金属成形过程自适应耦合无网格—有限元法数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属塑性成形技术具有生产效率高、材料利用率高、产品质量稳定等优点,而且还能有效改善工件的力学性能,在金属零件制造过程中占据了重要的地位。随着数值计算方法与计算机技术的不断发展,有限元模拟技术已被广泛地应用于塑性成形过程的分析和预测。然而有限元方法依赖于网格,当工件变形到一定程度的时候,对应的有限元网格将会产生畸变,严重影响计算精度,甚至导致计算中止,需要进行网格重划分。但是网格重划分存在相当的难度,而且会导致计算精度下降,并耗费一定的计算时间,给数值模拟过程带来困难。
     无网格法仅基于离散节点的近似,不依赖于网格,能够避免有限元法中因网格畸变带来的困扰,特别适于金属体积成形这类大变形问题的模拟分析。由于摆脱了几何拓扑关系的束缚,无网格法在节点的布置方面也存在很大的灵活性,具有较强的自适应分析能力。尽管具有上述优势,无网格法计算效率却远低于有限元法,从而限制了其进一步的发展和应用。
     本论文尝试将无网格法与有限元法相结合,应用于二维局部体积成形过程的数值模拟。在现有耦合方法的基础上,根据工件变形情况实现有限元与无网格计算区域的动态转换与耦合,提出基于刚(粘)塑性流动理论的自适应耦合无网格-有限元方法,发展了数值模拟中的关键技术与算法。
     将刚(粘)塑性流动理论与耦合无网格-有限元(EFG-FE)法相结合,根据塑性力学与变分原理,推导离散化的刚度矩阵与数值求解方程,建立二维金属塑性成形问题的刚(粘)塑性耦合无网格-有限元方法。采用修正的罚函数法施加体积不可压缩条件,边界奇异核方法处理本质边界条件。
     研究、论述了数值模拟中的若干关键处理技术。提出一种无网格节点影响域的动态确定方法,有效反映节点分布的稀疏程度和局部特性,同时适用于圆形和矩形影响域;根据无网格节点的空间位置分布,动态生成规则背景积分网格;根据节点分布密度,自适应地确定对应的高斯积分阶次;实现动态边界的自动识别与接触处理。
     提出自适应的耦合无网格-有限元法,分别利用无网格法计算大变形问题的能力以及有限元法较高的计算效率,发挥这两种数值方法各自的优势。根据塑性变形程度,将发生大变形的有限元计算区域自动转换为无网格计算区域;根据等效应变速率分布情况,将变形不显著的无网格计算区域转换为有限元计算区域。详尽阐述了实现这两种自适应转换的完整方案,包括判断准则、区域划分、转换算法等。对径向挤压、正挤压、反挤压、复合挤压、锻造等一系列典型的局部体积成形过程进行模拟计算,给出了数值算例,与有限元软件模拟和物理实验测量的结果进行比较,充分证明该方法的优点和可靠性。
     推导了塑性成形过程传热问题的求解公式,给出金属成形过程热力耦合分析的流程与步骤。对轴对称挤压问题进行热力耦合分析,拓展了自适应耦合方法的应用范围。
     本论文的研究结果表明,自适应耦合无网格-有限元法既能够发挥无网格法处理大变形问题的能力,又能够利用有限元法计算效率高的优势,有效地应用于金属局部体积成形过程的数值模拟。
Metal forming technology plays an important role in the manufacturing industry. It has merits on high productivity, stable quality and effective utilization of raw material. The mechanical performance of the metal is also improved in the forming processes. With the development of numerical methods and IT technology, simulation technology based on the finite element method (FEM) has been widely used in the analysis and prediction of metal forming processes. However, the finite element analysis is based on topological meshes which tend to be distorted in the forming processes. Distorted meshes lead to the deterioration of computational accuracy and even the halt of simulations. As a result, burdensome remeshing procedures have to be implemented. Nevertheless, remeshing remains as a challenging task, particularly for 3D problems. In addition, extra loss of accuracy and efficiency is inevitable.
