纳米复合改性丙烯腈共聚物电解质的制备、结构和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池和质子交换膜燃料电池是二次电池和燃料电池的典型代表,具有绿色环保、可再生、使用效率高等优点。具有锂离子和质子传导特性的聚合物电解质膜分别是锂离子电池和质子交换膜燃料电池的重要组件,对电池使用性能和寿命有重大影响。针对锂离子传导固体聚合物电解质膜电导率偏低、常用质子交换膜—全氟磺酸膜阻醇性偏差等不足,论文开展聚合物电解质的共聚和纳米复合改性基础研究。论文以丙烯腈(AN)为主单体,分别与N-[4-(磺酰胺)苯基]丙烯酰胺(ASPAA)和对苯乙烯磺酸钠(SSNa)共聚,制备锂离子和质子传导聚合物电解质膜。进一步采用层状双金属氢氧化物(LDH)进行聚合物电解质的纳米复合改性,以期利用LDH纳米层板的带正电性和亲水性,形成有利于电解质阳离子解离和传输的环境,提高锂离子和质子传导聚合物电解质的导电性能。
     以合成组成均匀的锂离子传导电解质基体AN-ASPAA共聚物为目标,开展AN-ASPAA共聚规律研究,得到以N,N-二甲基甲酰胺为溶剂的AN-ASPAA共聚竞聚率为:r_(AN)=0.60,r_(ASPAA)=1.76,两种单体以接近理想共聚方式形成无规共聚物。
     AN-ASPAA共聚物与20wt%(相对聚合物)的LiClO_4复合制得锂离子传导电解质膜,通过交流阻抗谱和电路分析建立了等效电路模型,计算得到包括电解质膜电阻在内的各个电路元件参数,拟合的交流阻抗谱与实验结果相吻合。由于ASPAA的引入有助于Li~+与聚合物的缔合,但同时使链节运动能力下降,共聚物电解质膜电导率、介电常数和介电损耗随共聚物中ASPAA摩尔分率的增加呈现先增大后减小的趋势,由ASPAA摩尔分率为32.6%的共聚物制备的电解质膜的电导率达到最大值1.54×10~(-2)S/m(30℃)。提出了AN-ASPAA共聚物中Li~+传输机理:在共聚物中引入ASPAA链节增加了亲核基团与Li~+的结合力,Li~+在电场力和浓度梯度作用下,主要以与共聚物亲核基团缔合-解缔合的方式跳跃传递。
     为了提高LDH在AN聚合物基体中的分散均匀性和剥离程度,对不同有机阴离子插层LDH在有机介质的分散和原位溶液聚合行为进行了研究。根据对苯乙烯磺酸根、10-十一烯酸根、α-丙烯基烷基酚聚氧乙烯醚(10)硫酸根(HS10)插层LDH在不同介质的分散行为,提出了以插层剂疏水端和溶剂的Hansen三维溶度参数为依据,判别LDH分散性和剥离程度的方法。实验发现HS10插层LDH在二甲基亚砜中分散稳定,分散粒径最小,并达到部分剥离;在此基础上,进行原位溶液聚合,得到LDH剥离程度高、分散均匀的PAN/LDH和AN-ASPAA共聚物/LDH纳米复合材料。
     研究了AN-ASPAA共聚物/LDH纳米复合材料和LDH改性AN-ASPAA共聚物/LiClO_4电解质的性能。发现AN-ASPAA共聚物/LDH纳米复合材料热稳定性随LDH含量增加而提高。加入少量LDH能提高纳米复合电解质膜的电导率,LDH含量为1wt%时复合电解质膜电导率达到最高值(5℃),进一步增加LDH含量使复合电解质膜的电导率下降。提出了LDH改性AN-ASPAA复合电解质膜等效电路模型,分析了复合电解质膜中LDH的作用机理:带正电的LDH层板在膜中相当于若干个串联电容,络合少量ClO_4~-,促进Li~+传递,但同时LDH层板的阻隔作用会阻碍离子传递,在此两种相反作用的影响下,复合电解质膜在合适的LDH含量时出现电导率最大值。
     采用磺化单体-对苯乙烯磺酸钠(SSNa)与AN半连续沉淀聚合制备了组成均匀、磺化度可控的AN-SSNa共聚物。发现酸化得到的AN-对苯乙烯磺酸(SSA)共聚物质子交换膜的吸水率、离子交换容量、电导率和甲醇渗透率均随共聚物中SSA摩尔分率增大而增加;当SSA摩尔分率小于3.12%时,吸水率、电导率和甲醇渗透率缓慢增加;当SSA摩尔分率大于3.12%时,吸水率、电导率和甲醇渗透率急剧上升。SSA摩尔分率为3.12%时,质子交换膜的电导率与甲醇渗透率之比最大。通过交流阻抗谱图和电路分析建立了等效电路模型,计算得到的质子交换膜中H~+扩散系数随共聚物中SSA摩尔分率增加先增后减,在SSA摩尔分率为3.12%时达到最大值(5℃)。
     在对苯乙烯磺酸根插层LDH(MgAl-SS LDH)存在下,采用原位沉淀共聚方法制备了AN-SSNa共聚物/LDH纳米复合材料,酸化得到AN-SSA共聚物/LDH复合质子交换膜。发现复合质子交换膜的甲醇渗透率随LDH含量增加而下降,离子交换容量和吸水率随LDH含量增加而增大。AN-SSA共聚物/LDH复合质子交换膜的电导率、介电常数和介电损耗随LDH含量增加先增后减。提出了LDH改善质子交换膜电性能的机理:LDH层板的亲水性使水化质子在膜中有更多质子通道,而其阻隔性又给水化质子的传输造成阻碍,两种机制共同作用导致复合质子交换膜的电导率在LDH含量为4wt%时达到最大值,为1.04×10~(-3)S/m(30℃)。
Secondary lithium battery and proton-conducting membrane fuel cell (PCMFC) are typical representitives of the secondary battery and fuel cell, respectively, which exhibit envionment-friendly, renewable and high efficient characteristics. Lithium ion and proton-conducting polymer electrolytes are the main components of lithium ion battery and PCMFC, respectively, which significantly influence the performances of cells. In view of the low ion conductivity of solid lithium polymer electrolytes and high methanol crossover of common proton-conducting membrane, such as perfluorosulfonate membrane, the modification of polymer electrolytes by copolymerization and compositing with nanometer material were carried out in this thesis. Acrylonitrile-N-[4-(aminosulfonyl) phenyl] acrylamide (AN-ASPAA) copolymers were synthesized through the solution copolymerization and composited with lithium salt to obtain lithium ion polymer electrolyte. AN-sodium 4-sulphonate styrene (AN-SSNa) were synthesized through precipitation copolymerization and treated with acid to obtain proton-conducting polymer membranes. A novel layered nanometer material-layered double hydroxide (LDH) was further composited with AN copolymers to improve the properties of polymer electrolyte membranes. The influences of copolymer composition and LDH content on the properties of polymer electrolyte were investigated, and the mechanism of ion transportation in the modified polymer electrolytes was discussed.
     In order to obtain a new host for lithium ion polymer electrolyte, the synthesis of AN-ASPAA copolymer with homogeneous composition was carried out at first. It was found that the reactivity ratios of AN-ASPAA copolymerization in DMF were r_(AN)=0.60 and r_(ASPAA)=1.76, which indicated the ideal copolymerization behavior of two monomers and the formation of random copolymer.
     Lithium ion polymer electrolyte membrane was obtained by combining of AN-ASPAA copolymer with 20wt% (based on polymer) LiClO_4. An equivalent circuit model was proposed based on AC impendance spectra and practical circuit analysis. The element parameters of the equivalent circuit model, including resistance of polymer electrolyte, were calculated, and the simulated AC impendance spectra were fitted well with experimental data. It was considered that the addition of ASPAA unit was a favor to the association between Li~+ and polymer chains, but reduced the local mobility of polymer chains. As a result, the conductivity, the dielectric constant and dielectric loss of copolymer electrolyte were increased with the increase of ASPAA content initially, and decreased when the molar fraction of ASPAA was greater than 32.6%. The membrane exhibited a maximum conductivity of 1.54×10~(-2)S/m (30℃) when ASPAA molar fraction was 32.6%. The ion transportation mechanism of AN-ASPAA copolymer/LiClO_4 composite was proposed as follows: the introduction of ASPAA unit into copolymer would provided more nucleophilic groups to complex with Li~+, and lithium ions transported mainly through association-disassociation with the nucleophilic groups under the electric field force and concentration gradient.
