计算机辅助生物瓣膜参数化造型设计与有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对心脏瓣膜疾病患者进行瓣膜置换手术是挽救病人生命的有效手段。面对有关人工心瓣瓣型设计、流场理论、启闭机理研究、湍流射流效应、生物材料等理论研究的不断深入,围绕人工生物瓣膜抗血栓、防钙化、大幅度提高使用寿命展开的计算机辅助心瓣造型设计理论与技术的研究表现出广阔的前景。
     本文依据心脏解剖学、薄膜壳体理论,以接近或达到人体天然心瓣的性能为目的,将传统设计理论与现代设计方法相结合,提出构建人工生物心脏瓣膜参数化模型的新方法。以采集临床心瓣动态参数为基础,通过对人体心瓣自然形态的分析导引出人工生物瓣膜的基本雏形,构建生物瓣膜参数化设计平台,在薄膜应力分析的基础上参考四种瓣叶参考型面,运用CAID参数化软件Pro/E分别创建符合空间几何方程的圆柱面、圆球面、旋转抛物面和椭球面,随之依次与其对应的倒圆锥面相交确定边界线和重要点的空间位置,得到一系列较为精确的尺寸参数,建立瓣叶参数化模型,并利用有限元软件ANSYS对各构型瓣叶参数的变化进行了应力分析。
     有限元分析是目前心瓣应力计算普遍采用的方法,是人工心脏瓣膜抗疲劳、防钙化设计的关键步骤。而有限元软件自身存在着建模功能薄弱的不足,计算机辅助心瓣造型设计的引入为人工生物瓣膜的参数化造型提供了极大的方便,并在保证建模效果的前提下进一步提高了各参数的准确性。人工心瓣的计算机辅助设计为生物瓣膜的有限元分析和动态模拟创造了条件,同时又能够根据有限元分析结果评测计算机辅助设计造型的优劣性,进而选择一种优化的生物瓣膜瓣型。文中对不同构型、不同厚度、不同倾角以及不同材料特性等系列瓣叶参数化模型进行了分析,并在有限元分析结果的指导下,通过比较各构型瓣叶应力分布情况,最终选择应力分布较为均匀合理的有一定倾角的椭球面型瓣叶构型,以用于生物瓣膜的设计、制作,为生物瓣膜的进一步研究、进行离体和在体实验及批量生产奠定良好的基础。
The valve replacement surgery on patients with heart valve disease is an effective means of saving their lives. With the development of theoretical study on bioprosthetic heart valve design, flow field theory, open and close mechanism, turbulent jet, biomaterials, etc, computer-aided theory and technology research around antithrombus, anti-calcification and the durability of bioprosthetic heart valve will show broad prospects.
     Based on the heart anatomy, membrane theory, we establish the geometrical parametric model of bioprosthetic heart valve by Pro/E to reach the function of the human heart valves. On the basis of clinical dynamic parameters, we get prototype and construct parametric model of bioprosthetic valve by analyzing natural form of human valve. Considering both traditional design theories and modern design method, we take turns to create the cylinder, sphere, paraboloid, ellipsoid surfaces and then make them to intersect with inverse conic surfaces in order to get satisfy boundary curves and important points on the actual condition. After constructing parametric models of bioprosthetic heart valves via computer aided design, a series of accurate dimension parameters are obtained. Then analyze the stress distribution of different parametric models by the ANSYS software.
     Finite element analysis is defective in modeling function though it is used commonly on stress analysis, which is also crucial to the design of anti-fatigue and anti-calcification of bioprosthetic heart valve. The introduction of computer aided design provide a convenience to the parametric model of bioprosthetic heart valve and improve the accuracy of parametric models. Computer aided design create the conditions for finite element analysis and dynamic simulation of bioprosthetic heart valve, and also can choose the optimization configuration by the results of finite element analysis. In this article, we analyse the parametric model of bioprosthetic heart valve with different configurations, different thickness, different angles and different material properties, and compare the stress distribution according to the results of finite element analysis, finally choose the ellipsoid surface configuration with stress distribution more reasonable which can be applied in the design and manufacture. This work is very helpful to make optimization design for the biopresthetic heart valve and prolong the lifetime of the synthetic heart valve.