     In meshless methods, approximations are constructed in terms of discrete nodes. It is free of the trouble caused by mesh distortion. Meshless methods exhibit their unique advantages in the analysis of bulk metal forming where large deformation takes place frequently. As meshless methods are free of topology, the spatial layout of nodes is flexible. This property endows meshless methods with the capabilities of adaptive analysis. Despite these advantages, the computational efficiency of meshless methods is much lower than that of FEM. This disadvantage restricts their further development and application.
     In this dissertation, efforts have been made to combine the EFG method with the FEM in the analysis of 2D local bulk metal forming. Based on the coupling methods which have been published, it is intended to implement the dynamic conversion from FEM modeling regions to EFG ones according to the deformation level. An adaptive EFG-FE coupling method based on the rigid-visco plastic flow theory was proposed. Key techniques and algorithms in the numerical analysis were developed.
     The rigid-visco plastic EFG-FE coupling method for 2D metal forming processes was established. Discretized stiffness matrices and equations are derived according to the mechanics of plasticity and variational theory. The modified penalty function method is used to enforce the incompressible constraints. The boundary singular kernel method is used to impose the essential boundary conditions.
     Key techniques in the numerical simulation are studied and given in detail. An algorithm is proposed to dynamically determine the sizes of nodal supports, which reflect the node density and local characteristics. The algorithm is effective for both circular supports and rectangular supports. Two schemes are presented to generate background cells and select the order of Gaussian quadrature, respectively, according to the spatial distribution of EFG nodes. Automatic contact treatments are achieved on the dynamic interface between tools and billets.
     The adaptive EFG-FE coupling method is proposed. It retains both the capability of handling large deformation by meshless methods and high computational efficiency by FEM. During the numerical simulations, FEM elements are converted to EFG nodes automatically according to the level of distortion. Meanwhile, EFG regions are partially reverted to FEM ones according to the strain rate distribution. The schemes to implement adaptive conversion and coupling are elaborated. Numerical examples of local bulk metal forming processes including lateral extrusion, forward extrusion, backward extrusion, forward-backward extrusion and forging were given. The numerical results were compared with the FEM solutions and experimental data. The accuracy and merits of numerical simulations were demonstrated.
     The formulations for the heat transfer in the metal forming processes were derived. The procedures for thermo-mechanical analysis were given. The thermo-mechanical analysis of axis-symmetric extrusion was implemented.
     The research in this dissertation shows that the adaptive EFG-FE coupling method makes use of the advantages of both meshless methods and FEM. It is effective for the numerical analysis of local bulk metal forming processes.
引文
[1]彭颖红.金属塑性成形仿真技术.上海:上海交通大学出版社,1999
    [2]李尚健.金属塑性成形过程模拟.北京:机械工业出版社,1999
    [3] Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 1977, 8(12):1013-1024