     In order to improve the dispersion and exfoliation of LDH in AN polymer matrix, the dispersion behavior and in-situ solution polymerization of LDH intercalated with different organic anions in organic mediums were studied. According to the dispersion behavior of 4-styrene sulfonate intercalated LDH, 10-undecylenate intercalated LDH and polyoxyethyleneα-propenyl alkylphenyl ether sulfate intercalated LDH (MgAl-HS10 LDH) in different solvents, Hansen's solubility parameters of the intercalated hydrophobic groups and that of the solvents were adopted to judge the dispersing ability and exfoliation of LDH. It was found that MgAl-HS10 LDH could be stably dispersed and partially exfoliated in DMSO. Thus, in-situ polymerization of AN and copolymerization of AN-ASPAA were carried out in the presence of MgAl-HS10 LDH to obtain PAN/LDH and AN-ASPAA copolymer/LDH nanocomposite with well dispersed and exfoliated LDH layers.
     The properties of AN-ASPAA copolymer/LDH nanocomposite and AN-ASPAA copolymer/LDH/LiClO4 nanocomposite electrolyte were investigated. It was found that the thermal stability of AN-ASPAA copolymer/LDH nanocomposite was increased as LDH content increased. The ion conductivity of nanocomposite electrolyte was also increased when the weight fraction of added LDH was lower, and reached a maximum (5℃) when the weight fraction of LDH was 1%. Further increase of LDH content would lead the decrease of ion conductivity of nanocomposite electrolyte. A new equivalent circuit model for AN-ASPAA copolymer /LDH/UClO_4 nanocomposite electrolyte was proposed, and the role of LDH played in the nanocomposite electrolyte was analyzed. It was considered that LDH layers with positive charges acted as capacitances in the nanocomposite electrolyte, which would associated with ClO_4~- and enhanced the transportation of Li~+. However, LDH layers also hindered the transportation of Li~+.
     AN-(sodium 4-styrene sulfonated) (AN-SSNa) copolymers with different composition were prepared through semi-continuous precipitation polymerization, and protonated to obtain AN-4-styrene sulfonic acid (AN-SSA) copolymer proton-conducting membrane with different sulfonation degree. It was found that the water uptake, ion exchange capacity, proton conductivity and methanol permeation were all increased as the molar fraction of SSA in copolymer increased. The water uptake, proton conductivity and methanol permeation coefficient of AN-SSA copolymer proton-conducting membrane were increased slowly when the molar fraction of SSA ranged from 0 to 3.12%, and increased rapidly when the molar fraction of SSA was greater than 3.12%. The selectivity of membrane defined as the ratio of the proton conductivity to methanol permeation coefficient reached a maximum value for the membrane prepared from AN-SSA copolymer with 3.12mol% of SSA. The proton diffusion coefficient in the proton-conducting membrane obtained through simulation of equivalent circuit model and fitting of AC impedance spectra also reached a maximum (5℃) when the molar fraction of SSA in copolymer was 3.12%.
     AN-SSNa copolymer/LDH nanocomposites were prepared by in-situ aqueous precipitation copolymerization of AN and SSNa in the presence of sodium 4-styrene sulfonated intercalated LDH(MgAl-SS LDH) and transferred to AN-SSA copolymer/LDH nanocomposites as a proton-conducting polymer electrolyte. It was found that the methanol permeation coefficient of the proton-conducting nanocomposite membrane was decreased as the weight fraction of LDH in nanocomposite increased, while the ion exchange capacity and water uptake were increased as the weight fraction of LDH increased. The ion conductivity, dielectric content and dielectric loss of proton-conducting nanocomposite membrane showed an increasing trend at the lower content of LDH, and a decreasing trend when the weight fraction of LDH was greater than 4%. It was considered that the incorporated LDH layers would lead the formation of more proton conducting channels in the membrane due to its hydrophilicity, while they would also hinder the transportation of protons due to their barrier property. As a result, the proton conductivity of nanocomposite membrane showed a maximum of 1.04×10~~(-3)S/m (30℃) when the LDH content was 4wt%.
引文
[1] Tatsuma T., Taguchi M, Iwaku M., Sotomura T., Oyama N., Inhibition effects of polyacrylonitrile gel electrolyts on lithium dendrite formation, J. Electroanalytical Chemistry, 1999,472:142-146
    
