应变梯度弹性理论C~1自然单元法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多微观实验表明,当变形特征长度在微米或者亚微米量级时,材料表现出强烈的尺寸效应。经典理论的本构关系中不包含任何尺度参数,无法解释在微米和亚微米量级实验中发现的尺寸效应现象。为了解释微构件尺寸效应现象和解决工程实践中遇到的微尺寸设计问题,人们建立了应变梯度理论。应变梯度理论考虑了应变梯度高阶张量对应变能密度函数的影响,在本构关系中引入了材料的特征长度尺寸,能够描述和解释微构件力学性能的尺寸效应现象。应变梯度理论的控制方程和边界条件非常复杂,直接求取解析解非常困难,因此数值方法是解决这类边值问题的重要手段。应变梯度理论有限元法直接构建C1连续单元比较困难,为了降低连续性要求,通常采用C0连续混合单元法,该方法存在自由度多、计算工作量大等弊端。应变梯度理论无网格法的优点在于容易构建高阶连续形函数,然而,基于移动最小二乘法的无网格法,形函数的构造需要矩阵的求逆运算,计算效率较低,另外,形函数不具有插值特性,引入本质边界条件需要作特殊处理。针对目前应变梯度理论无网格法存在的不足,构建一种高效、高精度和易于处理本质边界条件的应变梯度理论无网格法,能够为模拟微构件力学性能的尺寸效应提供更为有效的数值计算手段。论文主要内容和研究成果包括:
     将C1自然邻近插值函数和基于移动最小二乘法的形函数应用于曲面拟合场合,对它们在计算精度、计算效率和数值稳定性等方面的区别进行了定量分析和比较。
     将C1自然单元法应用于偶应力弹性理论,建立了偶应力弹性理论C1自然单元法,由于形函数的插值性,本质边界条件的处理非常简单。为了考察构建方法的收敛速度和计算精度,分析了具有理论解的方块单剪问题和中心圆孔无限大板应力集中问题。对于方块单剪问题,随着离散结点的增多,数值解很快收敛于理论解;由于Voronoi结构能够自动调整结点分布不规则在空间上的差异,规则结点和不规则结点情况下计算结果差别不大,数值稳定性较好。对于小孔应力集中问题,计算结果表明偶应力对小孔应力分布的影响与无限大板的受力情况有关,纯剪情况下的影响要比单轴拉伸情况下的影响大,双轴拉伸时则没有影响。偶应力的作用范围局限于小孔附近,远离小孔,其影响可以忽略不计。算例的数值解与理论解吻合得较好,表明构建方法具有良好的计算精度。
     将C1自然单元法应用于全应变梯度弹性理论,建立了全应变梯度弹性理论C1自然单元法,由于形函数的插值性,可以直接施加本质边界条件对于接触双材料界面边界层效应问题,随着结点的增加,数值解很快收敛于理论解,Voronoi结构能够自动调整结点分布不均匀在空间上的差异,均匀结点和非均匀结点情况下的计算结果差别也不大,数值稳定性较好。对于开孔无限大板承受双轴拉伸时,当考虑应变梯度效应时,高阶应力对应力分布产生了影响,降低了小孔的应力集中系数。算例的数值解与理论解吻合得较好,表明构建方法的计算精度较高。
     将应变梯度弹性理论C1自然单元法应用于MEMS中,分析了一些结构和受力较为复杂并且不易求得理论解的实际工程问题。以微夹持器的夹持臂和中心开孔微试件为研究对象,研究了考虑应变梯度效应时微弹簧结构尺寸对夹持臂弯曲刚度、微梁厚度对驱动电压的影响规律以及开孔形状和尺寸对微试件应力集中系数的影响规律,探讨了它们对材料特征长度的尺寸依赖性,计算结果能够为微构件的设计和实验研究提供依据。
Many microscale experiments have shown that materials display strong size effects when the characteristic length scale is on the order of microns or submicrons. Traditional theories are unable to explain the size effects which have been observed in the micro-scales and submicro-scales experiments. One remedy against the deficiency of the traditional theories is to use the strain gradient theories whereby the strain energy density function depends on both the strain tensors and the strain gradient tensors. As the characteristic length scales of materials are introduced in the constitutive equations, strain gradient theories can predict the size effects. The governing equations and the boundary conditions of strain gradient theories are more complicated than those in traditional theories; therefore, numerical methods are usually effective ways to solve these boundary value problems (BVPs). There are some shortcomings in FEM for strain gradient theories, for example, it is difficult to construct the higher-order continuous elements, some C0 continuous mixed elements exist extra nodal degrees of fromdom (DOFs), and the computational effiency is low. It is easy to construct higher-order continuous shape functions in meshless methods for strain gradient theories. However, for meshless methods based on Moving Least-square Method (MLS), there are many inverse matrixes are included, so that, the construction of shape functions is complicated and the computational cost is high. Moreover, the shape functions lack the Kronecker delta properties, so that it is not easy to deal with the essential boundary conditions (EBCs). In order to model the size effets of microstructures effectively, it is necessay to construct the meshless method possessing high accuracy, high effiency and interpolating property.