    [4] Johnson G R, Beissel S R. Normalized smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering. 1996, 39:2725-2741
    [5] Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis. Journal of Organic Chemistry. 1994, 596(24):123-134
    [6] Dyka C T, Randles P W, Ingel R P. Stress points for tension instability in SPH. International Journal for Numerical Methods in Engineering. 1997, 40(13):2325-2341
    [7] Chen J K, Beraun J E, Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics. 1999, 23:279-287
    [8] Bonet J, Kulasegaram S. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. International Journal for Numerical Methods in Engineering. 2000, 47:1189-1214
    [9] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics. 1992, 10:307-318
    [10] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1994, 37(2):229-256
    [11] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering. 1996, 139(1-4):49-74
    [12] Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods. Computational Mechanics. 1999, 23(3):219-230
    [13] Chung H J, Belytschko T. Error estimate in the EFG method. Computational Mechanics. 1998, 21(2):91-100
    [14] Belytschko T, Krysl P, Krongauz Y. Three-dimensional explicit element-free Galerkin method. International Journal for Numerical Methods in Fluids. 1997, 24(12):1253-1270
    [15] Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids. 1995, 20:1081-1106
    [16] Liu W K, Chen Y. Wavelet and multiple scale reproducing kernel method. International Journal for Numerical methods in Fluids. 1995, 21:901-931
    [17] Li S F, Hao W, Liu W K. Mesh-free simulations of shear banding in large deformation. International Journal of Solids and Structures. 2000, 37(48):7158-7206
    [18] Li S F, Liu W K. Numerical simulations of strain localization in inelastic solids using mesh-free methods. International Journal for Numerical Methods in Engineering. 2000, 48(9):1285-1309
    [19] Jun S, Im S. Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Computational Mechanics. 2000, 25(2-3):257-266
    [20] Chen J S, Wu C T, Yoon S, et al. Stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering. 2001, 20(2):435-466
    [21] Chen J S, Yoon S, Wu C T. Non-linear vrsion of stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering. 2002, 53(12):2587-2615
    [22] Simonsen B C, Li S F. Mesh-free simulation of ductile fracture. International Journal for Numerical Methods in Engineering. 2004, 60(8): 1425-1450
    [23] Atluri S N, Zhu T. New meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics. 1998, 22(2):117-127
    [24] Atluri S N, Zhu T. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Computational Mechanics. 2000, 25(2-3):169-179
    [25] Zhu T, Zhang J, Atluri S N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics. 1998, 21(3):223-235
    [26] Zhu T, Zhang J, Atluri S N. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Computational Mechanics. 1998, 22(2):174-186
    [27] Duarte C A, Oden J T. Hp clouds: a meshless method to solve boundary value problems Technical Report 95-05. Texas Institute for Computational and Applied Mathematics. University of Texas at Austin, 1995
    [28] Duarte C A, Oden J T. Hp clouds: an h-p meshless method. Numerical Methods for Partial Differential Equations. 1996, 12:673-705
    [29] Melenk J M, Babuska I. The partition of unity finite element methods: Basic theory and application. Computer Methods in Applied Mechanics and Engineering. 1996, 139(1-4):263-288
