): 192~207.
    [115] Wang Q. and Abu-Rgheff M. A. Cross-layer signalling for next-generation wirelesssystems. in: IEEE Wireless Communications and Networking, 2003: 1084~1089.
    [116] McNair J., Tugcu T., Wang W., and Xie J. A Survey of Cross-layer Performance Enhancements for Mobile IP Networks. Computer Networks Journal, 2005, 49: 119~294.
    [117] Liu H. and Zarki M. El. Delay and synchronization control middleware to support real-time multimedia services over wireless PCS networks. IEEE Journal on Selected Areas in Communications, 1999, 17(9): 1660~1672.
    [118] Raisinghani V. T., Singh A. K., and Iyer S. Improving TCP performance over mobile wireless environments using cross layer feedback. in: 2002 IEEE International Conference on Personal Wireless Communications, 2002:81~85.
    [119] Alwan A., Bagrodia R., Bambos N., Gerla M., et. al. Adaptive mobile multimedia networks, IEEE Personal Communications, 1996, 3: 34~51.
    [120] Liu H., Zarki M.El. Adaptive Source rate control for real-time wireless video transmission. Mobile Networks and Applications, 1998, 3(1): 49~60.
    [121] P. Agrawal, Chen J.-C., Kishore S., et. al. Battery power sensitive video processing in wireless networks. in: The Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1998: 116~120.
    [122] Kumwilaisak W., Hou Y. T., Zhang Q., Zhu W., et. al. A cross-Layer quality-of-service mapping architecture for video delivery in wireless networks. IEEE Journal on Selected Areas in Communications, 2003, 21(12): 1685~1698.
    [123] Balakrishnan H., Padmanabhan V., and Seshan R. H. K. S. A comparison of mechanisms for improving TCP performance over wireless Links. IEEE/ACM Transactions on Networking, 1997, 5: 756~769.
    [124] Raisinghani V. T. and Iyer S. Cross-layer design optimizations in wireless protocol stacks. Computer Communications, IEEE Trans. on, 2004, 27: 720~724.
    [125] Zhang Q., Zhu W., and Zhang Y., End-to-End QoS for Video Delivery Over Wireless Internet. in: Proceedings of the IEEE, 2005, 93(1): 123~134.
    [126] Xylomenos G., Polyzos G. C., Mahonen P., and Saaranen M. TCP Performance Issues over Wireless Links. IEEE Commun. Mag., 2001, 39(4): 52~58.
    [127] Khan S., Peng Y., Steinbach E., Sgroi M., and Kellerer W. Application-driven cross-layer optimization for video streaming over wireless networks. Communications Magazine, IEEE, 2006, 44(1): 122~130.
    [128] Schaar M. v. d. and Turaga D. S. Cross-Layer Packetization and Retransmission Strategies for Delay-Sensitive Wireless Multimedia Transmission, Multimedia, IEEE Transactions on, 2007, 9(1): 185~197.
    [129] Zhu P., Zeng W., and Li C. Cross-Layer Design of Source Rate Control and Qos-Aware Congestion Control for Wireless Video Streaming. in: Multimedia andExpo, 2006 IEEE International Conference on, 2006: 1133~1136.
    [130] Lin X., Shroff N. B. S., and Srikant R. A Tutorial on Cross-Layer Optimization in Wireless Networks. Selected Areas in Communications, IEEE Journal on, 2006, 24(8): 1452~1463.
    [131] Haleem M. A. and Chandramouli R., Adaptive downlink scheduling and rate selection: a cross-layer design, Selected Areas in Communications. Selected Areas in Communications, IEEE Journal on, 2005, 23(6): 1287~1297.
    [132] Schaar M. v. d., Turaga D. S., and Wong R., Classification-Based System For Cross-Layer Optimized Wireless Video Transmission. Multimedia, IEEE Transactions on, 2006, 8(10): 1082~1095.
    [133] Kawadia V. and Kumar P. R. A Cautionary Perspective on Cross-layer Desigh. IEEE wireless communication, 2005, 12: 3~13.
    [134] Kim B.-S., Fang Y., and Wong T. F. Rate-adaptive MAC protocol in high-rate personal area networks. 2004 IEEE Wireless Communications and Networking Conference, 2004, 3: 1394~1399.
    [135] Shah S. H. and Nahrstedt K. Cross-Layer Design for Data Accessibility in Mobile Ad Hoc Networks. Wireless Personal Communications, IEEE, 2002, 21(4): 49~76.
    [136] Larzon L.-A., Bodin U., and Schelen O. Hints and notifications [for wireless links. in: 2002 IEEE Wireless Communications and Networking Conference, 2002, 2: 635~641.
    [137] Chen Y., Chen J. W., and Li C. P. A fast suboptimal subcarrier, bit, and power allocation algorithm for multiuser OFDM-based systems. in: IEEE ICC, 2004: 3212~3216.