     In order to compare the discrepancies in computational accuracy, computational efficiency and interpolating property, C1 natural neighbor interpolant and shape function constructed by MLS are applied to surface fitting.
     C1 natural element method for the solution of couple-stress elasticity is proposed. The shape functions have the interpolation to nodal function and nodal gradient values, so that EBCs can be imposed directly. In order to examine the convergence and computational accuracy, simple shear problem of the block and the infinite plate with a central circular hole subjected to the unaxial tension, biaxial tension and pure shear are analyzed. For the simple shear problem, with the increase of nodes, the numerical solutions converge quickly to the exact solutions. For the irregular and regular nodes, there is little change in the solutions because Voronoi digram can adjust discrepancy caused by the nodes automatically. For the stress concentration problem of the hole, the effects of couple stresses on the distribution of stresses are related with the loads. In fact, the effect of couple stresses in the case of pure shear is greater than that in the case of simple tension; couple stresses have no effect at all on the stressses in a field of isotropic tension. Couple stresses influence on small area around the hole, when far from the hole; the solution in the couple-stress elasticity is close to that in the traditional theory.
     C1 natural element method for the solution of strain gradient elasticity is proposed. The shape functions have the interpolation to nodal function and nodal gradient values, so that it is easy to deal with EBCs. In order to examine the convergence and computational accuracy, boundary layer analysis of a bimaterial system and stress concentration due to a hole are analyzed. For the bimaterial system, with increase of nodes, the numerical solutions converge quickly to the exact solutions. For the non-uniform and uniform nodes, there is little change in the solutions because Voronoi digram can adjust discrepancy caused by the nodes automatically. For stress concentration due to a hole, the double stresses minish the stress concentration around the hole.
     The validity and accuracy of the proposed methods are investigated through the numerical examples, and the numerical solutions are in good agreement with the analytical ones, which show that C1 natural element method can be used to analyze the couple-stress elasticity and strain gradient elasticity problems.
     In the application of the proposed methods to MEMS, some pratical problems in engineering are analyzed. In these problems, typical components such as microgripper and microspeciem are taken as research objects, the impact of microspring's size on the bending stiffness, the impact of thickness of microbeam on voltage and the impact of the shape and size of hole on stress concentration factor are studied when considering the strain gradient effects. The dependent relations of these parameters on the characteristic length scales of materials are discussed. Numerical results can be used to provide some value evidence for design and experimental research.
引文
[1]高世桥,刘海鹏.微机电系统力学[M].北京:国防工业出版社,2008.
    [2]Liu C.微机电系统基础[M].北京:机械工业出版社,2007.
    [3]温诗铸,丁建宁.微型机械设计基础研究[J].机械工程学报.2000,36(7):39-42.
    [4]Fleck N A, Muller G M, Ashby M F, Hutchinson J W. Strain gradient plasticity: theory and experiment [J]. Acta Metallurgica et Materialia.1994,42:475-487.
    [5]Stolken J S, Evans A G. A microbend test method for measuring the plasticity length scale [J]. Acta Materialia.1998,46:5109-5115.