    [30] Onate E, Idelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering. 1996, 39(22):3939-3866
    [31] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering. 2001, 50(4):937-951
    [32] Liu G R, Gu Y T. A local point interpolation method for stress analysis of two-dimensional solids. Structural Engineering and Mechanics. 2001, 11(2):221-236
    [33]张雄,刘岩.无网格法.北京:清华大学出版社,2004
    [34]刘更,刘天祥,谢琴.无网格法及其应用.西安:西北工业大学出版社,2005
    [35]李长生,熊尚武, Rodrigues J,等.金属塑性加工过程无网格数值模拟方法.沈阳:东北大学出版社,2004
    [36]周维垣,寇晓东.无单元法及其工程应用.力学学报. 1998, 30(2): 193-202
    [37] Zhang X, Song K Z, Lu M W. Meshless methods based on collocation with radial basis function. Computational Mechanics, 2000, 26(4): 333-343
    [38] Zhang X, Song K Z, Lu M W. Hermite type collocation with radial basis functions. Proceedings of International Conference on Computational Engineering & Science, 1445-1450, August 20~25, 2000, Los Angeles, USA
    [39] Song K Z, Zhang X, Lu M W. Collocation with modified compactly supported radial basis functions. Proceedings of International Conference on Computational Engineering & Science, August 19~25, 2001, Puerto Vallarta
    [40] Zhang X, Liu X H, Song K Z, et al. Least-squares collocation meshless method. International Journal for Numerical Methods in Engineering. 2001, 51(9):1089-1100
    [41]张雄,胡炜,潘小飞,等.加权最小二乘无网格法.力学学报. 2003, 35(4):425-431
    [42]刘欣,朱德懋,陆明万,等.平面裂纹问题的h,p,hp型自适应无网格方法的研究.力学学报. 2000, 32(3):308-318
    [43]刘欣,朱德懋,陆明万,等.基于流形覆盖思想的无网格方法的研究.计算力学学报. 2001, 18(1):21-27
    [44]龙述尧.弹性力学问题的局部Petrov-Galerkin方法.力学学报. 2001, 33(4):508-518
    [45]龙述尧,刘凯远.动态断裂力学问题中的局部Petrov-Galerkin无网格方法.暨南大学学报. 2005, 26(1):57-59
    [46]熊渊博,龙述尧,刘凯远.弹塑性力学问题的无网格法分析.机械强度. 2004, 26(6):647-651
    [47]熊渊博,龙述尧,胡德安.薄板屈曲分析的局部Petrov-Galerkin方法.工程力学. 2006, 23(1):23-27
    [48]周瑞忠,周小平,吴琛.数值方法进展:从连续介质到离散粒子模型.工程力学. 2005, 22:228-239
    [49]周小平,周瑞忠.无单元法研究现状及展望.工程力学. 2005, 22(1):12-20
    [50] Chen J S, Roque C M O L, Pan C, et al. Analysis of metal forming process based on meshless method. Journal of Materials Processing Technology. 1998, 80-81:642-646
    [51] Chen J S, Pan C, Roque C M O L, et al. A Lagrangian reproducing kernel particle method for metal forming analysis. Computational Mechanics. 1998, 22(3):289-307
    [52] Chen J S, Wang H P. New boundary condition treatments for meshless computation of contact problems. Computer Methods in Applied Mechanics and Engineering. 2000, 187(3-4):441-468
    [53] Chen J S, Wang H P, Yoon S, et al. Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact. Computational Mechanics. 2000, 25(2-3):137-156
    [54] Yoon S, Wu C T, Wang H P. Efficient meshfree formulation for metal forming simulations. ASME, Manufacturing Engineering Divison. 2000, 123:462-467
    [55] Yoon S, Chen J S. Accelerated meshfree method for metal forming simulation. Finite Elements in Analysis and Design. 2002, 38(10):937-948
    [56] Li G Y, Belytschko T. Element-free Galerkin method for contact problems in metal forming analysis. Engineering Computations. 2001, 18(1-2):62-78
    [57] Li G Y, Kalilou S, Liu G R. Meshfree method for 3D bulk forming analysis wih lower order integration scheme. Engineering Analysis with Boundary Elements. 2004, 28(10): 1283-1292
    [58] Guo Y M, Nakanishi K. A backward extrusion analysis by the rigid-plastic integralless-meshless method. Journal of Materials Processing Technology. 2003, 140(1-3):19-24
    [59] Guo Y M, Nakanishi K, Yokouchi Y. A nonlinear rigid-plastic analysis for metal forming problem using the rigid-plastic point collocation method. Advances in Engineering Software. 2005, 36(4):234-242