引文
[1]Wanpen Vongpatanasin,L.David Hillis,Richard A.Lange.Prosthetic Heart Valves[J].The New England Journal of Medicine,1996,335(6):407-416
    [2]樊庆福.人工心脏瓣膜[J].上海生物医学工程,2004,25(4):47-51
    [3]I.Vesely.The Evolution of Bioprosthetic Heart Valve Design and Its Impact on Durability[J].Cardiovascular Pathology,2003,12(5):277-286
    [4]Hyunggun Kim,Krishnan B.Chandran,Michael S.Sacks,et aI.An Experimentally Derived Stress Resultant Shell Model for Heart Valve Dynamic Simulations[J].Annals of Biomedical Engineering,2007,35(1):30-44
    [5]Narendra R.Vyavahare,Weiliam Chen,Ravi R.Joshi,et al.Current Progress in Anticalcification for Bioprosthetic and Polymeric Heart Valves[J].Cardiovascular Pathology,1997,6(4):219-229
    [6]Peter Zilla,Paul Human,Deon Bezuidenhout.Bioprosthetic Heart Valves:the Need for a Quantum Leap[J].Biotechnol.Appl.Biochem,2004(40):57-66
    [7]G.Arcidiacono,A.Corvi,T.Severi.Functional Analysis of Bioprosthetic Heart Valves[J].Journal of Biomechanics,2005(38):1483-1490
    [8]袁泉,周咏辉,丛华.生物瓣支架造型研究[J].生物医学工程学杂志,2005,22(6):1197-1199
    [9]张敏,郑家骧.生物瓣膜应力的数值模拟[J].应用力学学报,2004,21(2):119-121
    [10]David E.Culler,William Burd.A Framework for Extending Computer Aided Process Planning to Include Business Activities and Computer Aided Design and Manufacturing(CAD/CAM)Data Retrieval[J].Robotics and Computer-Integrated Manufacturing,2007(23):339-350
    [11]王运巧.计算机辅助技术综合运用对工业设计流程的影响[J].机械设计与制造,2005(4):31-32
    [12]M.Bordegoni,U.Cugini.Haptic Modeling in the Conceptual Phases of Product Design[J].Virtual Reality,2006(9):192-202
    [13]Stephen H.Westin.Computer-Aided Industrial Design[J].Computer Graphics,1998:49-52
    [14]方兴.计算机辅助工业设计[M].武汉:华中科技大学出版社,2006
    [15]林丽.充分应用CAID技术是工业设计发展的趋势[J].现代机械,2006(3):65-66
    [16]许喜华.计算机辅助工业设计[M].北京:机械工业出版社,2001
    [17]陈炳发.工业设计方法及CAD应用[M].北京:科学出版社,2002
    [18]陆咏平,郭俐,夏海南.计算机辅助工业设计(CAID)技术研究与展望[J].机械制造与自动化,2001(5):5-8
    [19]关琰.计算机辅助产品设计[M].北京:清华大学出版社,2004
    [20]Mark Evans,David Wallace,David Cheshire.An Evaluation of Haptic Feedback Modelling During Industrial Design Practice[J].Design Studies,2005,26(5):487-508
    [21]Lokesh Gurung,陈如坤.人造心脏瓣膜功能障碍研究进展[J].浙江医学,2005,27(2):159-161
    [22]Ran Gilad,Ron Somogyi.Percutaneous Heart Valves:The Emergence of a Disruptive Technology[J].University of Toronto Medical Journal,2005,82(3):199-201
    [23]T.G.Mackay,D.J.Wheatley,G.M.Bernacca,A.C.Fisher,C.S.Hindle.New Polyurethane Heart Valve Prosthesis:Design,Manufacture and Evaluation[J].Biomaterials,1996(17):1857-1863