    [2] Kim D.W., Kim Y.R., Park J.K., Moon S.I., Electrical properties of the plasticized polymer electrolytes based on acrylonitrile-methyl methacrylate copolymers, Solid State Ionics, 1998,106:329-337
    
    [3] Choi B.K., Kim Y.W., Gong M.S., Ahn S.H., Characterization of new polyacrylonitrile-co-bis[2-(2-methoxyethoxy)ethyl]itaconate based gel polymer electrolytes, Electrochimica Acta, 2001,46:3475-3479
    
    [4] Rao M.M., Liu J.S., Li W.S., Liang Y., Liao Y.H., Zhao L.Z., Performance improvement of poly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate), J. Power Sources, 2009,189:711-715
    
    [5] Zhang S.S., Ervin M.H., Xu K., Jow T.R., Li-ion battery with poly(acrylonitrile-methyl methacrylate)-based microporous gel electrolyte, Solid State Ionics, 2005,176:41-46
    
    [6] Amaral F.A., Dalmolin C., Canobre S.C., Bocchi N., Rocha-Filho R.C., S.R.Biaggio, Electrochemical and physical properties of poly(acrylonitrile)/poly(vinyl acetate)-based gel electrolytes for lithium ion batteries, J. Power Sources,2007,164:379-385
    
    [7] Akashi H., Tanaka K., Sekai K., A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile), J. Power Sources, 2002,104:241-247
    
    [8] Kim H.S., Cho B.W., Kim J.T., Yun K.S., Chun H.S., Electrochemical properties and performance of poly(acrylonitrile)-based polymer electrolyte for Li/LiCoO_2 cells,J. Power Sources, 1996,62:21-26
    
    [9] Liao Y.H., Zhou D.Y., Rao M.M., Li W.S., Cai Z.P., Liang Y, Tan C.L.,Self-supported poly(methyl methacryalte-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery, J. Power Sources, 2009,189:139-144
    
    [10] Ferry A., Edman L., Forsyth M., MacFarlane D.R., Sun J., NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF_3SO_3 and PAN, Electrochimica Acta, 2000,45:1237-1242
    
    [11] Tang Z., Qi L., Gao G., Dynamic mechanical properties of gel polymer electrolytes containing ionic liquid, Solid State Ionics, 2008,179:1880-1884
    
    [12] Yang H.Y., Wu G., Chen H., Yuan F., Wang M., Fu R.J., Preparation and ionic conductivity of solid polymer electrolyte based on polyacrylonitrile-polyethylene oxide, J. Appl. Polym. Sci., 2006,101:461-464
    
    [13] Rajendran S., Kannan R., Investigations of PAN-PEO-NASCN solid polymer electrolyte, Bulletin of Electrochemistry, 2000,16:415-418
    
    [14] Rajendran S., Babu R.S., Sivakumar P., Ionic conduction in plasticized PVC/PAN blend polymer electrolytes, Ionics, 2008,14:149-155
    
    [15] Rajendran S., Babu R., Sivakumar P., Investigations on PVC/PAN composite polymer electrolytes, J. Membrane Sci., 2008,315:67-73
    [16] Rajendran S., Mahalingam T., Kannan R., Experimental investigations on PAN-PEO hybrid polymer electrolytes, Solid State Ionics. 2000,130:143-148
    
    [17] Choi B.K., Kim Y.W., Shin H.K., Ionic conduction in PEO-PAN blend polymer electrolytes, Electrochimica Acta,2000,45:1371 -1374
    
    [18] Choi B.K., Shin K.H., Kim Y.W., Lithium ion conduction in PEO-salt electrolytes gelled with PAN, Solid State Ionics, 1998,113-115:123-127
    
    [19] Pu W., He X., Wang L., Tian Z., Jiang C., Wan C, Preparation of P(AN-MMA) microporous membrane for Li-ion batteries by phase inversion, J. Membrane Science.2006.280:6-9
    
    [20] Pu W., He X., Wang L., Tian Z., Jiang C., Wan C, Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries, Ionics, 2008,14:27-31
    
    [21] Zhou D.Y., Wang G.Z., Li W.S., Li G.L., Tan C.L., Rao M.M., Liao Y.H..Preparation and performances of porous polyacrylonitrile-methyl methacrylate membrane for lithium-ion batteries, J. Power Sources, 2008,184:477-480
    
    [22] Zhang S.S., Xu K., Jow T.R., Li-ion cell with poly(acrylonitrile-methyl methacrylate)-based gel polymer electrolyte, Solid State Ionics, 2003,158:375-380
    
    [23] Lee Y.G., Park J.K., Moon S.I., Interfacial characteristics between lithium electrode and plasticized polymer electrolytes based on poly(acrylonitrile-co-methyl methacrylate), Electrochimica Acta, 2000,46:533-539
    
    [24] Tian Z., Pu W., He X., Wan C., Jiang C., Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries, Electrochimica Acta, 2007,52:3199-3206
    
    [25] Kim D.W., Ko J.M., Chun J.H., Electrochemical characteristics of Li/LiMn_2O_4 cells using gel polymer electrolytes, J. Power Sources, 2001,93:151-155
    
    [26] Kim D.W., Oh B.K., Choi Y.M., Solid State Ionics,1999,111:243-252
    
    [27] Kim D.W., Electrochemical characteristics of a carbon electrode with gel polymer electrolyte for lithium-ion polymer batteries, J. Power Sources. 1998,76:175-179
    
    [28] Kim D.W., Sun Y.K., Polymer electrolytes based on acrylonitrile-methyl methacrylate-styrene terpolymers for rechargeable lithium-polymer batteries, J.Electrochem. Soc., 1998,145(6): 1958-1963
    
    [29] Kim H.S., Cho B.W., Kim J.T., Yun K.S., Chun H.S., Electrochemical properties and performance of poly(acrylonitrile)-based polymer electrolyte for Li/LiCoO_2 cells,J. Power Sources, 1996,62:21-26
    
    [30] Forsyth M., Macfarlane D.R., Hill A.J., Glass transition and free volume behaviour of poly(acrylonitrile)/LiCF_3SO_3 polymer-n-salt electrolytes compared to poly(ether urethane)/LiC104 solid polymer electrolytes. Electrochimica Acta,2000,45:1243-1247
    
    [31] Hou W., Chen C., Studies on comblike polymer electrolyte with a nitrile group,Electrochimica Acta,2004,49(13):2105-2112
    