    [60] Xiong S W, Rodrigues J M C, Martin P A F. Numerical simulation of three-dimensional steady-state rolling by the reproducing kernel particle method. Engineering Computations. 2003, 20(7-8):855-874
    [61] Xiong S W, Rodrigues J M C, Martin P A F. Application of the element free Galerkin method to the simulation of plane strain rolling. Eruopean Journal of Mechanics, A/Solids. 2004, 23(1):77-93
    [62] Xiong S W, Liu W K, Cao J, et al. Simulation of bulk metal forming processes using the reproducing kernel particle method. Computers and Structures. 2005, 83(8-9):574-587
    [63] Xiong S W, Martins P A F. Numerical solution of bulk metal forming processes by the reproducing kernel particle method. Journal of Materials Processing Technology. 2006, 177(1-3):49-52
    [64] Kwon K, Park S, Youn S. The least-squares meshfree method for elasto-plasticity and its application to metal forming analysis. International Journal for Numerical Methods in Engineering. 2005, 64(6):751-788
    [65] Kwon K, Youn S. The least-squares meshfree method for rigid-plasticity with frictional contact. International Journal of Solids and Structures. 2006, 43(25-26):7450-7481
    [66] Alfaro I, Yvonnet J, Cueto E, et al. Meshless methods with application to metal forming. Computer Methods in Applied Mechanics and Engineering. 2006, 195(48-49):6661-6675
    [67] Cleary P W, Prakash M, Ha J. Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. Journal of Materials Processing Technology. 2006, 177(1-3):41-48
    [68]娄路亮,曾攀,方刚.无网格方法及其在体积成形中的应用.塑性工程学报. 2001, 8(3):1-5
    [69]娄路亮,曾攀.影响无网格方法求解精度的因素分析.计算力学学报. 2003, 20(3):313-319
    [70]卿启湘,李光耀,刘潭玉.棒材拉拔问题的弹塑性无网格法分析.机械工程学报. 2004, 40(1):85-89
    [71]卿启湘,李光耀,王永和,等.棒材通过锥形模静液挤压成形的无网格法分析.计算力学学报. 2004, 21(6):647-652
    [72]崔青玲,宋叔尼,刘相华,等.再生核质点法模拟金属镦粗过程.机械工程学报. 2005, 41(3):76-80
    [73]崔青玲,李长生,刘相华,等.无网格RKPM法模拟平板轧制过程.应用力学学报. 2005, 22(2):243-246
    [74]崔青玲,刘相华,王国栋,等.板坯稳态立轧过程的RKPM无网格法数值模拟.机械工程学报. 2005, 41(5):84-88
    [75]崔青玲,李长生,刘相华,等.三维稳态板轧制过程的再生核质点法模拟.工程力学. 2006, 23(10):188-192
    [76]赵国群,吴欣,王卫东.刚塑性无网格方法中体积闭锁问题的缓解算法.机械工程学报. 200642(6):73-77
    [77]赵国群,吴欣,管延锦.刚塑性无网格方法中精度影响因素的研究.塑性工程学报. 2006, 13(3):13-18
    [78]干年妃,李光耀.一种自适应RKPM方法在动态大变形计算中的验证及应用.湖南大学学报(自然科学版). 2006, 33(4):36-41
    [79]干年妃,李光耀,钟志华,等.金属体积成形过程的自适应无网格方法.中国机械工程. 2006, 17(24):2612-2617
    [80]吴欣,赵国群,管延锦,等.稳态挤压过程刚塑性无网格伽辽金方法分析.塑性工程学报. 2006, 13(6):5-10
    [81]吴欣,赵国群,王卫东.任意边界形状的二维刚塑性成形过程的无网格分析方法.计算力学学报.2007, 24(3):280-284
    [82]吴欣,赵国群,管延锦,等.反向挤压过程无网格伽辽金热力耦合分析.工程力学. 2007, 24(6):180-184
    [83] Wen H Y, Dong X H, Yan C L, et al. Three dimension profile extrusion simulation using meshfree method. International Journal of Advanced Manufacturing Technology. 2007, 34(3-4):270-276
    [84]温宏宇.无网格法在金属塑性成形数值模拟中的应用研究. [学位论文].上海交通大学. 2006
    [85]王琥,李光耀,钟志华.三维体积成形过程的并行无网格法仿真分析.机械工程学报. 2006, 42(4):82-87
    [86] Wang H, Li G Y, Han X, et al. Development of parallel 3D RKPM meshless bulk forming simulation system. Advances in Engineering Software. 2007, 38(2):87-101
    [87]李长生,刘相华,熊尚武,等.金属塑性成形过程CSPH无网格法数值模拟.机械工程学报. 2006, 42(7):144-152
    [88] Li C S, Liu X H, Wang G D. Ring upsetting simulation by the meshless method of corrected smooth particle hydrodynamics. Journal of Materials Processing Technology. 2007, 183(2-3):425-431
    [89] Guan Y J, Zhao G Q, Wu X, et al. Massive metal forming process simulation based on rigid/visco-plastic element-free Galerkin method. Journal of Materials Processing Technology. 2007, 187-188:412-416
