响应性高分子微凝胶的相变行为及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微凝胶/纳米凝胶是一类交联的聚合物粒子,这类物质具有高的水含量、生物相容性及可调节的化学、物理等性质,如果其中包含水溶性或水可溶胀性的聚合物链亦可称之为水凝胶。其具有的独特性质,使得微凝胶在药物传输(DDS)、生物分离等领域有着极为重要而广泛的应用价值,且长期以来一直是科研领域研究的热点。当前和今后对于微凝胶应用领域的研究,主要集中在如何很好的控制这些性质上,主要包括生物医药上的官能化、粒子尺寸的控制、降解性质及药物的持续可控释放及残留物的移除。这篇论文主要集中研究环境(温度、pH等)响应型微凝胶在外界刺激改变时的相转变动力学及其特征弛豫时间与微凝胶初始粒径之间的标度关系,以及功能化的微凝胶在重金属离子检测方面的应用。具体来说,本论文的工作包括以下几个方面:
     1.利用自由基乳液聚合法,制备环境(pH、温度等)响应型的聚(2-乙烯基吡啶)(P2VP)和聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶。通过停流光谱仪的快速混合装置实现pH值或温度跃变,并结合光散射和荧光分辨技术,检测输出信号随时间变化的动力学曲线,分析微凝胶的相转变行为及其溶胀/收缩的重要动力学过程,选择合适的拟合手段,得出每个过程对应的特征弛豫时间,并揭示微凝胶尺寸与相转变特征时间之间的标度关系。
     2.在研究微凝胶相转变动力学的基础上,进一步对影响相转变行为的因素进行了探讨。首先合成了含有对光敏感弱键单元(2-硝基苄酯)的PNIPAM微凝胶,这种弱键在紫外光照下可以断裂并产生亲水性的官能团,通过控制光照时间及共聚单元的比例,可以很好的实现在不同温度下对微凝胶相转变行为(体积变化)的调控,并可以通过荧光共振能量转移(FRET)体系对该过程进行监控;另外,合成了含有能够选择性络合离子的冠醚单元的PNIPAM微凝胶,通过主客体分子识别,一旦配合上相应的离子(K+)后,也能大大改善其亲水性,同样可以实现在不同温度下对微凝胶相转变行为(体积变化)的调控,并可以通过FRET对该过程及其动力学进行监控。
     3.基于聚(N-异丙基丙烯酰胺)(PNIPAM)的温度响应性质,制备了含有特定检测基元的微凝胶基化学传感器,实现了对水溶液中特定重金属离子高效、高选择性检测,检测性能可以通过温度进行调控。该课题首次合成了含有吡啶单元,在溶液中可以高效、高选择性的捕捉金属二价铜离子(Cu2+)的配体单体,并将该单体与具有荧光性质的丹磺酰单体通过自由基乳液聚合,无规共聚入轻度交联的温度响应性PNIPAM微凝胶中。该传感器在不同温度时,呈溶胀或收缩状态,共聚的吡啶单体可以高效、高选择性的捕捉溶液中的Cu2+,形成的Cu2+-吡啶配合物可以有效的淬灭临近丹磺酰分子的荧光,通过检测丹磺酰荧光强度的变化,从而达到检测溶液中Cu2+的目的。
     4.结合原子转移自由基聚合(ATRP)与“点击”化学(Click Chemistry)技术,合成了两亲性的Poly(PMMA-alt-PNIPAM)交替共聚物,并研究了该种聚合物在水溶液中的自组装行为,可以形成以PMMA为核、PNIPAM为壳层的球形胶束,利用TEM、LLS、DSC等测试手段对胶束的结构和性质进行了详细研究。
Microgels or nanogels are cross-linked polymeric particles. Most of them possess high water content, biocompatibility, and desirable mechanical properties. They offer unique advantages for polymer-based drug delivery systems (DDS) and chemical separation. Present and future microgel applications require a high degree of control over properties, including novel functionality for further bioconjugation, controlled particle size with uniform diameter, biodegradability, and sustained release of drugs for a desired period of time and facile removal of empty devices. In this dissertation, kinetics of volume phase transition (deswelling or swelling) of pH-and thermo-responsive microgels, uptake and controlled release of small molecules, polymers, and proteins into and out of microgels, and functionalized microgels/polymers for the detection of heavy metal ion were detailedly investigated. The dissertation includes the following six parts:
     1. Near-monodisperse and cross-linked poly(N-isopropylacrylamide) (PNIPAM) microgels and poly(2-vinylpyridine) (P2VP) microgels were synthesized using free radical emulsion polymerization, which exhibit completely reversible pH-and thermo-responsive deswelling and swelling behavior in aqueous solution. Kinetics of deswelling was studied using a stopped-flow apparatus equipped with a newly developed millisecond pH-jump and a temperature jump (mT-jump) accessory, the correlation between the characteristic initial microgel deswelling time and the square of the microgel radius, R2, was established.
     2. We further studied the effects of light and crown ether-ions complex on the volume phase transition behavior of microgels. Firstly, we synthesized thermo-responsive PNIPAM microgels covalently incorporated with fluorescence resonance energy transfer (FRET) donors,4-(2-acryloyloxy-ethylamino)-7-nitro-2,1,3-benzoxadiazole (NBDAE), FRET acceptors, N-(9-(2-((2-(acryloyloxy)ethoxy)carbonyl)phenyl)-6-(diethylamino)-3H-xanthn-3-ylidene)-N-ethylethanaminium (RhBEA), and certain photoactivable monomer,5-(2-(dimethylamino)ethoxy)-2-nitrobenzyl acrylate (DMENBAA) using free radical emulsion polymerization. Upon photoirradiation at 365 nm under UV irradiation at elevated temperature, the 2-nitrobenzyl ester group in the photolabile monomer covalently attached within the microgels would be cleaved, resulting in the formation of a negatively charged carboxylate group and reswell of microgels. Similarly, PNIPAM microgels covalently incorporated with NBDAE, RhBEA, and certain alkali metal ions captures, 4-acrylamidobenzo-18-crown-6 (B18C6Am), were also synthesized. The shift of LCST for volume phase transition of the synthesized microgels in response to K+ at varied concentrations were studied, and the property, such as hydrophilicity, of microgel contains B18C6Am, changes when B18C6Am bind special guest chemicals (K+).
     3. Cu2+-sensing thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels labeled with metal-chelating acceptor and fluorescent reporter moieties were synthesized. Cu2+ detection sensitivity can be considerably enhanced via thermo-induced collapse of the sensing matrix, which can facilely optimize the relative spatial distribution of Cu2+-binding sites and fluorescence read-out functionalities. A novel picolinamine-containing monomer with Cu2+-binding capability, N-(2-(2-oxo-2-(pyridine-2-yl-methylamino)-ethylamino)ethyl)acrylamide (PyAM), and fluorescent dansylaminoethyl acrylamide (DAEAM) monomers were synthesized at first. At low temperature, as-synthesized samples in their swollen state can selectively bind Cu2+ over other metal ions, leading to prominent quenching of fluorescence emission intensity. Above the volume phase transition temperature, microgels exhibit increased fluorescence intensity. It was observed that Cu2+ detection sensitivity could be dramatically enhanced via thermo-induced microgel collapse at elevated temperatures. The underlying mechanism for this novel type of sensors with thermo-tunable detection sensitivity was tentatively proposed.
     4. Well-defined amphiphilic copolymer brushes possessing alternating poly(methyl methacrylate) and poly(N-isopropylacrylamide) grafts, poly(PMMA-alt-PNIPAM), via a combination of atom transfer radical polymerization (ATRP) and click reaction were obtained. Poly(PMMA-alt-PNIPAM) supramolecularly self-assembles into spherical micelles consisting of PMMA cores and thermoresponsive PNIPAM coronas in aqueous solution, the properties of micelle solution were characterized via a combination of temperature-dependent optical transmittance, micro-DSC, LLS, and TEM.
引文
(1)P.J., F., Principles of Polymer Chemistry. Ithaca ed.1953, New York:Cornell University press.
    (2)李红,姚东东,and胡道道,2010.以微凝胶为基质的杂化材料制备及应用研究进展[J].高分子通报,第二期:41-51.
    (3)Hoffman, A.S.,2001. Hydrogels for biomedical applications [J]. Bioartificial Organs Iii: Tissue Sourcing, Immunoisolation, and Clinical Trials,944:62-73.
    (4)Hoffman, A.S.,2002. Hydrogels for biomedical applications [J]. Advanced Drug Delivery Reviews,54(1):3-12.
    (5)Holtz, J.H., et al.,1998. Intelligent polymerized crystalline colloidal arrays:Novel chemical sensor materials [J]. Analytical Chemistry,70(4):780-791.