    [6]Nix W D, Gao H. Indentation size effects in crystalline materials:a law for strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.1998,46: 411-425.
    [7]Stelmashenko N A, Walls M G, Brown L M, Milman Y V. Microindentations on W and Mo oriented single crystals:An STM study [J]. Acta Metallurgica et Materialia.1993,41:2855-2865.
    [8]McElhaney K W, Vlassak J J, Nix W D. Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments [J]. Journal of Materials Research.1998,13:1300-1306.
    [9]Poole W J, Ashby M F, Fleck N A. Micro-hardness of annealed and work-hardened copper polycrystals [J]. Scripta Materialia.1996,34:559-564.
    [10]Ma Q, Clarke D R. Size dependent hardness of silver single crystals [J]. Journal of Materials Research.1995,10:853-863.
    [11]魏悦广,王学峥,武晓雷,白以龙.微压痕尺度效应的理论和实验[J].中国科学A辑.2000,30:1025-1032.
    [12]Chong A C M, Lam D C C. Strain gradient plasticity effect in indentation hardness of polymers [J]. Journal of Materials Research.1999,14(10):4103-4110.
    [13]Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. International Materials Reviews.1994,39:1-23.
    [14]Zhu H T, Zbib H M, Afiants E C. Strain gradients and continuum modeling of size effect in metal matrix composites [J]. Acta Mech.1997,121:165-176.
    [15]Kiser M T, Zok F W, Wilkinson D S. Plastic flow and fracture of a particulate metal matrix composite [J]. Acta Materialia.1996,44:3465-3476.
    [16]Lam D C C, Yang F, Chong A C M, Wang J, Tong P. Experiments and theory in strain gradient elasticity [J]. Journal of the Mechanics and Physics of Solids.2003, 51:1477-1508.
    [17]McFarland A W, Colton J S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors [J]. Journal of Micromechanics and Microengineering.2005,15:1060-1067.
    [18]Voigt W. Theoertische Studien uber die elasticitatsverhaltnisse der Krystalle. Abh. Ges. Wiss Gottingen,1887,34.
    [19]Cosserat E, Cosserat F. Theorie des Corps Deformables [M]. Paris:Hermann, 1909.
    [20]Mindlin R D, Tiersten H F. Effects of couple stresses in linear elasticity [J]. Archive for Rational Mechanics and Analysis.1962,11:415-448.
    [21]Toupin R A. Theories of elasticity with couple-stress [J]. Archive for Rational Mechanics and Analysis.1964,17:85-112.
    [22]Toupin R A. Elastic Materials with couple stresses [J]. Archive for Rational Mechanics and Analysis.1962,11:385-414.
    [23]Koiter W T. Couple stress in the theory of elasticity:Ⅰ and Ⅱ [C]. Proceedings of the Koninkliske Nederlandse Akademie van Wetenschappen (B).1964,67:17-44.
    [24]Mindlin R D. Micro-structure in linear elasticity [J]. Archive for Rational Mechanics and Analysis.1964,16:51-78.
    [25]Mindlin R D, Eshel N N. On first strain-gradient theories in linear elasticity [J]. International Journal of Solids and Structures.1968,4:109-124.
    [26]Eshel N N, Rosenfeld G. Effects of strain-gradient on the stress-concentration at a cylindrical hole in a field of uniaxial tension [J]. Journal of Engineering Mathematics.1970,4:97-111.
    [27]Kroner E. Dislocations and continuum mechanics [J]. Applied Mechanics Reviews.1962,15:599-607.
    [28]Gauthier R D, Jahsman W E. A question for micropolar elastic constants [J]. Journal of Applied Mechanics.1975,42:369-373.
    [29]Sternberg E, Muki R. The effect of couple stresses on the stress concentration around a crack [J]. International Journal of Solids and Structures.1967,3:69-95.
    [30]Atkinson A, Leppington F G. The effect of couple stresses on the tip of crack [J]. International Journal of Solids and Structures.1977,13:1103-1122.
    [31]周慎杰,李兆前.微杆扭转静动态特性的尺度效应[J].山东工业大学学报.2001,31(5):401-407.