    [32] Yoon H.K., Chung W.S., Jo N.J., Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF_3SO_3, Electrochimica Acta, 2004,50:289-293
    
    [33] Rajendran S.. Kannan R., Mahendran O., Study on Li ion conduction behaviour of the plasticized polymer electrolytes based on poly acrylonitrile, Materials Letters,2001:331-335
    
    [34] Ostrovskii D., Jacobsson P., A Raman study of the structural and chemical stability of a poly(acrylonitrile) matrix in gel-type polymer electrolytes, J.Electrochem. Soc., 2002,149(5):A662-A666
    
    [35] Chu P.P., He Z.P., Lithium complex in polyacrylonitrile/EC/PC gel-type electrolyte, Polymer, 2001,42:4743-4749
    
    [36] Rikukawa M., Inagaki D., Kaneko K., Takeoka Y., Ito I., Kanzaki Y., Sanui K.,Proton conductivity of smart membranes based on hydrocarbon polymers having pnosphoric acid groups, J. Molecular Strutrue, 2005,739:153-161
    
    [37] B(?)nz A.P., Braun B., Janowsky R., Application of quantitative structrue-performance relationship and neural network models for the prediction of physical properties from molecular structure, Industrial & Engineering Chemistry Research, 1998,37(8):3043-3051
    
    [38] Inzelt G., Pineri M., Schultze J.W., Vorotyntsev M.A., Electron and proton conducting polymers: recent developments and prospects, Electrochimica Acta,2000,45:2403-2421
    
    [39] Alcaide F., Alvarez G., Ganborena L., Iruin J.J., Miguel O., Blazquez J.A.,Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications, Polymer Bulletin,2009,62:813-827
    
    [40] Xu N., Guo X., Fang J., Yin J., Yuan M., Chen B., Preparation and properties of cross-linked sulphonated poly(sulphide sulphone) membranes for fuel cell applications, Fuel Cell, 2009,9:363-371
    
    [41] Cakir M., Karatas S., Meceloglu Y., Kayaman-Apohan N., Gungor A.,Phosphorus-containing sulfonated polyimides for proton exchange membranes,Macromolecular Chemistry and Physics, 2008,209:919-929
    
    [42] Zhang H., Fan X., Zhang J., Zhou Z., Modification research of sulfonated PEEK membranes used in DMFC, Solid State Ionics, 2008,179:1409-1412
    
    [43] Ye G., Mills C.M., Goward G.R., Influences of casting solvents on proton dynamics within sulfonated polyether ether ketones(S-PEEKs) studied using high-resolution solid-state NMR, Journal of Membrane Science, 2008,319:238-243
    
    [44] Jaafar J., Ismail A.F., Mustafa A., Physicochemical study of poly(ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application, Materials Science and Engineering: A, 2007,460-461:475-484
    
    [45] Saarinen V., Kreuer K.D., Schuster M., Merkle R., Maier J., On the swelling properties of proton conducting membranes for direct methanol fuel cells, Solid State Ionics, 2007,178:533-537
    
    [46] Nasef M.M., Zubir N.A., Ismail A.F., Khayet M., Dahlan K.Z.M., Saidi H.,Rohani R., Ngah T.I.S., Sulaiman N.A., PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: preparation and transport characteristics of protons and methanol, J. Membrane Science, 2006,268:96-108
    