    [24]F.J.Schoen,R.J.Levy.Tissue Heart Valves:Current Challenges and Future Research Perspectives[J].Journal of Biomedical Material Research,1999,47:439-465
    [25]G.Lutter,R.Ardehali,J.Cremer,P.Bonhoeffer.Percutaneous Valve Replacement:Current State and Future Prospects[J].The Annals of Thoracic Surgery,2004,78:2199-2206
    [26]练章华.现代CAE技术与应用教程[M].北京:石油工业出版社,2004
    [27]Haibin Ning,Gregg M.Janowski,Uday K.Vaidya,George Husman.Thermoplastic Sandwich Structure Design and Manufacturing for the Body Panel of Mass Transit Vehicle[J].Composite Structures,2007(80):82-91
    [28]Maryse Julien,Dany R.Lbtouneau,Yves Marois,et al.Shelf-life of B ioprosthetic Heart Valves:A Structural and Mechanical Study[J].Biomaterials,1997(18):605-612
    [29]李珏,匡震邦,刘维永.生物心脏瓣膜钙化前后的应力分析[J].中国生物医学工程学报,1998,17(2):183-186
    [30]张慧,郑家骧,蓝公华.生物瓣瓣叶应力分布的有限元分析[J].山东大学学报(工学版),2002,32(2):143-147
    [31]Bruce Z.Gao,Samir Pandya,Carlos Arana,Ned H.C.Hwang.Bioprosthetic Heart Valve Leaflet Deformation Monitored by Double-Pulse Stereo Photogrammetry[J].Annals of Biomedical Engineering,2002,30:11-18
    [32]柳兆荣,李惜惜.血液动力学原理与方法[M].上海:复旦大学出版社,1997
    [33]Liu S.Q.Biomechanical Basis of Vascular Tissue Engineering[J].Critical Reviews in Biomedical Engineering,1999,27(1&2):75-148
    [34]P.Pibarot,J.G.Dumesnil.Patient-Prosthesis Mismatch and the Predictive Use of Indexed Effective Orifice Area:Is It Relevant[J].Cardiac Surgery Today,2003,2:43-51
    [35]卢永要.人工心脏瓣膜支架的设计[D].天津:天津大学,2004
    [36]Kiyoshi Koizumi,Ryohei Yozu,Hankei Shin,et al.A Case in Which Biventricular Assist Device Support was Required After Aortic Valve Replacement with a Bioprosthetic Valve[J].Artif Organs,2003(6):218-221
    [37]赵经文,王宏钰.结构有限元分析[M].第二版.北京:科学出版社,2001
    [38]薛大为.板壳理论[M].北京:北京理工大学出版社,1988
    [39]黄克智.板壳理论[M].北京:清华大学出版社,1987
    [40]柴舜连,姚德淼,毛钧杰,陈国强.旋转抛物面共形阵单元互耦的计算[J].电子学报,1998(9):78-81
    [41]卡尔·T·犹里齐,斯蒂芬·D·埃平格.产品设计与开发[M].杨德林,译.第二版.大连:东北财经大学出版社,2001
    [42]雷达,邬露蕾.计算机辅助产品设计[M].杭州:中国美术学院出版社,2005
    [43]二代龙震工作室.Pro/ENGINEER Wildfire 2.0高级设计[M].北京:电子工业出版社,2005
    [44]J.Gao,D.T.Zheng,N.Gindy.Extraction of Machining Features for CAD/CAM Integration[J].Int J Adv Manuf Technol,2004(24):573-581
    [45]Ta-Shi Lai.Geometric Design of Roller Drives with Cylindrical Meshing Elements[J].Mechanism and Machine Theory,2005(40):55-67
    [46]Quan Yuan,Chengrui Zhang,Xiaowei Wang.Geometrical Design and Finite Element Analysis on the Bioprosthetic Heart Valve[J].International Journal of Innovative Computing,Information and Control,2007,3(5):1289-1299