    [32]冯秀艳,郭香华,方岱宁,王自强.微薄梁三点弯曲的尺度效应研究[J].力学学报.2007,39(4):479-485.
    [33]Yang F, Chong A C M, Lam D C C, Tong P. Couple stress based strain gradient theory for elasticity [J]. International Journal of Solids and Structures.2002, 39(10):2731-2743.
    [34]Park S K, Gao X L. Variational formulation of a modified couple stress theory and its application to a simple shear problem [J]. Zeitschrift angewandte Mathematik und Physik ZAMP.2007,59:1-14.
    [35]Green A E, Rivlin R S. Multipolar continuum mechanics [J]. Archive for Rational Mechanics and Analysis.1964,17:113-147.
    [36]Eringen A C, Suhubi E S. Nonlinear theory of simple micro-ealstic solids:Ⅰ [J]. International Journal of Engineering and Science.1964,2:189-203.
    [37]Eringen A C, Suhubi E S. Nonlinear theory of simple micro-ealstic solids:Ⅱ [J] International Journal of Engineering and Science.1964,2:389-404.
    [38]Eringen A C. Linear theory of micropolar elasticity [J]. Journal of Mathematics and Mechanics.1966,15:909-923.
    [39]Eringen A C. Mechanics of micormorphic materials [C]. Proceeding of 11th International Congress of Applied Mechanics.1964:Springer, Berlin.
    [40]Eringen A C. Balance laws of micormorphic mechanics [J]. International Journal of Engineering and Science.1970,8:819-828.
    [41]Eringen A C. Theory of micromorphic materials with memory [J]. International Journal of Engineering and Science.1972,10:623-641.
    [42]Eringen A C. Nonlocal polar elastic continua [J]. International Journal of Engineering and Science.1972,10:1-16.
    [43]Eringen A C, Edelen D G B. On nonlocal elasticity [J]. International Journal of Engineering and Science.1972,10:233-248.
    [44]Eringen A C. On nonlocal plasticity [J]. International Journal of Engineering and Science.1981,19:1461-1474.
    [45]Eringen A C. Theory of nonlocal plasticity [J]. International Journal of Engineering and Science.1983,21:741-75.
    [46]Eringen A C. Vistas of nonlocal continuum physics [J]. International Journal of Engineering and Science.1992,30:1551-1565.
    [47]Schijve J. Note on couple tresses[J]. Journal of the Mechanics and Physics of Solids.1966,14:113-120.
    [48]Ellis R W, Smith C W. A thin-plate analysis and experimental evaluation of couple-stress effects [J]. Experimental Mechanics.1967,7:372-380.
    [49]Gauthier R D, Jahsman W E. A quest for micorpolar elastic constants [J]. Journal of Applied Mechanics.1975,42:369-373.
    [50]Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient affects in plasticity [J]. Journal of the Mechanics and Physics of Solids.1993, 41:1825-1857.
    [51]Fleck N A, Hutchinson J W. Strain gradient plasticity [J]. Advances in Applied Mechanics.1997,33:295-361.
    [52]Acharya A, Bassani J L. On non-local flow theories that preserve the classical structure of incremental boundary value problems. In:Micormechanics of plasticity and damage of multiphase materials. IUTAM Symposium, Paris:1995.
    [53]Aifantis E C. On the microstructural origin of certain inelastic models [J]. Trans. ASME:Journal of Engineering Materials and Technology.1984,106:326-330.
    [54]Aifantis E C. The physics of plastic deformation [J]. International Journal of Plasticity.1987,3:211-247.
    [55]Muhlhaus H B, Aifantis E C. A variational principle for gradient plasticity [J]. International Journal of Solids and Structures.1991,28:845-858.
    [56]Aifantis E C. On the role of gradients in the localization of deformation and fracture [J]. International Journal of Engineering and Science.1992,30:1279-1299.
    [57]Vardoulakis I, Aifantis E C. A gradient flow theory of plasticity for granular Materials [J]. Acta Mechanica.1991,87:197-217.