    [47] Hietala S., Holmberg S., Nasman J., Ostrovskii D., Paronen M., Serimaa R., Sundholm F.,Torell L.,Torkkeli M.,The state of water in styrene-grafted and sulfonated poly(vinylidene fluoride) membranes,Angewandte Makromolekulare Chemie,1997,253:151-167
    [48]Kim Y.W.,Lee D.K.,Lee K.J.,Kim J.H.,Single-step synthesis of proton conducting poly(vinylidene fluoride)(PVDF) graft copolymer electrolytes,European Polymer Journal,2008,44:932-939
    [49]Nasef M.M.,Saidi H.,Dahlan K.Z.M.,Single-step radiation induced grafting for preparation of proton exchange membranes for fuel cell,Journal of Membrane Science,2009,339:115-119
    [50]Ding J.,Chuy C.,Holdcroft S.,Enhanced conductivity in morphologically controlled proton exchange membranes:Synthesis of macromonomers by SFRP and their incorporation into graft polymers,Macromolecules,2002,35:1348-1355
    [51]三星SDI株式会社,制备用于燃料电池的聚合物电解质的磺化聚苯乙烯的方法,中华人民共和国,中国发明专利申请公开说明书,CN1613885A,2005.5.11
    [52]Huang H.S.,Chen C.Y.,Lo S.C.,Lin C.J.,Chen S.J.,Lin L.J.,Identification of ionic aggregates in PVDF-g-PSSA membrane by tapping mode AFM and HADDF STEM,Applied Surface Science,2006,253:2685-2689
    [53]Lin C.W.,Huang Y.F.,Kannan A.M.,Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells,J.Power Sources,2007,171:340-347
    [54]Lin C.W.,Huang Y.F.,Kannan A.M.,Semi-interpenetrating network based on cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)as proton exchange fuel cell membranes,J.Power Sources,2007,164:449-456
    [55]Kang M.S.,Kim J.H.,Won J.,Moon S.H.,Kang Y.S.,Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells,J.Membrane Science,2005,247:127-135
    [56]Chuy C.,Ding J.,Swanson E.,Holdcroft S.,Horsfall J.,Lovell K.V.,Conductivity and electrochemical ORR mass transport properties of solid polymer electrolytes containing poly(styrene sulfonic acid) graft chains,Journal of the Electrochemical Society,2003,150(5):E271-E279
    [57]Carter R.,Wycisk R.,Yoo H.,Pintauro P.N.,Blended polyphosphazene/polyacrylonitrile membranes for direct methanol fuel cells,Electrochemical and Solid-State Letters,2002,5(9):A195-A197
    [58]Martinelli A.,Navarra M.A.,Matic A.,Panero S.,Jacobsson P.,B(o|¨)rjesson L.,Scrosati B.,Structure and functionality of PVdF/PAN based,composite proton conducting membranes,Electrochimica Acta,2005,50:3992-3997
    [59]Navarra M.A.,Panero S.,Scrosati B.,A composite proton-conducting membrane based on a poly(vinylidene)fluoride-poly(acrylonitrile),PVdF-PAN blend,J.Solid State Electrochem.,2004,8:804-808
    [60]Rahman M.K.,Aiba G.,Susan M.B.H.,Watanabe M.,Proton exchange rnembranes based on sulfonimide for fuel cell applications,Electrochimica Acta,2004,50:633-638
    [61]Rahman M.K.,Aiba G.,Susan M.A.B.H.,Sasaya Y.,Ota K.,Watanabe M., Synthesis,characterization,and copolymer of a series of novel acid monomer based on sulfonimides for proton conducting membranes,Macromolecules,2004,37:5572-5577
    [62]Zhang X.,Tay S.W.,Liu Z.,Hong L.,Restructure proton conducting channels by embedding tarburst POSS-g-acrylonitrile oligomer in sulfonic perfluoro polymer matrix,J.Membrane Science,2009,329:228-235
    [63]程琥,李涛,杨勇,锂/聚合物电解质电化学固/固界面的研究,化学进展,2006,18(5):542-549
    [64]李若红,马忠龙,聚合物锂离子电池的研究进展,化学工业与工程,2006,23(3):271-276
    [65]张祥功,潘春跃,徐先华等,聚合物电解质组成与结构特征的研究进展上海化工,2004,4:30-33
    [66]Lee K.H.,Lee Y.G.,Park J.K.,Seung D.Y.,Effect of silica on the electrochemical characteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA)copolymer,Solid State Ionics,2000,133:257-263
    [67]Lao Y.,Rao M.,Li W.,Tan C.,Yi J.,Chen L.,Improvement in ionic conductivity of self-supported P(MMA-AN-VAC) gel electrolyte by fumed silica for lithium ion batteries,Electrochimica Acta,2009,in press
    [68]Bhattacharya S.,Ghosh A.,Effect of ZnO nanoparticles on the structure and conic relaxation of poly(ethylene oxide)-LiI polymer electrolyte nanocomposites,J.Nanoscience and nanotechnology,2008,1922-1926
    [69]Pan C.,Li Q.,Jensen J.O.,He R.,Cleemann L.N.,Nilsson M.S.,Bjerrum N.J.,Zeng Q.,Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells,J.Power Sources,2007,172:278-286
    [70]Xiong H.M.,Wang Z.D.,Xie D.P.,Cheng L.,Xia Y.Y.,Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries,J.Materials Chemistry,2006,16:1345-1349
    [71]Rajendran S.,Babu R.,Sivakumar P.,Investigations on PVC/PAN composite polymer electrolytes,J.Membrane Sci.,2008,315:67-73
    [72]Zhang P.,Zhang H.P.,Li Z.H.,Wu Y.P.,van Ree T.,Composite polymer electrolytes prepared by in situ copolymerization of poly(methyl methacrylate-acrylonitrile) on the surface of poly(methyl methacrylate)-coated nano-TiO_2,Polymers advanced technologies,2009,20:571-575
    [73]Appetecchi G.B.,Romagnoli P.,Scrosati B.,Composite gel membranes:a new class of improved polymer electrolytes for lithium batteries,Electrochemistry Communications,2001,3:281-284
    [74]Bishop C.,Teeters D.,Crystallinity and order of poly(ethylene oxide)/lithium triflate complex confined in nanoporous membranes,Electrochimica Acta,2009,54:4084-4088
    [75]Ahmad A.,Rahman M.Y.A.,Su'ait M.S.,Preparation and characterization of PVC-LiClO_4 based composite polymer electrolyte,Physica B:Condensed Matter,2008,403:4128-4131
    [76]Nakayama M.,Kashiwa Y.,Suzuki K.,Electrochromic properties of MnO_2-based layered polymer nanocomposite,J.Electrochem.Soc.,2009,156:D125-D130
    [77]Nakayama M.,Tagashira H.,Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes,Langmuir,2006,22:3864-3869
    [78]Demets G.J.F.,Anaissi F.J.,Toma H.E.,Electrochemical properties of assembled polypyrrole/V_2O_5 xerogel films,Electrochimica Acta,2000,46:547-554
    [79]Ray S.S.,Okamato M.,Polymer/layered silicate nanocomposites:a review from preparation to processing,Prog.Polym.Sci.,2003,28:1539-1641
    [80]Alexandre M.,Dubois R,Polymer-layered silicate nanocomposites:preparation,properties and uses of a new class of materials,Materials Science and Engineering,2000,28:1-63
    [81]Leroux F.,Besse J.P.,Polymer interleaved Layered Double Hydroxide:A new emerging class of Nanocomposites,Chem.Mater.,2001,13:3507-3515
    [82]Carlino S.,The intercalation of carboxylic acids into layered double hydroxides:a critical evaluation and review of the different methods,Solid State Ionics,1997.98:73-84
    [83]Khan A.I.,O'Hare D.,Intercalation chemistry of layered double hydroxides:recent developments and applications,J.Mater.Chem.,2002,12:3191-3198
    [84]Newman S.R,Jones W.,Synthesis,characterization and applications of layered double hydroxides containing organic guests,New J.Chem.,1998:105-115
    [85]王莲英,李玲,董风云,肖忠良,聚合物/层状硅酸盐纳米复合材料,化学与黏合,2005,27(1):34-37
    [86]瞿保钧,陈伟,邱龙臻,丁鹏,崔哲,聚合物/层状双氢氧化物纳米复合材料的研究与展望,自然科学进展,2005,15:272-281
    [87]Vaia R.A.,Vasudevan S.,Krawiec W.,Scanlon L.G.,Giannelis E.P.,New polymer electrolyte nanocomposites:Melt intercalation of poly(ethlene oxide) in mica-type silicates,Advanced Materials,1995,7:154-156
    [88]Lee K.,Nam J.H.,Lee J.H.,Lee Y.,Cho S.M.,Jung C.H.,Choi H.G.,Chang Y.Y.,Kwon Y.U.,Nam J.D.,Methanol and proton transport control by using layered double hydroxide nanoplatelets for direct methanol fuel cell,Electrochemistry Communications,2005,7:113-118
    [89]Fournaris K.G.,Karakassides M.A.,Petridis D.,Clay-polyvinylpyridine nanocomposites,Chemistry of Materials,1999,11:2372-2381
    [90]Lorthioir C.,Laupretre F.,Soulestin J.,Lefebvre J.M.,Segmental dynamics of poly(ethylene oxide) chains in a model polymer/clay intercalated phase:solid-state NMR investigation,Macromolecules,2009,42:218-230
    [91]Kloprogge J.T.,Frost R.L.,Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-,Ni-,and Co-hydrotalcites.,J.Solid State Chem,1999,146:506-515
    [92]Hibino T.,Jones W.,New approach to the delmination of layered double hydroxides,J.Mater.Chem.,2001,11:1321-1323
    [93]Wypych F.,Bubniak G.A.,Halma M.,Nakagaki S.,Exfoliation and immobilization of anionic iron porphyrin in layered double hydroxides.J.Colloid &Interlace Sci.,203,264(1):203-207
    [94]Domenech A.,Coronado E.,Lardies N.,Gastaldo C.M.,Domenech-CarboM.T., Ribera A., Solid-state electrochemistry of LDH-supported polyaniline hybrid inorganic-organic material, J. Electroanalytical Chemistry, 2008,624:275-286
    