    [90]管延锦,赵国群,路平,等.等径角挤压工艺的无网格数值模拟研究.塑性工程学报. 2008, 15(2):15-21
    [91] Attaway S W, Heinstein M W, Swegle J W. Coupling of smoothed particle hydrodynamics with the finite element method. Post-SMIRT Impact IV Seminar, Berlin. Nuclear Engineering and Design. 1994, 150
    [92] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element-free Galerkin method. Computational Mechanics. 1995, 17(3):186-195
    [93] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering. 1996, 131(1-2):133-145
    [94] Hegen D. Element free Galerkin methods in combination with finite element approaches. Computer Methods in Applied Mechanics and Engineering. 1996, 135(1-2):143-166
    [95] Liu W K, Uras R A, Chen Y. Enrichment of the finite element method with the reproducing kernel particle method. Journal of Applied Mechanics, ASME. 1997, 64(4):861-870
    [96] Huerta A, Fernandez-Mendez S. Enrichment and coupling of the finite element and meshless methods. International Journal for Numerical Methods in Engineering. 2000, 48(11):1615-1636
    [97] Xiao Q Z, Dhanasekar M. Coupling of FE and EFG using collocation approach. Advances in Engineering Software. 2002, 33:507-515
    [98] Xiao S P, Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering. 2004, 193(17-20):1645-1669
    [99] Karutz H, Chudoba R, Kratzig W B. Automatic adaptive generation of a coupled finite element/element-free Galerkin discretization. Finite Element in Analysis and Design. 2002,38(11):1075-1091
    [100] Rabczuk T, Xiao S P, Sauer M. Coupling of mesh-free methods with finite elements: basic concepts and test results. Communications in Numerical Methods in Engineering. 2006, 22(10):1031-1065
    [101]何沛祥,吴长春,李子然,等.无网格Galerkin法与非协调元方法的耦合.计算力学学报. 2004, 21(4):455-458
    [102]何沛祥.无网格Galerkin法与有限元的耦合及其在功能梯度材料中的应用. [学位论文].中国科学技术大学. 2002
    [103]刘天祥,刘更.二维接触问题的无网格伽辽金-有限元耦合方法.西北工业大学学报. 2003, 21(4):499-503
    [104] Liu T X, Liu G, Wang Q J. An element-free Galerkin-finite element coupling method for elasto-plastic contact problems. Journal of Tribology. 2006, 128(1):1-9
    [1] Lancaster P, Salkauskas K. Surfaces generated by moving least squares method. Mathematics of Computation, 1981, 37(155):141-158
    [2] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2):229-256
    [3] Xiong S W, Liu W K, Cao J, et al. On the utilization of the reproducing kernel particle method for the numerical simulation of plane strain rolling. International Journal of Machine Tools & Manufacture, 2003, 43(1):89-102
    [4] Belytschko T, Krongauz Y. Smoothing and accelerated computations in the element free Galerkin method. Journal of Computational and Applied Mathematics, 1996, 74(1-2):111-126
    [5] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4):49-74
    [6] Chen J S, Wu C T, Yoon S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2001, 50(2):435-466
    [7] Chen J S, Yoon S, Wu C T. Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2002, 53(12):2587-2615
    [8] Krysl P, Belytschko T. Analysis of thin shells by element-free Galerkin method. Computational Mechanics, 1995, 17:26-35
    [9] Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Computational Methods in Applied Mechanics and Engineering, 1994, 113:397-414
    [10] Mukherjee Y X, Mukherjee S. On boundary conditions in the element free Galerkin method. Computatoinal Mechanics, 1997, 19(4):264-270
    [11] Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 1998, 22:117-127