    [58]Zbib H M, Aifantis E C. On the localization and postlocalization behavior of plastic deformation [J]. Research Mechanics.1988,23:261-305.
    [59]Aifantis E C. Strain gradient interpretation of size effects [J] International Journal of Fracutre.1999,95:299-314.
    [60]Zbib H M, Aifamis E C. Size efects and length scales in gradient plasticity and dislocation dynamics [J]. Scripta Materialia.2003,48:155-160.
    [61]Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.1999,47:1239-1263.
    [62]Gao H, Huang Y, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity-Ⅰ. Theory [J]. Journal of the Mechanics and Physics of Solids.1999,47: 1239-1263.
    [63]Huang Y, Gao H, Nix W D, Hutchinson J W. Mechanism-based strain gradient plasticity-Ⅱ. Analysis [J]. Journal of the Mechanics and Physics of Solids.2000, 48:99-128.
    [64]Gao H, Huang Y. Taylor-based nonlocal theory of plasticity [J]. International Journal of Solids and Structures.2001,38:2615-2637.
    [65]Chen S H, Wang T C. A new hardening law for strain gradient plasticity [J]. Acta Materialia.2000,48:3997-4005.
    [66]Chen S H, Wang T C. Strain gradient theory with couple stress for crystalline solids [J]. European Journal of Mechanics, A/Solids.2001,20:739-756.
    [67]Gurtin M E. On the plasticity of single crystals:free energy, microforces, plastic-strain gradients [J]. Journal of the Mechanics and Physics of Solids.2000,48: 989-1036.
    [68]Cleveringa H H M, Vander G E, Needleman A. Discrete dislocation simulations and size dependent hardening in single slip [J]. Journal of Physics.1998,4:83-92.
    [69]Bittencourt E, Needleman A, Gurtin M E, Vander G E. A comparison of nonlocal continuum and discreted islocation plasticity predictions [J]. Journal of the Mechanics and Physics of Solids.2003,51:281-310.
    [70]Evers L P, Parks D M, Brekelmans, Geers M G D. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation [J]. Journal of the Mechanics and Physics of Solids.2002,50:2403-2424.
    [71]Xia Z C, Hutchinson J W. Crack tip fields in strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.1996,44:1621-1648.
    [72]Huang Y, Zhang L, Guo T F, Hwang K C. Mixed mode near-tip fields for cracks in materials with strain-gradient effects [J]. Journal of the Mechanics and Physics of Solids.1997,45:439-465.
    [73]邱信明,郭田福,黄克智.应变梯度塑性Ⅰ,Ⅱ型平面应力裂纹的有限元解[J].中国科学(A辑).2000,30:760-767.
    [74]Radi E. Strain-gradient effects on steady-state crack growth in linear hardening materials [J]. Journal of the Mechanics and Physics of Solids.2003,51:543-573.
    [75]Wei Y, Hutchinson J W. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.1997,45:1253-1273.
    [76]Chen J Y, Wei Y, Huang Y, Hutchinson J W, Hwang K C. The crack tip fields in strain gradient plasticity analyses [J]. Engineering Fracture Mechanics.1999, 64:625-648.
    [77]Shi M X, Huang Y, Gao H, Hwang K C. Non-existence of separable crack tip field in mechanism-based strain gradient plasticity [J]. International Journal of Solids and Structuers.2000,37:5995-6010.
    [78]Jiang H, Huang Y, Zhuang Z, Hwang K C. Fracture in mechanism-based strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids.2001, 49:979-993.
    [79]Shi M, Huang Y, Jiang H, Hwang K C, Ming L. The boundary-layer effect on the crack tip field in mechanism-based strain gradient plasticity [J]. International Journal of Fracture.2001,112:23-41.
    [80]Chen S H, Wang T C. Mode Ⅰ and mode Ⅱ carck tip asymptotic fields with strain gradient effects [J]. Acta Mechanica Sinica.2001,17:269-280.
    [81]Shu J Y, Fleck N A. Prediction of a size effect in micro indentation [J]. International Journal of Solids and Structures.1998,35:1363-1383.