    [95] Kornmann X., Berglund L. A., Sterte J., Nanocomposites based on montmorillonite and unsaturated polyester, Polym. Eng. Sci., 1998,38(8): 1351-1358
    
    [96] Thomassin J.M., Pagnoulle C, Caldarella G., Germain A., Jerome R.,Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application, J. Membrane Sci., 2006,270:50-56
    
    [97] Thakur A.K., Pradhan D.K., Samantaray B.K., Choudhary R.N.P., Studies on an ionically conducting polymer nanocomposite, J. Power Sources, 2006,159:272-276
    
    [98] Strawhecker K.E., Manias E., Crystallization behavior of poly(ethylene oxide) in the presence of Na+ montmorillonite fillers, Chem. Mater., 2003,15:844-849
    
    [99] Miwa Y., Drews A.R., Schlick S., Unique structure and dynamics of poly(ethylene oxide) in layered silicate nanocomposites: accelerated segmental mobility revealed by simulating ESR spectra of spin-labels, XRD, FTIR, and DSC,Macromolecules, 2008,41:4701-4708
    
    [100] Jung H. R., Cho M.S., Ahn J.H., Nam J.D., Lee Y., Polymer gel electrolytes prepared from P(EG-co-PG) and their nanocomposites using organically modified montmorillonite, J. Appli. Polym. Sci., 2004,91:894-899
    
    [101] Lee D.C., Jang L.W., Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization, J. Appl. Polym. Sci. 1996,61:1997-2005
    
    [102] Chen-Yang Y.W., Chen Y.T., Chen H.C., Lin W.T., Tsai C.H., Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery, Polymer,2009,50:2856-2862
    
    [103] Loyens W., Maurer F.H.J., Jannasch P., Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes,Polymer, 2005,46:7334-7345
    
    [104] Yang C.C., Lee Y.J., Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC), Thin Solid Films,2009,517:4735-4740
    
    [105] Yang C.C., Lee Y.J., Yang J.M., Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes, J. Power Sources, 2009,188:30-37
    
    [106] Burgaz E., Lian H., Alonso R.H., Estevez L., Kelarakis A., Giannelis E.P.,Nafion-clay hybrids with a network structure, Polymer, 2009,50:2384-2392
    
    [107] Alonso R.H., Estevez L., Lian H., Kelarakis A., Giannelis E.P., Nafion-clay nanocomposite membranes: Morphology and properties, Polymer,2009,50:2402-2410
    
    [108] Chang J.H., Park J.H., Park G.G., Kim C.S., Park O.O., Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials,J. Power Sources, 2003,124:18-25
    
    [109] Liao C.S., Ye W.B, Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes, Mater.Chem. Phy., 2004,88:84-89
    