    (6)Bergbreiter, D.E., et al.,1998. Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis [J]. Macromolecules,31(18):6053-6062.
    (7)Debord, J.D., et al.,2002. Color-tunable colloidal crystals from soft hydrogel nanoparticles [J]. Advanced Materials,14(9):658-662.
    (8)Dupin, D., et al.,2006. Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization [J]. Langmuir,22(7):3381-3387.
    (9)Rodriguez, B.E., M.S. Wolfe, and M. Fryd,1994. Nonuniform Swelling of Alkali Swellable Microgels [J]. Macromolecules,27(22):6642-6647.
    (10)Rodriguez, B.E. and M.S. Wolfe,1993. Nonuniform Swelling of Alkali Swellable Microgels [J]. Abstracts of Papers of the American Chemical Society,205:104-COLL.
    (11)Saunders, B.R., H.M. Crowther, and B. Vincent,1997. Poly[(methyl methacrylate)-co-(methacrylic acid)] microgel particles:Swelling control using pH, cononsolvency, and osmotic deswelling [J]. Macromolecules,30(3):482-487.
    (12)Bradley, M., J. Ramos, and B. Vincent,2005. Equilibrium and kinetic aspects of the uptake of poly(ethylene oxide) by copolymer microgel particles of N-isopropylacrylamide and acrylic acid [J]. Langmuir,21(4):1209-1215.
    (13)Jones, C.D. and L.A. Lyon,2000. Synthesis and characterization of multiresponsive core-shell microgels [J]. Macromolecules,33(22):8301-8306.
    (14)Ma, G.H. and T. Fukutomi,1992. Preparation and Chemical Fixation of Poly(4-Vinylpyridine) Microgel Film with Ordered Structure [J]. Macromolecules,25(7):1870-1875.
    (15)Loxley, A. and B. Vincent,1997. Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels [J]. Colloid and Polymer Science, 275(12):1108-1114.
    (16)Kuckling, D., C.D. Vo, and S.E. Wohlrab,2002. Preparation of nanogels with temperature-responsive core and pH-responsive arms by photo-cross-linking [J]. Langmuir, 18(11):4263-4269.
    (17)Chiu, H.C., A.T. Wu, and Y.F. Lin,2001. Synthesis and characterization of acrylic acid-containing dextran hydrogels [J]. Polymer,42(4):1471-1479.
    (18)Lee, E.S., K. Na, and Y.H. Bae,2003. Polymeric micelle for tumor pH and folate-mediated targeting [J]. Journal of Controlled Release,91(1-2):103-113.
    (19)Chen, GH. and A.S. Hoffman,1995. Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph [J]. Nature,373(6509):49-52.
    (20)Kaneko, Y., et al.,1998. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains [J]. Macromolecules,31(18):6099-6105.
    (21)Yildiz, B., B. Isik, and M. Kis,2001. Synthesis of thermoresponsive N-isopropylacrylamide-N-hydroxymethyl acrylamide hydrogels by redox polymerization [J]. Polymer,42(6):2521-2529.
    (22)Lin, H.H. and Y.L. Cheng,2001. In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectures [J]. Macromolecules,34(11):3710-3715.
    (23)Chung, J.E., M. Yokoyama, and T. Okano,2000. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles [J]. Journal of Controlled Release,65(1-2): 93-103.
    (24)Kohori, E, et al.,2002. Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems [J]. Journal of Controlled Release,78(1-3):155-163.
    (25)Schulz D.N., Peiffer D.G., and A. P.K.,1986. Phase behaviour and solution properties of sulphobetaine polymers [J]. Polymer,27:1734-1742.
    (26)Inomata, H., S. Goto, and S. Saito,1990. Phase-Transition of N-Substituted Acrylamide Gels [J]. Macromolecules,23(22):4887-4888.
    (27)Seker, F. and A.B. Ellis,1998. Correlation of chemical structure and swelling behavior in N-alkylacrylamide hydrogels [J]. Journal of Polymer Science Part A-Polymer Chemistry, 36(12):2095-2102.
    (28)Seker, F. and A.B. Ellis,1998. Correlation of chemical structure and swelling behavior in N-alkylacrylamide hydrogels. [J]. Abstracts of Papers of the American Chemical Society,215: U361-U361.
    (29)You Han Bae, T.O., Sung Wan Kim,1990. Temperature dependence of swelling of crosslinked poly(N,N-alkyl substituted acrylamides) in water [J]. J. Polym. Sci. Part B: Polym.Phys.,28:923-936.
    (30)Lyubarsky, A.L., et al.,2005. Mole quantity of RPE65 and its productivity in the generation of 11-cis-retinal from retinyl esters in the living mouse eye [J]. Biochemistry,44(29): 9880-9888.
    (31)Liu, X.M., et al.,2005. New nanoscale pulsatile drug delivery system [J]. Chemistry of Materials,17(11):2792-2795.
    (32)Kramer, M.C., et al.,1995. Water-Soluble Copolymers.63. Rheological and Photophysical Studies on the Associative Properties of Pyrene-Labeled Poly[Acrylamide-Co-Sodium 11-(Acrylamido)Undecanoate] [J]. Macromolecules,28(15):5248-5254.
    (33)Wu, K., et al.,2005. Formation of hybrid micelles between poly(ethylene glycol)-block-poly(4-vinylpyridinium) cations and sulfate anions in an aqueous milieu [J]. Soft Matter,1(6):455-459.
    (34)Wu, K., et al.,2006. Thermoresponsiveness of hybrid micelles from poly(ethylene glycol)-block-poly(4-vinylpyridium) cations annul SO42-anions in aqueous solutions [J]. Langmuir,22(4):1474-1477.
    (35)Liaw, D.J., et al.,2000. Macromolecular microstructure, reactivity ratio and viscometric studies of water-soluble cationic and/or zwitterionic copolymers [J]. Polymer,41(16): 6123-6131.
    (36)Yoshida, R., T. Yamaguchi, and H. Ichijo,1996. Novel oscillating swelling-deswelling dynamic behaviour for pH-sensitive polymer gels [J]. Materials Science& Engineering C-Biomimetic Materials Sensors and Systems,4(2):107-113.
    (37)Leopold, S., et al.,2003. In situ pH measurement of the self-oscillating Cu(II)-lactate system using an electropolymerised polyaniline film as a micro pH sensor [J]. Journal of Electroanalytical Chemistry,547(1):45-52.
    (38)Tang, Y.C., et al.,2008. Chemical oscillation induced periodic swelling and shrinking of a polymeric multilayer investigated with a quartz crystal microbalance [J]. Langmuir,24(16): 8929-8933.
    (39)Murase, Y, et al.,2009. Design of a Mass Transport Surface Utilizing Peristaltic Motion of a Self-Oscillating Gel [J]. Langmuir,25(1):483-489.
    (40)Yoshida, R., et al.,2000. In-phase synchronization of chemical and mechanical oscillations in self-oscillating gels [J]. Journal of Physical Chemistry A,104(32):7549-7555.
    (41)Liu, G.M. and G.Z. Zhang,2008. Periodic swelling and collapse of polyelectrolyte brushes driven by chemical oscillation [J]. Journal of Physical Chemistry B,112(33):10137-10141.
    (42)Maeda, S., et al.,2008. Peristaltic motion of polymer gels [J]. Angewandte Chemie-International Edition,47(35):6690-6693.
    (43)Yoshida, R., K. Takei, and T. Yamaguchi,2003. Self-beating motion of gels and modulation of oscillation rhythm synchronized with organic acid [J]. Macromolecules,36(6):1759-1761.
    (44)Yoshida, R., et al.,2009. Self-oscillating gel as novel biomimetic materials [J]. Journal of Controlled Release,140(3):186-193.
    (45)Maeda, S., et al.,2008. Design of Self-Oscillating Gel Actuators for Aiming at Chemical Robot [J]. Kobunshi Ronbunshu,65(10):634-640.
    (46)Yoshida, R.,2009. Self-oscillating Gel as Smart Materials [J]. Biomedical Applications of Smart Materials, Nanotechnology and Micro/Nano Engineering,57:1-4
    (47)Maeda, S., et al.,2008. Self-Oscillating Gel Actuator for Chemical Robotics [J]. Advanced Robotics,22(12):1329-1342.
    (48)Shinohara, S., et al.,2008. Chemical and optical control of peristaltic actuator based on self-oscillating porous gel [J]. Chemical Communications, (39):4735-4737.
    (49)Tateyama, S., Y. Shibuta, and R. Yoshida,2008. Direction control of chemical wave propagation in self-oscillating gel array [J]. Journal of Physical Chemistry B,112(6): 1777-1782.