    [138] Zhang Q., and Zhang Yaqin, End-to-End QoS for Video Delivery Over Wireless Internet. in: Proceedings of the IEEE, 2005, 93: 123~134.
    [139] Berry R. A. and Yeh E. M. Cross-layer wireless resource allocation. Signal Processing Magazine, IEEE, 2004, 21(9): 59~68.
    [140] Giannakis G. B., Qingwen Liu, and Xin Wang. A cross-layer scheduling algorithm with QoS support in wireless networks, Vehicular Technology, IEEE Transactions on, 2006, 55(5): 839~847.
    [141] Lavery R.J. Throughput optimization for wireless data transmission. M.S. thesis, Polytechnic University, 2001.
    [142] Giannakis G. B., Liu Q., and Wang X. A cross-layer scheduling algorithm with QoS support in wireless networks. Vehicular Technology, IEEE Transactions on, 2006, 55(5): 839~847.
    [143] Ergen M., Coleri S., and Varaiya P. QoS aware adaptive resource allocation techniques for fair scheduling in OFDMA based broadband wireless access systems.IEEE Transactions on Broadcasting, 2003, 49(4): 362- 370.
    [144]孙卓,彭木根,王文博.保证混合业务质量的跨层OFDMA资源分配方法.北京邮电大学学报, 2006, 29(6): 53~57.
    [145] Koutsopoulos I. and Tassiulas L. Channel state-adaptive techniques for throughput enhancement in wireless broadband networks, in INFOCOM, 2001: 757~766.
    [146]卢小峰,朱光喜,宁国勤,韩峰,一种自适应跨层空间子信道分配算法,计算机科学, 2006, 33(11): 10~13.
    [147] Lu B. and Wang X. Space-Time Code Design in OFDM Systems. in: GLOBECOM, San Francisco, USA, 2000: 1000~1004.
    [148] Zhang Y. J. and Letaief K. B. Optimizing Power and Resource Management for Multiuser MIMO/OFDM Systems. in: GLOBECOM, San Francisco, USA, 2003: 179~183.
    [149] Wong C.Y., Cheng. R. S. and Letaief K. B. Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE J. Selection Areas on Commun., 1999, 17: 1747~1758.
    [150] Telatar I. E. Capacity of Multi-Antenna Gaussian Channels. European transactions on telecommunications, 1999, 10: 585~595.
    [151] Gore D. and Paulraj A. MIMO antenna subset selection with space–time coding. IEEE Trans. Signal Processing, 2002, 50: 2580~2588.
    [152] Heath R. W. Jr., Airy M., and Paulraj A. J. Multiuser diversity for MIMO wireless systems with linear receivers Signals. in: Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on, 2001: 1194~1199.
    [153]周华,杨大成,马敏. MIMO衰落信道的多用户分集性能分析.北京邮电大学学报, 2004, 27: 64~68.
    [154] Laroia R., Uppala S., and Li J. Designing a mobile broadband wireless access network. Signal Processing Magazine, IEEE, 2004, 21: 20- 28.
    [155] Wang X., Giannakis G. B., and Marques A. G. A Unified Approach to QoS-Guaranteed Scheduling for Channel-Adaptive Wireless Networks. in: Proceedings of the IEEE, 2007, 95: 2410~2431.
    [156] Yu F., Krishnamurthy V. and Leung V. C. M. Cross-Layer optimal connection admission control for variable bit rate multimedia traffic in packet wireless CDMA networks. in: Signal Processing, IEEE Transactions on, 2006, 54: 542~555.
    [157] Center N. R. IP Mobility Support for IPv4, in RFC 3344: IETF, 2002.
    [158] Solomm I. D.移动IP.裘晓峰译,机械工业出版社, 2000.
    [159] Um T. W. and Choi J. K. A study path re-routing algorithm at the MPLS-based hierarchical mobile IP network. in: Electrical and Electronic Technology, 2001.TENCON. Proceedings of IEEE Region 10 International Conference on, 2001, 2: 691~697.
    [160] Bakre A. and Badrinath B. R. I-TCP: Indirect TCP for mobile hosts. in: In IEEE 15th International Conference on Distributed Computing Systems, Vancouver, Canada, 1995: 136~142.
    [161] Brown K. and Singh S. M-TCP : TCP for mobile cellular networks. IEEE/ACM CCR, 1997, 27(5): 19~42.
    [162] Yavatkar N., Bhagawat N. Improving End-to-End Performance of TCP over mobile internetworks. in: Mobile Computing Systems and Applications, 1994. Proceedings., Workshop on, 1994: 146~152.
    [163] Rendon F. C. J., Serarols D. Snoop TCP performance over GPRS. in: IEEE Vehicular Technology Conference. Greece, 2001: 2103~2107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700