    [47]周长城,胡仁喜,熊文波.ANSYS11.0基础与典型范例[M].北京:电子工业出版社,2007
    [48]Wenbin Song,Andy Keane,Janet Rees,Atul Bhaskar,Steven Bagnall.Turbine Blade Fir-Tree Root Design Optimisation Using Intelligent CAD and Finite Element Analysis[J].Computers and Structures,2002(80):1853-1867
    [49]许静,王铁.Pro/E和ANSYS集成方法的比较[J].现代制造工程,2005(1):64-66
    [50]马晓明,张冰蔚.对用Pro/E建模ANSYS做分析时导入模型问题的研究[J].机械研究与应用,2004,17(6):93-94
    [51]贾祥敏,江晓红.将复杂机械结构Pro/E模型导入到ANSYS中的方法[J].煤矿机械,2006,27(3):433-435
    [52]杨萍,贺小明.ANSYS与Pro/E间无缝连接的应用研究[J].机械设计与制造,2006(1):58-60
    [53]P.N.Watton,X.Y.Luo,X.Wang,G.M.Bernacca,P.Molloy,D.J.Wheatley.Dynamic Modelling of Prosthetic Chorded Mitral Valves Using the Immersed Boundary Method[J].Journal of Biomechanics,2007(40):613-626
    [54]曹震,邹盛铨,廖宏艳等.三种生物瓣型面应力的有限元计算[J].重庆大学学报(自然科学版),1996,19(1):46-52
    [55]Reif TH.A Numerical Analysis of the Backflow Between the Leaflets of a St Jude Medical Cardiac Valve Prosthesis[J].J Biomech,1991(24):733-741
    [56]D.Mikroulis,D.Mavrilas,J.Kapolos,P.G.Koutsoukos,C.Lolas.Physicochemical and Microscopical Study of Calcific Deposits from Natural and Bioprosthetic Heart Valves.Comparison and Implications for Mineralization Mechanism[J].Journal of Materials Science:Materials in Medicine,2002(13):885-889
    [57]王坚刚,龚光甫,蒯行成,孟旭.人工心脏瓣膜与机械应力[J].北京生韧医学工程,2003,22(3):232-235
    [58]王坚刚.CS无支架心包二尖瓣的有限元分析[D].长沙:中南大学,2002
    [59]刘锋.CS无支架四叶心包二尖瓣设计优化与流体动力学和有限元分析[D].长沙:中南大学,2004
    [60]宋卫卫,郑家骧,周咏辉.生物瓣膜计算机几何造型设计[J].计算机辅助设计与图形学学报,2002,14(5):425-428
    [61]Alan D.Freed,Daniel R.Einstein,Ivan Vesely.Invariant Formulation for Dispersed Transverse Isotropy in Aortic Heart Valves[J].Biomechan Model Mechanobiol,2005(4):100-117
    [62]W.David Merryman,George C.Engelmayr Jr.,Jun Liao,Michael S.Sacks.Defining Biomechanical Endpoints for Tissue Engineered Heart Valve Leaflets from Native Leaflet Properties[J].Progress in Pediatric Cardiology,2006(21):153-160
    [63]J.Li,X.Y.Luo,Z.B.Kuang.A Nonlinear Anisotropic Model for Porcine Aortic Heart Valves[J].Journal of Biomechanics,2001(34):1279-1289
    [64]D.Mavrilas,Y.Missirlis.An Approach to the Optimization of Preparation of Bioprosthetic Heart Valves[J].Biomech,1991,24:331-339
    [65]X.Y.Luo,W.G.Li,J.Li.Geometrical Stress-Reducing Factors in Anisotropic Porcine Heart Valves[J].Journal of Biomechanical Engineering,2003,125:735-743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700