    (50)Aoki, R., M. Enoki, and R. Yoshida,2007. Mechanical behavior during self-oscillating of NlPAAm-co-(Ru(bpy)(3) gel [J]. Progresses in Fracture and Strength of Materials and Structures,1-4,353-358:2235-2238
    (51)Maeda, S., S. Hashimoto, and R. Yoshida,2004. Design of chemo-mechanical actuator using self-oscillating gel [J]. IEEE ROBIO 2004:Proceedings of the IEEE International Conference on Robotics and Biomimetics:474-479
    (52)Aoki, R., M. Enoki, and R. Yoshida,2006. Measurement of elastic properties of self-oscillating gel [J]. Advanced Nondestructive Evaluation I, Pts 1 and 2, Proceedings, 321-323:1036-1039.
    (53)Sakai, T., Y. Hara, and R. Yoshida,2005. Phase transition behaviors of self-oscillating polymer and nano-gel particles [J]. Macromolecular Rapid Communications,26(14): 1140-1144.
    (54)Huh, D.S., et al.,2005. Control of wave formation pattern in self-oscillating gel by addition of hydroquinone in the Belosov-Zhabotinsky reaction solution [J]. Polymer Bulletin,54(3): 215-223.
    (55)Tabata, O., et al.,2003. Chemo-mechanical actuator using self-oscillating gel for artificial cilia [J]. Mems-03:Ieee the Sixteenth Annual International Conference on Micro Electro Mechanical Systems:12-15
    (56)Yoshida, R.,2003. Design of self-oscillating gel utilizing oscillating reaction [J]. Electrochemistry,71(5):337-341.
    (57)Tabata, O., et al.,2002. Ciliary motion actuator using self-oscillating gel [J]. Sensors and Actuators a-Physical,95(2-3):234-238.
    (58)Tabata, O., et al.,2001. Ciliary motion actuator using self-oscillating gel [J].14th Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest:405-408
    (59)Yoshida, R., et al.,1996. Self-oscillating gel [J]. Journal of the American Chemical Society, 118(21):5134-5135.
    (60)Takeoka, Y, M. Watanabe, and R. Yoshida,2003. Self-sustaining peristaltic motion on the surface of a porous gel [J]. Journal of the American Chemical Society,125(44): 13320-13321.
    (61)Hugel, T., et al.,2002. Single-molecule optomechanical cycle [J]. Science,296(5570): 1103-1106.
    (62)Lendlein, A. and R. Langer,2002. Biodegradable, elastic shape-memory polymers for potential biomedical applications [J]. Science,296(5573):1673-1676.
    (63)Lendlein, A., et al.,2005. Light-induced shape-memory polymers [J]. Nature,434(7035): 879-882.
    (64)Yerushalmi, R., et al.,2005. Stimuli responsive materials:new avenues toward smart organic devices [J]. Journal of Materials Chemistry,15(42):4480-4487.
    (65)Plunkett, K.N., et al.,2005. Light-regulated electrostatic interactions in colloidal suspensions [J]. Journal of the American Chemical Society,127(42):14574-14575.
    (66)Nakanishi, J., et al.,2009. Light-Regulated Activation of Cellular Signaling by Gold Nanoparticles That Capture and Release Amines [J]. Journal of the American Chemical Society,131(11):3822-+.
    (67)Mal, N.K., M. Fujiwara, and Y. Tanaka,2003. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica [J]. Nature,421(6921):350-353.
    (68)Nishiyama, N., et al.,2005. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer [J]. Nature Materials,4(12):934-941.
    (69)Kloxin, A.M., et al.,2009. Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties [J]. Science,324(5923):59-63.
    (70)Luo, Y. and M.S. Shoichet,2004. A photolabile hydrogel for guided three-dimensional cell growth and migration [J]. Nature Materials,3(4):249-253.
    (71)Mamada, A., et al.,1990. Photoinduced Phase-Transition of Gels [J]. Macromolecules,23(5): 1517-1519.
    (72)M. Irie and D. Kunwatchakun,1986. Photoresponsive polymers.8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives [J]. Macromolecules,19:2476-2480.
    (73)Irie, M.,1986. Photoresponsive polymers. Reversible bending of rod-shaped acrylamide gels in an electric field [J]. Macromolecules,19:2890-2892.
    (74)Bradley, M., et al.,2006. Photoresponsive surfactants in microgel dispersions [J]. Langmuir, 22(1):101-105.
    (75)Suzuki, A. and T. Tanaka,1990. Phase-Transition in Polymer Gels Induced by Visible-Light [J]. Nature,346(6282):345-347.
    (76)Ding, Z.B., et al.,2009. Synthesis of glucose-sensitive self-assembled films and their application in controlled drug delivery [J]. Polymer,50(17):4205-4211.
    (77)Tang, Y. and C.X. Li,2008. Preparation of novel amphiphilic copolymer microspheres and their drug-release and glucose-sensitive properties [J]. Journal of Applied Polymer Science, 107(6):3848-3852.
    (78)Li, F., W.G. Liu, and K. De Yao,2002. Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour [J]. Biomaterials,23(2):343-347.
    (79)Okumura, M., et al.,2001. Leptin and high glucose induce cell proliferation in drug sensitive human breast cancer cells (MCF7) but not in multidrug-resistant cells (MCF7/ADR): Possible involvement of the changes in cdk2, cyclin D1, PKC alpha and PPAR expression [J]. Diabetes,50:A369-A369.
    (80)Yamamoto, M., et al.,2001. Possible involvement of the changes of PKC-alpha-expression in leptin-and glucose-induced cell proliferation in drug sensitive human breast cancer cells (MCF7) but not in multi-drug resistant cells (MCF7/ADR). [J]. FASEB Journal,15(4): A515-A515.
    (81)Yamamoto, M., et al.,1999. A shift from normal to high glucose levels stimulates cell proliferation in drug sensitive MCF-7 human breast cancer cells but not in multidrug resistant MCF-7/ADR cells which overproduce PKC-beta II [J]. International Journal of Cancer,83(1): 98-106.
    (82)Gupta, A.K., et al.,1997. Differential effect of glucose derivation on MAPK activation in drug sensitive human breast carcinoma MCF-7 and multidrug resistant MCF-7/ADR cells [J]. Molecular and Cellular Biochemistry,170(1-2):23-30.
    (83)Fanciulli, M., et al.,1996. Effect of the antitumor drug lonidamine on glucose metabolism of adriamycin-sensitive and-resistant human breast cancer cells [J]. Oncology Research,8(3): 111-120.
    (84)Post, J.F.M., E. Baum, and E. Ezell,1991. C-13-Nmr Studies of Glucose-Metabolism in Drug-Sensitive and Drug-Resistant Human Leukemic-Cell Lines [J]. FASEB Journal,5(6): A1548-A1548.
    (85)Lee, K.Y., et al.,2000. Controlled growth factor release from synthetic extracellular matrices [J]. Nature,408(6815):998-1000.
    (86)Santini, J.T., M.J. Cima, and R. Langer,1999. A controlled-release microchip [J]. Nature, 397(6717):335-338.
    (87)Budi, A., et al.,2005. Electric field effects on insulin chain-B conformation [J]. Journal of Physical Chemistry B,109(47):22641-22648.
    (88)Zhu, Z.Y., S.P. Armes, and S.Y. Liu,2005. pH-induced micellization kinetics of ABC triblock copolymers measured by stopped-flow light scattering [J]. Macromolecules,38(23): 9803-9812.
    (89)Tanaka, T. and D.J. Fillmore,1979. Kinetics of Swelling of Gels [J].J. Chem. Phys.,70(3): 1214-1218.
    (90)Sugiyama, M., M. Annaka, and K. Hara,2002.. Heat-induced evolution of the mesoscopic structure of dehydrated poly(vinyl alcohol) gel [J]. J.Phys.Soc. Jpn,71(4):1035-1038.
    (91)Wang, J.P., et al.,2001. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions [J]. J. Am. Chem. Soc.,123(45):11284-11289.
    (92)Tanaka, T., et al.,1985. Critical Kinetics of Volume Phase-Transition of Gels [J]. Phys. Rev. Lett.,55(22):2455-2458.
    (93)Tanaka, T.,1986. Kinetics of Phase-Transition in Polymer Gels [J]. Phys. A,140(1-2): 261-268.
    (94)Suarez, I.J., A. Fernandez-Nieves, and M. Marquez,2006. Swelling Kinetics of Poly(N-isopropylacrylamide) Minigels [J]. J. Phys. Chem. B.,110(51):25729-25733.