    [12] Zhu T, Atluri S N. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 1998, 21(3):211-222
    [13] Chen J S, Wang H P. New boundary condition treatments in meshfree computation of contact problems. Computer Methods in Applied Mechanics and Engineering. 2000, 187(3-4):441-468
    [14] Chen J S, Wang H P, Yoon S, et al. Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact. Computational Mechanics. 2000, 25(2-3):137-156
    [15] Kaljevic I, Saigal S. An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering, 1997, 40(16):2953-2974
    [16] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering. 1996, 131(1-2):133-145
    [17]杨海天,刘岩. FEM-EFGM耦合技术及其在求解固体力学问题中的应用.计算力学学报,
    [18] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element-free Galerkin method.Computational Mechanics. 1995, 17(3):186-195
    [19] Xiao Q Z, Dhanasekar M. Coupling of FE and EFG using collocation approach. Advances in Engineering Software. 2002, 33: 507-515
    [1] Kobayashi S, Oh S I, Altan T. Metal Forming and the Finite Element Method. New York: Oxford University Press, 1989
    [2]李尚健.金属塑性成形过程模拟,机械工业出版社, 1999
    [3] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2):229-256
    [4] Zhu T, Atluri S. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 1998, 21(3):211-222
    [5]王勖成,邵敏.有限单元法基本原理和数值方法(第2版),清华大学出版社, 1998
    [6]彭颖红.金属塑性成形仿真技术,上海交通大学出版社, 1999
    [1] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1994, 37(2):229-256
    [2] Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4):3-47
    [3] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering. 1996, 139(1-4):49-74
    [4]刘欣,朱德懋,陆明万,等.基于流形覆盖思想的无网格方法的研究.计算力学学报. 2001, 18(1):21-27
    [1]吴欣.金属塑性成形过程无网格伽辽金方法及其关键技术研究. [学位论文].山东大学. 2006
    [2] Petersen S B, Rodrigues J M C, Martins P A F. Automatic generation of quadrilateral meshes for the finite element analysis of metal forming processes. Finite Elements in Analysis and Design, 2000, 35(2):157-168
    [3] Talbert J A, Parkinson A R. Development of an automatic, two-dimensional finite element mesh generator using quadrilateral elements and Bezier curve boundary definition. International Journal for Numerical Methods in Engineering, 1990, 29(7):1551-1567
    [4] Joun M S, Lee M C. Quadrilateral finite-element generation and mesh quality control for metal forming simulation. International Journal for Numerical Methods in Engineering, 1997, 40(21):4059-4075
    [5] Kwak D Y, Cheon J S, Im Y T. Remeshing for metal forming simulations– Part I: Two-dimensional quadrilateral remeshing. International Journal for Numerical Methods in Engineering, 2002, 53(11):2463-2500
    [6] Blacker T D, Stephenson M B. Paving. A new approach to automated quadrilateral mesh generation. International Journal for Numerical Methods in Engineering, 1991, 32(4):811-847
    [7] Van Rens B J E, Brokken D, Brekelmans W A M, et al. Two-dimensional paving mesh generator for triangles with controllable aspect ration and quadrilaterals with high quality. Engineering with Computers, 1998, 14(3):248-259
    [1]彭颖红.金属塑性成形仿真技术,上海交通大学出版社, 1999
    [2] Long H, Balendra R. FE simulation of the influence of thermal and elastic effects on the accuracy of cold-extruded components. Journal of Materials Processing Technology, 1998, 84:247-260
    [3] Jiang Z Y, Tieu A K, Lu C. Thermo-mechanical analysis of ribbed strip rolling by a three-dimensional rigid-visco-plastic FEM. Journal of Materials Processing Technology, 2002, 130-131:189-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700