    [110] Liao C.S., Ye W.B., Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes,Electrochimica Acta,2004,49:4993-4998
    [111]Cho M.S.,Shin B.,Choi S.D.,Lee Y.,Song K.G.,Gel polymer electrolyte nanocomposites PEGDA with Mg-Al layered double hydroxides,Electrochimica Acta,2004,50:331-334
    [112]Cho M.S.,Shin B.,Nam J.D.,Lee Y.,Song K.,Nanocomposites of polymer gel electrolyte based on poly(ethylene glycol diacrylate) and Mg-Al layered double hydroxides,Polym.Int.,200453:1523-1528
    [113]Bao Y.Z.,Cong L.F.,Huang Z.M.,Weng Z.X.,Preparation and proton conductivity of poly(vinylidene fluoride)/layered double hydroxide nanocomposite gel electrolytes,J.Mater.Sci.,2008,43:390-394
    [114]Liao C.S.,Ye W.B.,Enhanced ionic conductivity in poly(ethylene oxide)/layered double hydroxide nanocomposite electrolytes,J.Polym.Research,2003,10:241-246
    [1]Pu W.,He X.,Wang L.,Tian Z.,Jiang C.,Wan C.,Preparation of P(AN-MMA)microporous membrane for Li-ion batteries by phase inversion,J.Membrane Science,2006,280:6-9
    [2]Pu W.,He X.,Wang L.,Tian Z.,Jiang C.,Wan C.,Preparation of P(AN-MMA)gel electrolyte for Li-ion batteries,Ionics,2008,14:27-31
    [3]Tian Z.,Pu W.,He X.,Wan C.,Jiang C.,Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries,Electrochimica Acta,2007,52:3199-3206
    [4]高英新,包永忠,黄志明,翁志学,N-[4-(磺酰胺)苯基](甲基)丙烯酰胺的合成,合成化学,2005,13:22-24
    [5]Mehdipour-Ataei S.,Hatami M.,Synthesis and characterization of novel heat resistant poly(amide imide)s,Eur.Polym.J.,2005,41:2010-2015
    [6]Chang H.L.,Chao T.Y.,Yang C.C.,Dai S.A.,Jeng R.J.,Second-order nonlinear optical hyperbranched polymers via facile ring-opening addition reaction of azetidine-2,4-dione,Eur.Polym.J.,2007,43:3988-3996
    [7]Xiao S.,Huang Y.M.,Feng X.,Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation:Functional groups and separation properties,Polymer,2007,48:5355-5368.
    [8]Fineman M.,Ross S.D.,Liner method for determing monomer reactivity ratios in coolymerization,J.Polym.Sci.,1950,5:259-262
    [9]Kelen T.,Tudos F.,Analysis of linear methods for determining copolymerization reactivity ratios.1.new improved linear graphic method,J.Macromolecular Science-Chemistry,1975,A9:1-27
    [10]应圣康,余丰年 编,共聚合原理,北京,化学工业出版社,1984,p166-167
    [11]何曼君,陈维孝,董西侠 编,高分子物理,上海,复旦大学出版社,2005,p253-254
    [12]Gordon M.,Taylor J.S.,Ideal copolymers and the 2~(nd)-order transitions of synthetic rubbers.1.non-crystalline copolymers,J.Appl.Chem.,1952,2:493-500
    [1]Han D.G.,Choi G.M.,Computer simulation of the electrical conductivity of composites:the effect of geometrical arrangement,Solid State Ionics,1998,106:71-87
    [2]Han D.G.,Choi G.M.,Simulation of impedance for 2-D composite,Electrochimica Acta,1999,44:4155-4161
    [3]史美伦,交流阻抗谱原理及应用,北京,国防工业出版社,2001,p1-26
    [4]赵峰,钱新明,古宁宇,董绍俊,阻抗虚部计算聚合物电解质电导率,分析化学研究报告,2002,30(10):1153-1157
    [5]曹楚南、张鉴清,电化学阻抗谱导论,北京,科学出版社,2002,p7-33
    [6]古宁宇,钱新明,赵峰,董绍俊,复合聚合物电解质的导电行为及电导率的测定,分析化学,2002,1:1-5
    [7]Rajendran S.,Babu R.,Sivakumar P.,Optimization of PVC-PAN-based polymer electrolytes,J.Appl.Poly.Sci.,2009,113:1651-1656
    [8]Wang H.,Liu X.,Yu S.,Shi T.,Jiang S.,Preparation of P(AN-MMA)/SiO_2 hybrid solid electrolytes,J.APPl.Poly.Sci.,2009,114:1365-1369
    [9]Forsyth M.,Sun J.,MacFarlane D.R.,Novel high salt content polymer electrolytes based on high Tg polymers,Electrochimica Acta,2000,45:1249-1254
    [10]史美伦,混凝土阻抗谱,北京,中国铁道出版社,2003,p146-149
    [11]Qian X.,Gu N.,Cheng Z.,Yang X.,Wang E.,Dong S.,Plasicizer effect on the ionic conductivity of PEO-based polymer electrolyte,Materials Chemistry and Physics,2002,74:98-103
    [12]Wang M.,Zhao F.,Guo Z.,Dong S.,Poly(vinylidene fluoride-hexafluoropropylene)/organo-montmorillonite clays nanocomposite lithium polymer electrolytes,Electrochimica Acta,2004,49:3595-3602
    [13]Ichino T.,Takeshita Y.,Nishi S.,Matsumoto M.,Naoi K.,AC impedance analysis on dual-phase polymer electrolytes prepared from SBR/NBR mixed latices,Solid State Ionics,1995,80:119-127
    [14]何曼君,陈维孝,董西侠,高分子物理(修订版),上海,复旦大学出版社,2005,p372-395
    [15]Reddy M.J.,Chu P.P.,Ion pair/cbrmation and its effect in PEO:Mg solid polymer electrolyte system,J.Power Sources,2002,109:340-346
    [16]Rajendran S.,Babu R.S.,Sivakumar P.,Effect of salt concentration on poly(vinyl chloride)/poly(acrylonitrile) based hybrid polymer electrolytes,J.Power Source,2007,170:460-464
    [17]Guilherme L.A.,Borges R.S.,Moraes E.M.S.,Silva G.G.,Pimenta M.A.,Marietta A.,Silva R.A.,Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes,Electrochimica Acta,2007,53:1503-1511
    [18]Stephan A.M.,Nahm K.S.,Review on composite polymer electrolytes for lithium batteries,Polymer,2006,47:5952-5964
    [19]倪尔瑚,材料科学中的介电谱技术,北京,科学出版社,1999,p29
    [20]Lyklema J.,Leeuwen H.P.,Minor M.,DLVO-theory,a dynamic re-interpretation,Advances in Colloid and Interface Science,1999,83:33-69
    [21]RabekJ.F.著,吴世康,漆宗能译,高分子科学实验方法,北京,科学出版社,1987,p379-380
    [22]Basak P.,Manorama S.V.,Poly(ethylene oxide)-polyurethane/poly(acrylonitrile)semi-interpenetrating polymer networks for solid polymer electrolytes:vibrational spectroscopic studies in support of electrical behavior,European Polymer Journal,2004,40:1155-1162
    [23]Florjanczyk Z.,Zygadlo-Monikowska E.,Affek A.,Tomaszewskak A.,Lasinska A.,Marzantowicz M.,Dygas J.R.,Krok F.,Polymer electrolytes based on acrylonitrile-butyl acrylate copolymers and lithium bis(trifluoromethanesulfone)imide,Solid State Ionics,2005,176:2123-2128
    [24]Kim C.S.,Oh S.M.,Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes.Electrochimica Acta,2000,45:2101-2109
    [25]Kim C.S.,Oh S.M.,Performance of gel-type polymer electrolytes according to the affinity between polymer matrix and plasticizing solvent molecules,Electrochimica Acta,2001,46:1323-1331
    [1]Gordijo C.R.,Constantino V.R.L.,Silva D.O.,Evidences for decarbonation and exfoliatiion of layered double hydroxide in N,N-dimethylformamide-ethanol solvent mixture,Journal of Solid State Chemisty,2007,180:1967-1976
    [2]Li L.,Ma R.,Ebina Y.,Iyi N.,Sasaki T.,Positively charged nanosheets derived via total delamination of layered double hydroxides,Chem.Mater.,2005,17:4386-4391
    [3]Hibino T.,Jones W.,New approach to the delamination of layered double hydroxides,J.Mater.Chem.,2001,11:1321-1323
    [4]Jobbagy M.,Regazzoni A.E.,Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD,Journal of Colloid and Interface Science,2004,275:345-348
    [5]Acharya H.,Srivastava S.K.,Bhowmick A.K.,Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation:Structural characterization and properties,Composites Science and Technology,2007,67:2807-2816
    [6]Brandrup J.,Immergut E.H.,Grulke E.A.,Polymer Handbook,Fourth Edition,vol.3.
    [7]范克雷维伦 著,许元泽 译,聚合物的性质:性质的估算及其与化学结构的关系,北京,科学出版社,1981年6月,p95-119
    [8]李小苗,刘大壮,董雪茹,Hansen三维溶度参数的40年,粘接,2007,28:33-35
    [9]Wang G.A.,Wang C.C.,Chen C.Y.,The disorderly exfoliated LDHs/PMMA nanocomposite synthesized by in situ bulk polymerization,Polymer,2005,46:5065-5074
    [1]Liao C.S.,Ye W.B.,Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes,Electrochimica Acta, 2004,49:4993-4998
    