    (95)Lehn, J.M.,超分子化学概念和展望.沈兴海等,译.第一版.ed.2001,北京:北京大学出版社.
    (96)Seedher, N. and M. Kanojia,2008. Micellar solubilization of some poorly soluble antidiabetic drugs:A technical note [J]. Aaps Pharmscitech,9(2):431-436.
    (97)Rangel-Yagui, C.O., A. Pessoa, and L.C. Tavares,2005. Micellar solubilization of drugs. [J]. Journal of Pharmacy and Pharmaceutical Sciences,8(2):147-163.
    (98)Palma, S., et al.,2003. Drugs solubilization in ascorbyl-decanoate micellar solutions [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,212(2-3):163-173.
    (99)Palma, S., et al.,2002. Solubilization of hydrophobic drugs in octanoyl-6-O-ascorbic acid micellar dispersions [J]. Journal of Pharmaceutical Sciences,91(8):1810-1816.
    (100)Draper, M., et al.,1995. Solubilization of Drugs in Micellar Systems Studied by Eluent Gel-Permeation Chromatography [J]. Pharmaceutical Research,12(8):1231-1237.
    (101)Harada, A. and K. Kataoka,1995. Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block-Copolymers with Poly(Ethylene Glycol) Segments [J]. Macromolecules,28(15):5294-5299.
    (102)Colfen, H.,2001. Double-hydrophilic block copolymers:Synthesis and application as novel surfactants and crystal growth modifiers [J]. Macromolecular Rapid Communications,22(4): 219-252.
    (103)Kabanov, A.V., et al.,1996. Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide) block-polymethacrylate anions (vol 29, pg 6797,1996) [J]. Macromolecules,29(27):8999-8999.
    (104)Kabanov, A.V., et al.,1996. Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions [J]. Macromolecules,29(21):6797-6802.
    (105)Bronich, T.K., et al.,1997. Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations [J]. Macromolecules, 30(12):3519-3525.
    (106)Thunemann, A.F., J. Beyermann, and H. Kukula,2000. Poly(ethylene oxide)-b-poly(L-lysine) complexes with retinoic acid [J]. Macromolecules,33(16): 5906-5911.
    (107)Gohy, J.F., et al.,2000. Water-soluble complexes formed by sodium poly(4-styrenesulfonate) and a poly(2-vinylpyridinium)-block-poly(ethyleneoxide) copolymer [J]. Macromolecules, 33(25):9298-9305.
    (108)Gohy, J.F., S.K. Varshney, and R. Jerome,2001. Morphology of water-soluble interpolyelectrolyte complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide) diblocks and Poly(4-styrenesulfonate) polyanions [J]. Macromolecules,34(9): 2745-2747.
    (109)Annaka, M., K. Morishita, and S. Okabe,2007. Electrostatic self-assembly of neutral and polyelectrolyte block copolymers and oppositely charged surfactant [J]. Journal of Physical Chemistry B,111(40):11700-11707.
    (110)Berret, J.F. and J. Oberdisse,2004. Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and oppositely charged surfactant solutions [J]. Physica B-Condensed Matter,350(1-3):204-206.
    (111)Berret, J.F., et al.,2004. Electrostatic self-assembly of oppositely charged copolymers and surfactants:A light, neutron, and X-ray scattering study [J]. Macromolecules,37(13): 4922-4930.
    (112)Berret, J.F. and J. Oberdisse,2003. Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and oppositely charged surfactants solutions. [J]. Abstracts of Papers of the American Chemical Society,226:U404-U405.
    (113)Harada, A. and K. Kataoka,1999. Novel polyion complex micelles entrapping enzyme molecules in the core.2. Characterization of the micelles prepared at nonstoichiometric mixing ratios [J]. Langmuir,15(12):4208-4212.
    (114)Harada, A. and K. Kataoka,1998. Novel polyion complex micelles entrapping enzyme molecules in the core:Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium [J]. Macromolecules,31(2):288-294.
    (115)Kabanov, A.V., et al.,1998. Spontaneous formation of vesicles from complexes of block ionomers and surfactants [J]. Journal of the American Chemical Society,120(38):9941-9942.
    (116)Lysenko, E.A., et al.,2002. Block ionomer complexes with polystyrene core-forming block in selective solvents of various polarities.2. Solution behavior and self-assembly in nonpolar solvents [J]. Macromolecules,35(16):6344-6350.
    (117)Lysenko, E.A., et al.,2002. Block ionomer complexes with polystyrene core-forming block in selective solvents of various polarities.1. Solution behavior and self-assembly in aqueous media [J]. Macromolecules,35(16):6351-6361.
    (118)Bronich, T.K., et al.,2000. Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes [J]. Langmuir,16(2): 481-489.
    (119)Bernardes, J.S., et al.,2010. Reverse micelles with spines:L-2 phases of surfactant ion-polyion complex salts, n-alcohols and water investigated by rheology, NMR diffusion and SAXS measurements [J]. Soft Matter,6(1):144-153.
    (120)Bronstein, L.M., et al.,2005. Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine) copolymers:Understanding of micelle and bulk structure [J]. Journal of Physical Chemistry B,109(40):18786-18798.
    (121)Harada, A. and K. Kataoka,1997. Formation of stable and monodispersive polyion complex micelles in aqueous medium from poly(L-lysine) and poly(ethylene glycol)-poly(aspartic acid) block copolymer [J]. Journal of Macromolecular Science-Pure and Applied Chemistry, A34(10):2119-2133.
    (122)Harada, A. and K. Kataoka,2001. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers [J]. Journal of Controlled Release,72(1-3):85-91.
    (123)Harada, A. and K. Kataoka,2001. Polyion complex micelles with core-shell structure:Their physicochemical properties and utilities as functional materials [J]. Macromolecular Symposia,172:1-9.
    (124)Hu, Z.J., et al.,2005. Dilution-induced spheres-to-vesicles morphological transition in micelles from block copolymer/surfactant complexes [J]. Journal of the American Chemical Society,127(18):6526-6527.
    (125)De Santis, S., et al.,2010. Pegylated and Thermosensitive Polyion Complex Micelles by Self-Assembly of Two Oppositely and Permanently Charged Diblock Copolymers [J]. Macromolecules,43(4):1992-2001.
    (126)Lee, Y. and K. Kataoka,2009. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals [J]. Soft Matter,5(20):3810-3817.
    (127)Luo, Y.L., et al.,2009. Preparation, characterization and drug release behavior of polyion complex micelles [J]. International Journal of Pharmaceutics,374(1-2):139-144.
    (128)Wang, C.H., W.T. Wang, and G.H. Hsiue,2009. Development of polyion complex micelles for encapsulating and delivering amphotericin B [J]. Biomaterials,30(19):3352-3358.
    (129)Luo, Y.L., et al.,2009. Preparation and drug controlled-release of polyion complex micelles as drug delivery systems [J]. Colloids And Surfaces B-Biointerfaces,68(2):218-224.
    (130)Yusa, S., Y. Yokoyama, and Y. Morishima,2009. Synthesis of Oppositely Charged Block Copolymers of Poly(ethylene glycol) via Reversible Addition-Fragmentation Chain Transfer Radical Polymerization and Characterization of Their Polyion Complex Micelles in Water [J]. Macromolecules,42(1):376-383.
    (131)Yang, K.W., et al.,2009. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate:in vitro and in vivo characterization [J]. Journal of Biomedical Materials Research Part A,88A(1):140-148.
    (132)Dufresne, M.H., M. Elsabahy, and J.C. Leroux,2008. Characterization of Polyion Complex Micelles Designed to Address the Challenges of Oligonucleotide Delivery [J]. Pharmaceutical Research,25(9):2083-2093.
    (133)Boudier, A., et al.,2009. The control of dendritic cell maturation by pH-sensitive polyion complex micelles [J]. Biomaterials,30(2):233-241.
    (134)Sousa-Herves, A., E. Fernandez-Megia, and R. Riguera,2008. Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles [J]. Chemical Communications, (27):3136-3138.
    (135)Chelushkin, P.S., et al.,2008. Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge.2. Dynamic properties [J]. Journal of Physical Chemistry B,112(26):7732-7738.
    (136)Kawamura, A., et al.,2008. Polyion complex micelles formed from glucose oxidase and comb-type polyelectrolyte with poly(ethylene glycol) grafts [J]. Journal of Polymer Science Part A-Polymer Chemistry,46(11):3842-3852.
    (137)Zhang, J.Y., et al.,2008. Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via "click" chemistry [J]. Macromolecules,41(4): 1444-1454.