    [82]Begley M R, Hutchinson J W. The mechanics of size-dependent in dentation [J]. Journal of the Mechanics and Physics of Solids.1998,46:2049-2068.
    [83]Huang Y, Xue Z, Nix W D, Xia Z C. A study of microindentation hardness tests by mechanism-based strain gradient plasticity [J]. Journal of Material Research. 2000,15:1786-1796.
    [84]Guo Y, Huang Y, Gao H, ZhuangZ, Hwang K C. Taylor-based nonlocal theory of plasticity:numerical studies of the micor-indentation experiments and crack tip fields [J]. International Journal of Solids and Structures.2001,38:7447-7460.
    [85]Wang W, Huang Y, Hsia K J, Hu K X, Chandra A. A study of micorbend test by strain gradient plasticity [J]. International Journal of Plasticity.2003,19:365-382.
    [86]Chen S H, Wang T C. Interface crack problems with strain gradient effects [J]. International Journal of Fracture.2002,117:25-37.
    [87]Wang G F, Yu S W, Feng X Q. Strain gradient near interface of coaxial cylinders in torsion [J]. Theoretical and Applied Fracture Mechanics.2002,36:195-202.
    [88]Smyshlyaev V P, Fleck N A. The role of strain gradients in the grain size effect for polycrystals [J]. Journal of the Mechanics and Physics of Solids.1996,44:465-495.
    [89]Shu J Y, Fleck N A. Strain gradient crystal plasticity size dependent deformation of bicrystal [J]. Journal of the Mechanics and Physics of Solids.1999,47:297-324.
    [90]Shu J Y, Barlow C Y. Strain gradient efects on microscopic strain field in a metal matrix composite [J]. International Journal of Plasticity.2000,16:563-591.
    [91]Chen C, Fleck N A. Size effects in the constrained deformation of metallic foams [J]. Journal of the Mechanics and Physics of Solids.2002,50:955-977.
    [92]Liu B, Qiu X, Huang Y, Hwang K C, Li M, Liu C. The size effect on void growth in ductile materials [J]. Journal of the Mechanics and Physics of Solids.2003,5 1:1171-1187.
    [93]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一):偶应力理论和SG理论[J].机械强度.1999,21:81-87.
    [94]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(二):基于细观机制的MSG应变梯度塑性理论[J].机械强度.1999,21:161-165.
    [95]陈少华,王自强.应变梯度理论进展[J].力学进展.2003,33:207-216.
    [96]钟万勰,姚伟岸,郑长良.Reissner板弯曲与平面应力模拟[J].大连理工大学学报.2002,42:519-521.
    [97]Argyris J H, Fried I, Scharpf D W. The TUBA family of plate elements for the matrix displacement method [J]. The Aeronautical Journal of the Royal Aeronautical Society.1968,72:701-709.
    [98]Dasgupta S, Sengupta D. A higher-order triangular plate bending element revisited [J]. International Journal for Numerical Methods in Engineering.1990, 30:419-430.
    [99]Zervos A, Papanastasiou X. A finite element displacement formulation for gradient elastoplasticity [J]. International Journal of Numerical Methods in Engineering.2001,50:1369-1388.
    [100]Specht B. Modified shape functions for the three-node plate bending element passing the patch test [J]. International Journal of Numerical Methods in Engineering.1988,26:705-715.
    [101]Zienkiewicz O C, Taylor R L. The finite element method [M], fourth edn., McGraw-Hill, New York,1994.
    [102]Herrmann L R. Mixed finite elements for couple-stress analysis, in:Atluri S N, Gallagher R H, Zienkiewicz O C (Eds.), Hybrid and Mixed Finite Element Methods, John Wiley & Sons, Ltd.,1-17.
    [103]Shu J Y, Fleck N A. The prediction of a size efect in micro-indentation [J]. International Journal of Solids and Structures.1998,35:1363-1383.
    [104]Shu J Y, King W E, Fleck N A. Finite elements for materials with strain gradient effects [J]. International Journal for Numerical Methods in Engineering.1999,44: 373-391.