    [2] Wang G.A., Wang C.C., Chen C.Y., Preparation and characterization of layered double hydroxides-PMMA nanocomposites by solution polymerization, J. Inorg.Organomet. Polym., 2005,15:239-251
    
    [3] Realinho V., Antunes M., Arencon D., Fernandez A.I., Velasco J.I., Effect of a dodecylsulfate-modified magnesium-aluminum layered double hydroxide on the morphology and fracture of polystyrene and poly(styrene-co-acrylonitrile) composites,Journal of Applied Polymer Science, 2009,111:2574-2583
    
    [4] Lorthioir C., Laupretre F., Soulestin J., Lefebvre J.M., Segmental dynamics of poly(ethylene oxide) chains in a model polymer/clay intercalated phase: solid-state NMR investigation, Macromolecules, 2009,42:218-230
    
    [5] Wang H., Liu X., Yu S., Shi T., Jiang S., Preparation of P(AN-MMA)/SiO_2 hybrid solid electrolytes, J. APP1. Poly. Sci., 2009,114:1365-1369
    
    [6] Meneghetti P., Qutubuddin S., Webber A., Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite,Electrochimica Acta, 2004,49:4923-4931
    
    [7] Watanabe M., Tokuda H., Muto S., Anionic effect on ion transport properties in network polyether electrolytes, Electrochimica Acta, 2001,46:1487-1491
    
    [1] Rikukawa M., Sanui K., Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci., 2000,25:1463-1502
    
    [2] Sumner J. J., Creager S. E., Ma J. J., DesMarteau J. J., Proton conductivity in Nafion(R) 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane,J. Electrochem. Soc, 1998,145:107-110;
    
    [3] Alberti G., Casciola M., Solid state protonic conductors, present main applications and future prospects, Solid State Ionics, 2001,145:3-16
    
    [4] Daoust D., Devaux J., Godard P., Study of oxidation after monoacrylate grafting on polyethylene, Polym. Int., 2001,50:917-924;
    
    [5] Gu S., He G., Wu X., Li C., Liu H., Lin C., Li X., Sythesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone)(SPPESK) for direct methanol fuel cell(DMFC), J. Membrane Sci., 2006,281:121-129;
    
    [6] Qiao J., Hamaya T., Okada T., New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-1 -propanesulfonc acid (PVA-PAMPS) for low temperature direct methanol fuel cells(DMFCs), Polymer,2005,46:10809-10816
    
    [7] Jang W., Kim D., Choi S., Shul Y.G., Han H., Synthesis and characterization of sulfonated polyimides containing aliphatic linkages in the main chain, Polym. Int.,2006,55:1236-1242;
    
    [8] Wu S., Qiu Z., Zhang S., Yang X., Yang F., Li Z., The direct synthesis of wholly aromatic poly(p-phenylene)s bearing sulfobenzoyl side groups as proton exchange membranes, Polymer,2006,47:6993-7000
    
    [9] Xiao G., Sun G., Yan D., Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s,Macromol.Rapid Commun.,2002,23:488-492
    [10]Hwang,S.,Kammermeyer K.,Membranes in Separations,New York,Wiley,1975,p243-244
    [11]Izumi Z.,Kiuchi H.,Watanabe M.,Copolymerizatin of acrylonitrile and p-sodium styrene sulfanate,J.Polym.Sci.:Polym.Chem.,1963,1:705-714
    [1]曹楚南、张鉴清,电化学阻抗谱导论,北京,科学出版社,2002,p95-126
    [2]Paddison S.J.,Paul R.,Zawodzinski T.A.,Proton friction and diffusion coefficients in hydrated polymer electrolyte membranes:computations with a non-equilibrium statistical mechanical model,2001,115:7753-7761
    [3]Paul R.,Paddison S.J.,Effects of dielectric saturation and ionic screening on the proton sell-diffusion coefficients in perfluorosulfonic acid membranes,J.Chem.Phys.,2005,123:(文献编号) 224704
    [4]史美伦,混凝土阻抗谱,北京,中国铁道出版社,2003,p148
    [5]Samec Z.,Trojanek A.,Evaluation of ion transport parameters in a Nafion membrane from ion-exchange measurements,J.Phys.Chem.,1994,98:6352-6358
    [6]Verbrugge M.W.,Schineider E.W.,Conell R.S.,Hill R.F.,The effect of temperature on the equilibrium and transport-properties of saturated poly(perfluorosulfonic acid) membranes,J.Electrochem.Soc.,1992,139:3421-3428
    [7]Jeffrey K.R.,Zukowska G.Z.,Stevens J.R.,Dynamics of the hydrogen and phosphate ions in proton conducting gel/D_3PO_4 electrolytes:A ~2H and ~(31)P nuclear magnetic resonance study,J.Chem.Phys.,2003,119:2422-2431
    [8]Jeffrey K.R.,Wieczorek W.,Raducha D.,Stevens J.R.,Dynamics of the hydrogen and phosphate ions in proton conducting gel//D_3PO_4 electrolytes:A ~2H and ~(31)P nuclear magnetic resonance study,J.Chem.Phys.,1999,110:7474-7482
    [9]崔春涛,浦鸿汀,质子交换膜中质子输送过程的模拟,功能材料,2004,6(35):785-787
    [1]Hou W.,Kang L.,Sun R.,Liu Z.H.,Colloids and Surface A:Physicochemical and Engineering Aspects,2008,321:92-98
    [2]Niepceron F.,Lafitte B.,Galiano H.,BigarreJ.,Nicol E.,Tassin J.F.,Composite fuel cell membranes based on an inert polymer matrix and proton-conducting hybrid silica particles,J.Membrane Sci.,2009,228(1-2):100-110
    [3]Sahu A.K.,Pitchumani S.,Sridhar R,Shukla A.K.,Co-assembly of a Nafion-mesoporous zirconium phosphate composite membrane for PEM fuel cells,Fuel Cells,2009,9(2):139-147
    [4]Yang C.C.,Lee Y.J.,Yang J.M.,Direct methanol fuel cell(DMFC) based PVA/MMT composite polymer membranes,J.Power Sources,2009,188(1):30-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700