    (138)Kim, D.G., Y.I. Jeong, and J.W. Nah,2007. All-trans retinoic acid release from polyion-complex micelles of methoxy poly(ethylene glycol) grafted chitosan [J]. Journal of Applied Polymer Science,105(6):3246-3254.
    (139)Chelushkin, P.S., et al.,2007. Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge:1. Solution behavior [J]. Journal of Physical Chemistry B,111(29):8419-8425.
    (140)Park, J.S., et al.,2007. Preparation and characterization of polyion complex micelles with a novel thermosensitive poly(2-isopropyl-2-oxazoline) shell via the complexation of oppositely charged block ionomers [J]. Langmuir,23(1):138-146.
    (141)Jeong, Y.I., et al.,2006. Polyion complex micelles composed of all-trans retinoic acid and poly (ethylene glycol)-grafted-citosan [J]. Journal of Pharmaceutical Sciences,95(11): 2348-2360.
    (142)Jang, W.D., et al.,2006. Polyion complex micelles for photodynamic therapy:Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property [J]. Journal of Controlled Release,113(1):73-79.
    (143)Chen, W., et al.,2006. Synthesis and characterization of polyion complex micelles between poly(ethylene glycol)-grafted poly(aspartic acid) and cetyltrimethyl ammonium bromide [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,278(1-3):60-66.
    (144)Harada, A., et al.,2005. Core-stabilized polyion complex micelles entrapping enzymes as bionanoreactor. [J]. Abstracts of Papers of the American Chemical Society,229: U1150-U1150.
    (145)Usui, T., et al.,2005. New drug delivery for corneal neovascularization using polyion complex micelles [J]. Cornea,24(8):S39-S42.
    (146)Yuan, X.F., et al.,2005. Characterization of stable lysozyme-entrapped polyion complex (PIC) micelles with crosslinked core by glutaraldehyde [J]. Polymer,46(18):7749-7758.
    (147)Oishi, M., et al.,2005. Smart polyion complex micelles for targeted intracellular delivery of PEGylated antisense oligonucleotides containing acid-labile linkages [J]. ChemBioChem, 6(4):718-725.
    (148)Yuan, X.F., et al.,2005. Stabilization of lysozyme-incorporated polyion complex micelles by the omega-end derivatization of poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymers with hydrophobic groups [J]. Langmuir,21(7):2668-2674.
    (149)Oishi, M., et al.,2005. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile ss-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells [J]. Journal of the American Chemical Society,127(6):1624-1625.
    (150)Harada, A. and K. Kataoka,2004. Functional control of enzyme-incorporated polyion complex micelles by applying electric field as external stimulus. [J]. Abstracts of Papers of the American Chemical Society,227:U881-U882.
    (151)Wakebayashi, D., et al.,2004. Polyion complex micelles of pDNA with acetal-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) block copolymer as the gene carrier system:Physicochemical properties of micelles relevant to gene transfection efficacy [J].
    Biomacromolecules,5(6):2128-2136.
    (152)Wakebayashi, D., et al.,2004. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system:their preparation and gene transfecting efficiency against cultured HepG2 cells [J]. Journal of Controlled Release,95(3):653-664.
    (153)Jaturanpinyo, M., et al.,2004. Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde [J]. Bioconjugate Chemistry,15(2):344-348.
    (154)Zhang, G.D., et al.,2003. Polyion complex micelles entrapping cationic dendrimer porphyrin:effective photosensitizer for photodynamic therapy of cancer [J]. Journal of Controlled Release,93(2):141-150.
    (155)Itaka, K., et al.,2003. Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency [J]. Biomaterials,24(24):4495-4506.
    (156)Harada, A. and K. Kataoka,2003. Effect of charged segment length on physicochemical properties of core-shell type polyion complex micelles from block ionomers [J]. Macromolecules,36(13):4995-5001.
    (157)Harada-Shiba, M., et al.,2002. Polyion complex micelles as vectors in gene therapy pharmacokinetics and in vivo gene transfer [J]. Gene Therapy,9(6):407-414. (158) Stapert, H.R., et al.,2000. Polyion complex micelles encapsulating light-harvesting ionic dendrimer zinc porphyrins [J]. Langmuir,16(21):8182-8188.
    (159)Kataoka, K., et al.,1999. Polyion complex micelles with reactive aldehyde groups on their surface from plasmid DNA and end-functionalized charged blocks copolymers [J]. Macromolecules,32(20):6892-6894.
    (160)Vinogradov, S., et al.,1999. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells [J]. Bioconjugate Chemistry,10(5): 851-860.
    (161)Kataoka, K., et al.,1996. Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline [J]. Macromolecules,29(26):8556-8557.
    (162)Kabanov, A.V., et al.,1995. Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery [J]. Bioconjugate Chemistry,6(6):639-643.
    (163)Kakizawa, Y. and K. Kataoka,2002. Block copolymer micelles for delivery of gene and related compounds [J]. Advanced Drug Delivery Reviews,54(2):203-222.
    (164)Harada, A. and K. Kataoka,2000. On-off control of enzymatic activity synchronizing with micellization of charged block copolymers. [J]. Abstracts of Papers of the American Chemical Society,219:U458-U458.
    (165)Harada, A. and K. Kataoka,1999. On-off control of enzymatic activity synchronizing with reversible formation of supramolecular assembly from enzyme and charged block copolymers [J]. Journal of the American Chemical Society,121(39):9241-9242.
    (166)Peng, S.F. and C. Wu,1999. Light scattering study of the formation and structure of partially hydrolyzed poly(acrylamide)/calcium(II) complexes [J]. Macromolecules,32(3):585-589.
    (167)Lin, W., et al.,2002. Cr3+/COO- complexation induced aggregation of gelatin in dilute solution [J]. Macromolecules,35(19):7407-7413.
    (168)Li, Y., et al.,2003. Nanoaggregate formation of poly(ethylene oxide)-b-polymethacrylate copolymer induced by cationic anesthetics binding [J]. Colloid and Polymer Science,281(6): 562-568.
    (169)Bronstein, L.H., et al.,1999. Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds. Micelle characteristics and metal nanoparticle formation [J]. Langmuir,15(19):6256-6262.
    (170)Stuart, M.A.C., N.A.M. Besseling, and R.G. Fokkink,1998. Formation of micelles with complex coacervate cores [J]. Langmuir,14(24):6846-6849.
    (171)刘育,尤长城,and张衡益,超分子化学-合成受体的分子识别与组装.第一版.ed.2001,天津:南开大学出版社.
    (172)Pedersen, C.J.,1967. Cyclic Polyethers and Their Complexes with Metal Salts [J]. Journal of the American Chemical Society,89:7017-7036.
    (173)Pedersen, C.J.,1970. Crystalline Salt Complexes of Macrocyclic Polyethers [J]. Journal of the American Chemical Society,92:386-391.
    (174)Pedersen, C.J.,1970. New Macrocyclic Polyethers [J]. Journal of the American Chemical Society,92:391-34.
    (175)Gokel, G.W., W.M. Leevy, and M.E. Weber,2004. Crown ethers:Sensors for ions and molecular scaffolds for materials and biological models [J]. Chemical Reviews,104(5): 2723-2750.
    (176)Kovbasyuk, L. and R. Kramer,2004. Allosteric supramolecular receptors and catalysts [J]. Chemical Reviews,104(6):3161-3187.
    (177)Tsukube, H. and S. Shinoda,2002. Lanthanide complexes in molecular recognition and chirality sensing of biological substrates [J]. Chemical Reviews,102(6):2389-2403.
    (178)Takeuchi, M., et al.,2001. Molecular design of artificial molecular and ion recognition systems with allosteric guest responses [J]. Accounts of Chemical Research,34(11):865-873.
    (179)Nakamura, T., et al.,1998. A molecular metal with ion-conducting channels [J]. Nature, 394(6689):159-162.
    (180)Leininger, S., B. Olenyuk, and P.J. Stang,2000. Self-assembly of discrete cyclic nanostructures mediated by transition metals [J]. Chemical Reviews,100(3):853-907.
    (181)Vanveggel, F.C.J.M., W. Verboom, and D.N. Reinhoudt,1994. Metallomacrocycles Supramolecular Chemistry with Hard and Soft Metal-Cations in Action [J]. Chemical Reviews,94(2):279-299.
    (182)Morino, K., M. Oobo, and E. Yashima,2005. Helicity induction in a poly(phenylacetylene) bearing aza-18-crown-6 ether pendants with optically active bis(amino acid)s and its chiral stimuli-responsive gelation [J]. Macromolecules,38(8):3461-3468.
    (183)Ge, Z.S., et al.,2009. Responsive Supramolecular Gels Constructed by Crown Ether Based Molecular Recognition [J]. Angewandte Chemie-International Edition,48(10):1798-1802.