    [105]Amanatidou E, Aravas N. Mixed finite element formulations of strain-gradient elasticity problems [J]. Computer Methods in Applied Mechanics and Engineering. 2002,191:1723-1751.
    [106]李雷,吴长春,谢水生.基于Hellinger-Reissner变分原理的应变梯度杂交元应力函数优化方法[J].力学学报.2005,37:301-306.
    [107]肖其林,凌中,吴永礼,姚文慧.偶应力问题的非协调元分析[J].中国科学院研究生院学报.2003,20:223-231.
    [108]肖其林,凌中,吴永礼.偶应力问题的杂交/混合元分析[J].计算力学学报.2003,20:427-433.
    [109]Li L, Wu C C, Xie S S. Incompatible element method for couple stress plasticity and numerical study of some scale effects phenomena [J]. Key Engineering Materials.2004,274:649-654.
    [110]Engel G, Garikipati K, Hughes T J R, Larson M G, Mazzei L, Taylor R L. Continuous/discontinuous finite element approximations of fourth-order elliptic problems in Structural and continuum mechanics with applications to thin beams and plates, and strain Gradient elasticity [J]. Computer Methods in Applied Mechanics and Engineering.2002,191:3669-3750.
    [111]Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal.1977,82:1013-1024.
    [112]Gingold R A, Moraghan J J. Smoothed particle hydrodynamics:theory and applications to non-spherical stars [J]. Monthly Notice Royal Astronomy Society. 1977,181:375-389.
    [113]Nayroles B, Touzot G, Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements [J]. Computational Mechanics.1992,10: 307-318.
    [114]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal of Numerical Methods in Engineering.1994,37:229-256.
    [115]Liu W K, Chen Y, Uras R A, Chang C T. Generalized multiple scale reproducing kernel particle methods [J]. Computer Methods in Applied Mechanics and Engineering.1996,139:91-157.
    [116]Babuska I, Melenk J M. The partition of unity methods [J]. International Journal of Numerical Methods in Engineering.1997,40:727-758.
    [117]Duarte C, Oden J T. Hp clouds:a meshless method to solve boundary value problems [J]. Computer Methods in Applied Mechanics and Engineering.1996, 139:237-262.
    [118]Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J]. Computational Mechanics.1998,22:117-127.
    [119]Askes H, Aifants E C. Numerical modeling of size effects with gradient elasticity-Formulation, meshless discretization and examples [J]. International Journal of Fracture.2002,117:347-358
    [120]Tang Z, Shen S, Atluri S N. Analysis of materials with strain gradient effects:a meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only [J]. CMES:Computer Modeling in Engineering and Science.2003,4:177-196.
    [121]Manzari M T, Regueiro R A. Gradient plasticity modeling of geomaterials in a meshfree environment. Part I:Theory and varitional formulation [J]. Mechanics Research Communications.2005,32:536-546.
    [122]Atluri S N, Shen S. The basis of meshless domain discretization:the meshless local Petrov-Galerkin (MLPG) method [J]. Advances in Computational Mathematics.2005,23:73-93.
    [123]Traversoni L. Natural neighbor finite elements [C]. In:Proceedings of International Conference of Hydraulic Engineering Software. Boston: Computational Mechanics Publications,1994.291-297.
    [124]Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids [J]. Nature.1995,376:655-660.
    [125]Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics [J]. International Journal of Numerical Methods in Engineering.1998, 43:839-887.
    [126]Sukumar N, Moran B. C1 natural neighbor interpolant for partial differential equations [J]. Numerical Methods for Partial Differential Equations.1999,15: 417-447.
    [127]Ventura G. An augmented Lagrangian approach to essential boundary conditions in meshless methods [J]. International Journal for Numerical Methods in Engineering.2002,53:825-842.
    [128]Wagner G J, Liu W K. Application of essential boundary conditions in mesh-free methods:a corrected collocation method [J]. International Journal for Numerical Methods in Engineering.2000,47:1367-1379.
    [129]Chen J S, Wang H P. New boundary condition treatments in meshfree computation of contact problems. Computer Methods in Applied Mechanics and Engineering.2000,187:441-468.