    (184)Nolan, E.M. and S.J. Lippard,2008. Tools and tactics for the optical detection of mercuric ion [J]. Chemical Reviews,108(9):3443-3480.
    (185)McQuade, D.T., A.E. Pullen, and T.M. Swager,2000. Conjugated polymer-based chemical sensors [J]. Chemical Reviews,100(7):2537-2574.
    (186)Nolan, E.M. and S.J. Lippard,2009. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry [J]. Accounts of Chemical Research,42(1):193-203.
    (187)Xue, L., C. Liu, and H. Jiang,2009. A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells [J]. Chemical Communications, (9):1061-1063.
    (188)Qian, F., et al.,2009. Visible Light Excitable Zn2+ Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application [J]. Journal of the American Chemical Society,131(4):1460-1468.
    (189)Shao, N., et al.,2008. Europium(III) complex-based luminescent sensing probes for multi-phosphate anions:Modulating selectivity by ligand choice [J]. Chemical Communications, (9):1127-1129.
    (190)Xu, M.Y., et al.,2010. Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing [J]. Langmuir,26(6):4529-4534.
    (191)Hadjichristidis, N., et al.,2001. Polymers with complex architecture by living anionic polymerization [J]. Chemical Reviews,101(12):3747-3792.
    (192)Hadjichristidis, N., et al.,2006. Macromolecular architectures by living and controlled/living polymerizations [J]. Progress in Polymer Science,31(12):1068-1132.
    (193)Hadjichristidis, N., et al.,2005. Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk [J]. Progress in Polymer Science,30(7): 725-782.
    (194)Li, Z.B., M.A. Hillmyer, and T.P. Lodge,2006. Laterally nanostructured vesicles, polygonal bilayer sheets, and segmented wormlike micelles [J]. Nano Letters,6(6):1245-1249.
    (195)Matyjaszewski, K. and J.H. Xia,2001. Atom transfer radical polymerization [J]. Chemical Reviews,101(9):2921-2990.
    (196)Tsarevsky, N.V. and K. Matyjaszewski,2007. "Green" atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials [J]. Chemical Reviews,107(6):2270-2299.
    (197)Perrier, S. and P. Takolpuckdee,.2005. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization [J]. Journal of Polymer Science Part A-Polymer Chemistry,43(22):5347-5393.
    (198)Barner, L., et al.,2007. Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry:Theory and practice [J]. Macromolecular Rapid Communications,28(5):539-559.
    (199)Hawker, C.J., A.W. Bosman, and E. Harth,2001. New polymer synthesis by nitroxide mediated living radical polymerizations [J]. Chemical Reviews,101(12):3661-3688.
    (200)Kato, M., et al.,1995. Polymerization of Methyl-Methacrylate with the Carbon-Tetrachloride Dichlorotris(Triphenylphosphine)Ruthenium(Ii) Methylaluminum Bis(2,6-Di-Tert-Butylphenoxide) Initiating System-Possibility of Living Radical Polymerization [J]. Macromolecules,28(5):1721-1723.
    (201)Wang, J.S. and K. Matyjaszewski,1995. Controlled Living Radical Polymerization-Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(Ii) Redox Process [J]. Macromolecules,28(23):7901-7910.
    (202)Wang, J.S. and K. Matyjaszewski,1995. Controlled Living Radical Polymerization-Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes [J]. Journal of the American Chemical Society,117(20):5614-5615.
    (203)Teodorescu, M. and K. Matyjaszewski,1999. Atom transfer radical polymerization of (meth)acrylamides [J]. Macromolecules,32(15):4826-4831.
    (204)Rademacher, J., et al.,2000. Atom transfer radical polymerization of N,N-dimethylacrylamide [J]. Macromolecules,33(2):284-288.
    (205)Gao, H.F. and K. Matyjaszewski,2008. Synthesis of low-polydispersity miktoarm star copolymers via a simple "Arm-First" method:Macromonomers as arm precursors [J]. Macromolecules,41(12):4250-4257.
    (206)Liu, S.Y. and S.P. Armes,2003. Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer [J]. Langmuir,19(10):4432-4438.
    (207)Jiang, X.Z., et al.,2006. UV irradiation-induced shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers [J]. Macromolecules,39(18): 5987-5994.
    (208)Liu, H., et al.,2007. Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme [J]. Macromolecules, 40(25):9074-9083.
    (209)Xu, J., et al.,2006. Synthesis and micellization properties of double hydrophilic A(2)BA(2) and A(4)BA(4) non-linear block copolymers [J]. Macromolecules,39(23):8178-8185.
    (210)Matyjaszewski, K., et al.,1999. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators [J]. Macromolecules,32(20):6526-6535.
    (211)Gao, H.F. and K. Matyjaszewski,2006. Structural control in ATRP synthesis of star polymers using the arm-first method [J]. Macromolecules,39(9):3154-3160.
    (212)Gao, H.F., N.V. Tsarevsky, and K. Matyjaszewski,2005. Synthesis of degradable miktoarm star copolymers via atom transfer radical polymerization [J]. Macromolecules,38(14): 5995-6004.
    (213)Gao, H.F. and K. Matyjaszewski,2007. Low-polydispersity star polymers with core functionality by cross-linking macromonomers using functional ATRP initiators [J]. Macromolecules,40(3):399-401.
    (214)Gao, H.F. and K. Matyjaszewski,2006. Synthesis of miktoarm star polymers via ATRP using the "in-out" method:Determination of initiation efficiency of star macroinitiators [J]. Macromolecules,39(21):7216-7223.
    (215)Gao, H. and K. Matyjaszewski,2007. Arm-first method as a simple and general method for synthesis of miktoarm star copolymers [J]. Journal of the American Chemical Society, 129(38):11828-11834.
    (216)Finn, M.G., et al.,2008. Click chemistry-Definition and aims [J]. Progress in Chemistry, 20(1):1-4.
    (217)Kolb, H.C., M.G Finn, and K.B. Sharpless,2001. Click chemistry:Diverse chemical function from a few good reactions [J]. Angewandte Chemie-International Edition,40(11): 2004-+.
    (218)Ossipov, D.A. and J. Hilborn,2006. Poly(vinyl alcohol)-based hydrogels formed by "click chemistry" [J]. Macromolecules,39(5):1709-1718.
    (219)Xu, J. and S.Y. Liu,2009. Synthesis of Well-Defined 7-Arm and 21-Arm Poly (N-isopropylacrylamide) Star Polymers with beta-Cyclodextrin Cores via Click Chemistry and Their Thermal Phase Transition Behavior in Aqueous Solution [J]. Journal of Polymer Science Part A-Polymer Chemistry,47(2):404-419.
    (220)Gao, H.F. and K. Matyjaszewski,2006. Synthesis of star polymers by a combination of ATRP and the "click" coupling method [J]. Macromolecules,39(15):4960-4965.
    (221)Laurent, B.A. and S.M. Grayson,2006. An efficient route to well-defined macrocyclic polymers via "Click" cyclization [J]. Journal of the American Chemical Society,128(13): 4238-4239.
    (222)Xu, J., J. Ye, and S.Y. Liu,2007. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior [J]. Macromolecules,40(25):9103-9110.
    (223)Qiu, X.P., F. Tanaka, and F.M. Winnik,2007. Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution [J]. Macromolecules, 40(20):7069-7071.
    (224)Piirma, I., Polymeric Surfactants:Sufanctant Science 42.1992, New York:Marcel Dekker.
    (225)Alexandridis, P. and B. lindman, Amphiphilic Block Copolymers:Self-assembly and Application.2000, Amsterdam:Elsevier.
    (226)Gan, Z.H., et al.,1999. Enzymatic biodegradation of poly(ethylene oxide-b-epsilon-caprolactone) diblock copolymer and its potential biomedical applications [J]. Macromolecules,32(3):590-594.
    (227)Kataoka, K., A. Harada, and Y. Nagasaki,2001. Block copolymer micelles for drug delivery: design, characterization and biological significance [J]. Advanced Drug Delivery Reviews, 47(1):113-131.
    (228)Zhang, L.F., K. Yu, and A. Eisenberg,1996. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers [J]. Science,272(5269):1777-1779.
    (229)Zhang, L.F. and A. Eisenberg,1995. Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers [J]. Science,268(5218):1728-1731.
    (230)Zhang, L.F. and A. Eisenberg,1999. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution [J]. Journal of Polymer Science Part B-Polymer Physics,37(13):1469-1484.
    (231)Zhang, L.F. and A. Eisenberg,1998. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution [J]. Polymers for Advanced Technologies,9(10-11):677-699.
    (232)Zhang, L.F. and A. Eisenberg,1996. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions [J]. Macromolecules,29(27):8805-8815.
    (233)Gil, E.S. and S.A. Hudson,2004. Stimuli-reponsive polymers and their bioconjugates [J]. Progress in Polymer Science,29(12):1173-1222.
    (234)Wang, D., et al.,2007. Purely salt-responsive micelle formation and inversion based on a novel schizophrenic sulfobetaine block copolymer:Structure and kinetics of micellization [J]. Langmuir,23(23):11866-11874.
    (235)Butun, V., N.C. Billingham, and S.P. Armes,1998. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer:Formation of micelles and reverse micelles in aqueous solution [J]. Journal of the American Chemical Society,120(45): 11818-11819.
    (236)Zhao, Y.,2007. Rational design of light-controllable polymer micelles [J]. Chemical Record, 7(5):286-294.
    (1)Dusek K, P.D.,1968. Transition in swollen polymer networks induced by intramolecular condensation [J]. J. Polym. Sci. Polym. Phys.,6:1209-1216.
    (2)Robinson, D.N. and N.A. Peppas,2002. Preparation and characterization of pH-responsive poly(methacrylic acid-g-ethylene glycol) nanospheres [J]. Macromolecules,35(9): 3668-3674.
    (3)Wang, J.P., et al.,2001. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions [J]. J. Am. Chem. Soc.,123(45):11284-11289.
    (4)Pelton, R.,2000. Temperature-sensitive aqueous microgels [J]. Adv. Colloid Interface Sci., 85(1):1-33.
    (5)Saunders, B.R. and B. Vincent,1999. Microgel particles as model colloids:theory, properties and applications [J]. Adv. Colloid Interface Sci.,80(1):1-25.
    (6)Hassan, C.M., F.J. Doyle, and N.A. Peppas,1997. Dynamic behavior of glucose-responsive poly(methacrylic acid-g-ethylene glycol) hydrogels [J]. Macromolecules,30(20):6166-6173.
    (7)Klier, J., A.B. Scranton, and N.A. Peppas,1990. Self-Associating Networks of Poly(Methacrylic Acid-G-Ethylene Glycol) [J]. Macromolecules,23(23):4944-4949.
    (8)Cheng, H., C. Wu, and M.A. Winnik,2004. Kinetics of reversible aggregation of soft polymeric particles in dilute dispersion [J]. Macromolecules,37(13):5127-5129.
    (9)Sugiyama, M., M. Annaka, and K. Hara,2002. Heat-induced evolution of the mesoscopic structure of dehydrated poly(vinyl alcohol) gel [J]. J. Phys. Soc. Jpn,71(4):1035-1038.
    (10)Morris, G.E., B. Vincent, and M.J. Snowden,1997. Adsorption of lead ions onto N-isopropylacrylamide and acrylic acid copolymer microgels [J]. J. Colloid Interface Sci., 190(1):198-205.
    (11)Chiu, H.C., Y.F. Lin, and S.H. Hung,2002. Equilibrium swelling of copolymerized acrylic acid-methacrylated dextran networks:Effects of pH and neutral salt [J]. Macromolecules, 35(13):5235-5242.
    (12)Dupin, D., et al.,2007. Swelling kinetics for a pH-Induced latex-to-microgel transition [J]. Langmuir,23(7):4035-4041.
    (13)Dupin, D., et al.,2006. Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization [J]. Langmuir,22(7):3381-3387.
    (14)Dai, Z., X.L. Yang, and W.Q. Huang,2007. Preparation of narrow-disperse or monodisperse poly([poly(ethylene glycol) methyl ether acrylate]-co-(acrylic acid)} microspheres with ethyleneglycol dimethacrylate as crosslinker by distillation precipitation polymerization [J]. Polym. Int.,56(2):224-230.
    (15)Xiang, Y.Q., Y. Zhang, and D.J. Chen,2006. Novel dually responsive hydrogel with rapid des welling rate [J]. Polym. Int.,55(12):1407-1412.
    (16)Pich, A., et al.,2006. Synthesis and characterization of poly(vinylcaprolactam)-based microgels exhibiting temperature and pH-sensitive properties [J]. Macromolecules,39(22): 7701-7707.
    (17)Bromberg, L., et al.,2005. Kinetics of swelling of polyether-modified poly(acrylic acid) microgels with permanent and degradable cross-links [J]. Langmuir,21(4):1590-1598.
    (18)Hoare, T. and R. Pelton,2006. Titrametric characterization of pH-induced phase transitions in functionalized microgels [J]. Langmuir,22(17):7342-7350.
    (19)Amalvy, J.I., et al.,2004. Synthesis and characterization of novel pH-responsive microgels based on tertiary amine methacrylates [J]. Langmuir,20(21):8992-8999.
    (20)Tanaka T, Nishio I, and S.S. T,1982. Collapse of Gels in an Electric Field [J]. Science,218: 467.
    (21)Suzuki, A. and T. Tanaka,1990. Phase-Transition in Polymer Gels Induced by Visible-Light [J]. Nature,346(6282):345-347.
    (22)高均,吴奇,1997.聚(N-异丙基丙烯酰胺)水凝胶微球体积相变的研究[J].高分子学报,3:324-330.
    (23)Richter, A., A. Turke, and A. Pich,2007. Controlled double-sensitivity of microgels applied to electronically adjustable chemostats [J]. Adv. Mater.,19(8):1109-1112.
    (24)Niu, J., et al.,2007. Reversible Disulfide Cross-Linking in Layer-by-Layer Films: Preassembly Enhanced Loading and pH/Reductant Dually Controllable Release [J]. Langmuir,23(11):6377-6384.
    (25)Kayaman, N., et al.,1998. Structure and protein separation efficiency of poly(N-isopropylacrylamide) gels:Effect of synthesis conditions [J]. J. Appl. Polym. Sci., 67(5):805-814.
    (26)Umeno, D., M. Kawasaki, and M. Maeda,1998. Water-soluble conjugate of double-stranded DNA and poly(N-isopropylacrylamide) for one-pot affinity precipitation separation of DNA-binding proteins [J]. Bioconjugate Chem.,9(6):719-724.
    (27)Marchetti, M., S. Prager, and E.L. Cussler,1990. Thermodynamic Predictions of Volume Changes in Temperature-Sensitive Gels.1. Theory [J]. Macromolecules,23(6):1760-1765.
    (28)Marchetti, M., S. Prager, and E.L. Cussler,1990. Thermodynamic Predictions of Volume Changes in Temperature-Sensitive Gels.2. Experiments [J]. Macromolecules,23(14): 3445-3450.
    (29)Grosberg, A.Y. and S.K. Nechaev,1991. Topological Constraints in Polymer Network Strong Collapse [J]. Macromolecules,24(10):2789-2793.
    (30)Tanaka, T. and D.J. Fillmore,1979. Kinetics of Swelling of Gels [J]. J. Chem. Phys.,70(3): 1214-1218.
    (31)Hampton, K.W. and W.T. Ford,2000. Styrylmethyl(trimethyl)ammonium methacrylate polyampholyte latexes [J]. Macromolecules,33(20):7292-7299.
    (32)Mohan, Y.M., J.P. Dickson, and K.E. Geckeler,2007. Swelling and diffusion characteristics of novel semi-interpenetrating network hydrogels composed of poly[(acrylamide)co-(sodium acrylate)] and poly[(vinyisulfonic acid), sodium salt] [J]. Polym. Int.,56(2):175-185.
    (33)Ngai, T., H. Auweter, and S.H. Behrens,2006. Environmental responsiveness of microgel particles and particle-stabilized emulsions [J]. Macromolecules,39(23):8171-8177.
    (34)Ichikawa, H. and Y. Fukumori,2000. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix [J]. J. Controlled Release,63(1-2):107-119.
    (35)Chen, G.H. and A.S. Hoffman,1995. Temperature-Induced Phase-Transition Behaviors of Random Vs Graft-Copolymers of N-Isopropylacrylamide and Acrylic-Acid [J]. Macromol. Rapid Commun.,16(3):175-182.
    (36)Bergbreiter, D.E., Y.S. Liu, and P.L. Osburn,1998. Thermomorphic rhodium(I) and palladium(O) catalysts [J]. J. Am. Chem. Soc.,120(17):4250-4251.
    (37)Bergbreiter, D.E., et al.,1998. Poly(N-isopropylacrylamide) soluble polymer supports in catalysis and synthesis [J]. Macromolecules,31(18):6053-6062.
    (38)Plunkett, K.N., et al.,2003. Swelling kinetics of disulfide cross-linked microgels [J]. Macromolecules,36(11):3960-3966.