    [130]Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Computer Methods in Applied Mechanics and Engineering,1996,131:133-154.
    [131]Zhang X, Liu X, Lu M W, Chen Y. Imposition of essential boundary conditions by displacement constrain equations in meshless methods [J]. Communications in Numerical Methods in Engineering.2001,17:165-178.
    [132]Wu C K C, Plesha M E. Essential boundary condition enforcement in meshless methods:boundary flux collocation method [J]. International Journal for Numerical Methods in Engineering.2002,53:499-514.
    [133]Sibson R. A vector identity for the Dirichlet tesselation [C]. Mathematical Proceedings of the Cambridge Philosophical Society.1980,87:151-155.
    [134]Farin G. Surfaces over Dirichlet tessellations [J]. Computer Aided Geometry Design.1990,7:281-292.
    [135]Hiyoshi H, Sugihara K. Improving continuity of Voronoi-based interpolation over Delaunay spheres [J]. Computational Geometry.2002,22:167-183.
    [136]Sukumar N, Moran B, Semenov A Y, Belikov V V. Natural neighbor Galerkin methods [J]. International Journal of Numerical Methods in Engineering.2001,50: 1-27.
    [137]周培德.计算几何-算法分析与设计[M].北京:清华大学出版社,2005.
    [138]周小平,周瑞忠.用Voronoi图进行新型自然邻居插值的几何学方法与特性[J].计算力学学报.2005,22(3):354-359.
    [139]王凯.自然邻近无网格法的理论与应用研究[D].济南:山东大学,2005.
    [140]卢波.自然单元法的发展及其应用[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [141]Ai-Kah Soh, Chen W J. Finite element formulations of strain gradient theory for microstructures and the C0-1 patch test [J]. International Journal of Numerical Methods in Engineering.2004,61:433-454.
    [142]Mindlin R D. Influence of couple-stresses on stress concentrations [J]. Experimental Mechanics.1963,3:1-7.
    [143]Vardoulakis I, Giannakopoulos A E. An example of double forces taken from structural analysis [J]. International Journal of Solids and Structures.2006,43: 4047-4062.
    [144]Tang W C, Nguyen T H, Howe R T. Laterlly driven polysilicon resonant microstructures [C]. Proc. IEEE Micro Electro Mechanical Systems Workshop, Salt Lake City, UT,1989.53-59.
    [145]Kim C J, Pisano A P, Muller R S, Lim M G. Polysilicon microgripper [C]. Technical Digest IEEE Solid-State and Actuator Workshop, Hilton Head Island, SC,1990.48-51.
    [146]李勇,李玉和,李庆祥,紫艳阳.基于体硅工艺的微夹持器设计[J].清华大 学学报(自然科学版).2003,5:655-658.
    [147]Huang J M, Liu A Q, Deng Z L, Zhang Q X. A modeling and analysis of spring-shaped torsion micromirrors for low-voltage applications [J]. International Journal of Mechanical Sciences.2006,48:650-661.
    [148]Zavracky P M, Majumder S, McGruer N E. Micromechanical switches fabricated using nickel surface micromachining [J]. Journal of Microelectromechanical Systems.1997,6(1):3-9.
    [149]Chasiotis I, Knauss W G. The mechanical strength of polysilicon films:Part 2. Size effects associated with elliptical and circular perforations [J]. Journal of the Mechanics and Physics of Solids.2003,51:1551-1572.
    [150]Chasiotis I, Knauss W G Size effects determined form tensile tests of perforated MEMS scale speciems [C]. Material Research Society Symposium Proceedings, 2002,687:B2.4.1-B2.4.6.
    [151]Chasiotis I, Knauss W G A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy [J]. Experimental Mechanics. 2002,42:1-7.
    [152]McCarty A, Chasiotis I. Description of brittle failure of non-uniform MEMS geometries [J]. Thin Solid Films.2007,515:3267-3276.
    [153]Pugno N, Peng B, Espinosa H D. Predictions of strength in MEMS components with defects-a novel experimental-theoretical approach [J]. International Journal of Solids and Structures.2005,42:647-661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700