    (39)Rodriguez, B.E., M.S. Wolfe, and M. Fryd,1994. Nonuniform Swelling of Alkali Swellable Microgels [J]. Macromolecules,27(22):6642-6647.
    (40)Saunders, B.R., H.M. Crowther, and B. Vincent,1997. Poly[(methyl methacrylate)-co-(methacrylic acid)] microgel particles:Swelling control using pH, cononsolvency, and osmotic deswelling [J]. Macromolecules,30(3):482-487.
    (41)Bradley, M., J. Ramos, and B. Vincent,2005. Equilibrium and kinetic aspects of the uptake of poly(ethylene oxide) by copolymer microgel particles of N-isopropylacrylamide and acrylic acid [J]. Langmuir,21(4):1209-1215.
    (42)Gan, D.J. and L.A. Lyon,2001. Tunable swelling kinetics in core-shell hydrogel nanoparticles [J]. J. Am. Chem. Soc.,123(31):7511-7517.
    (43)Jones, C.D. and L.A. Lyon,2003. Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core-shell microgels [J]. Macromolecules,36(6):1988-1993.
    (44)Ma, G.H. and T. Fukutomi,1992. Preparation and Chemical Fixation of Poly(4-Vinylpyridine) Microgel Film with Ordered Structure [J]. Macromolecules,25(7):1870-1875.
    (45)Loxley, A. and B. Vincent,1997. Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels [J]. Colloid Polym. Sci.,275(12): 1108-1114.
    (46)Matsuo, E.S. and T. Tanaka,1992. Patterns in Shrinking Gels [J]. Nature,358(6386): 482-485.
    (47)Matsuo, E.S. and T. Tanaka,1988. Kinetics of Discontinuous Volume Phase-Transition of Gels [J]. J. Chem. Phys.,89(3):1695-1703.
    (48)Shibayama, M. and K. Nagai,1999. Shrinking kinetics of poly(N-isopropylacrylamide) gels T-jumped across their volume phase transition temperatures [J]. Macromolecules,32(22): 7461-7468.
    (49)Tanaka, T.,1986. Kinetics of Phase-Transition in Polymer Gels [J]. Phys. A,140(1-2): 261-268.
    (50)Tanaka, T., et al.,1985. Critical Kinetics of Volume Phase-Transition of Gels [J]. Phys. Rev. Lett.,55(22):2455-2458.
    (51)Suarez, I.J., A. Fernandez-Nieves, and M. Marquez,2006. Swelling Kinetics of Poly(N-isopropylacrylamide) Minigels [J]. J. Phys. Chem. B.,110(51):25729-25733.
    (52)Hirose, Y., et al.,1987. Phase-Transition of Submicron Gel Beads [J]. Macromolecules,20(6): 1342-1344.
    (53)Plamper, F.A., et al.,2005. Synthesis, characterization and behavior in aqueous solution of star-shaped poly(acrylic acid) [J]. Macromol. Chem. Phys.,206(18):1813-1825.
    (54)Shibayama, M., S. Takata, and T. Norisuye,1998. Static inhomogeneities and dynamic
    fluctuations of temperature sensitive polymer gels [J]. Phys. A,245:249.
    (55)Chu, B., Laser Light Scattering.1991, New York:Academic Press.
    (56)Huglin, M.B., Light scattering from polymer solutions..1972, New York:Academic Press.
    (57)Snowden, M.J. and B. Vincent,1992. The Temperature-Controlled Flocculation of Cross-Linked Latex-Particles [J]. J. Chem. Soc. Chem. Commun., (16):1103-1105.
    (58)Nabzar, L., et al.,1998. Electrokinetic properties and colloidal stability of cationic amino-containing N-isopropylacrylamide-styrene copolymer particles bearing different shell structures [J]. Langmuir,14(18):5062-5069.
    (59)Bradley, M., B. Vincent, and G. Burnett,2007. Uptake and release of anionic surfactant into and from cationic core-shell microgel particles [J]. Langmuir,23(18):9237-9241.
    (60)Cho, E.C., et al.,2008. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles [J]. Nano Letters,8(1):168-172.
    (61)Lynch, I., A.V. Gorelov, and K.A. Dawson,2000. Systematic comparison of effect of structural and architectural changes to the network structure on the kinetics of collapse of N-isopropyloacrylamide gels [J]. Trends in Colloid and Interface Science Xiv,115:121-127.
    (62)Wang, J.P., et al.,2001. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions [J]. Journal of the American Chemical Society,123(45): 11284-11289.
    (63)Hong, S.W., et al.,2009. Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide) [J]. Macromolecules,42(7):2756-2761.
    (64)Gan, D.J. and L.A. Lyon,2001. Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles [J]. Journal of the American Chemical Society,123(34): 8203-8209.
    (65)Zhang, F. and C.C. Wang,2008. Preparation of thermoresponsive core-shell polymeric microspheres and hollow PNIPAM microgels [J]. Colloid and Polymer Science,286(8-9): 889-895.
    (66)Nayak, S., et al.,2005. Hollow thermoresponsive microgels [J]. Small,1(4):416-421.
    (67)Zha, L.S., et al.,2002. Monodisperse temperature-sensitive microcontainers [J]. Advanced Materials,14(15):1090-+.
    (68)Shi, Y.L. and T. Asefa,2007. Tailored core-shell-shell nanostructures:Sandwiching gold nanoparticles between silica cores and tunable silica shells [J]. Langmuir,23(18):9455-9462.
    (69)Huang, H.Y., et al.,1999. Nanocages derived from shell cross-linked micelle templates [J]. Journal of the American Chemical Society,121(15):3805-3806.
    (1)Kyba, E.P., et al.,1977. Host-guest complexation.1. Concept and illustration [J]. Journal of the American Chemical Society,99:2564-2571.
    (2)Timko, J.M., et al.,1977. Host-guest complexation.2. Structural units that control association constants between polyethers and tert-butylammonium salts [J]. Journal of the American Chemical Society,99:4207-4219.
    (3)刘育,尤长城,and张衡益,超分子化学-合成受体的分子识别与组装.第一版.ed.2001,天津:南开大学出版社.
    (4)Alexandratos, S.D. and C.L. Stine,2004. Synthesis of ion-selective polymer-supported crown ethers:a review [J]. Reactive& Functional Polymers,60:3-16.
    (5)Kikuchi, Y. and Y. Sakamoto,2000. Complex formation of alkali metal ions with 18-crown-6 and its derivatives in 1,2-dichloroethane [J]. Analytica Chimica Acta,403(1-2):325-332.
    (6)Mohapatra, P.K. and V.K. Manchanda,1998. Ion-pair extraction of uranyl ion from aqueous medium using crown ethers [J]. Talanta,47(5):1271-1278.
    (7)Ito, T. and T. Yamaguchi,2006. Nonlinear self-excited oscillation of a synthetic ion-channel-inspired membrane [J]. Angewandte Chemie-International Edition,45(34): 5630-5633.
    (8)Yamaguchi, T., et al.,1999. Development of a fast response molecular recognition ion gating membrane [J]. Journal of the American Chemical Society,121(16):4078-4079.
    (9)Ito, T., et al.,2002. Development of a molecular recognition ion gating membrane and estimation of its pore size control [J]. Journal of the American Chemical Society,124(26): 7840-7846.
    (10)Ito, T., et al.,2004. Response mechanism of a molecular recognition ion gating membrane [J]. Macromolecules,37(9):3407-3414.
    (11)Ito, T. and T. Yamaguchi,2004. Osmotic pressure control in response to a specific ion signal at physiological temperature using a molecular recognition ion gating membrane [J]. Journal of the American Chemical Society,126(20):6202-6203.
    (12)Ito, T. and T. Yamaguchi,2006. Controlled release of model drugs through a molecular recognition ion gating membrane in response to a specific ion signal [J]. Langmuir,22(8): 3945-3949.
    (13)Irie, M., Y. Misumi, and T. Tanaka,1993. Stimuli-Responsive Polymers-Chemical-Induced Reversible Phase-Separation of an Aqueous-Solution of Poly(N-Isopropylacrylamide) with
    Pendent Crown-Ether Groups [J]. Polymer,34(21):4531-4535.
    (14)Mi, P., et al.,2008. A smart polymer with ion-induced negative shift of the lower critical solution temperature for phase transition [J]. Macromolecular Rapid Communications,29(1): 27-32.
    (15)Zhang, X.Z., et al.,2002. Synthesis and properties of thermosensitive, crown ether incorporated poly(N-isopropylacrylamide) hydrogel [J]. Polymer,43(17):4823-4827.
    (16)Gan, D.J. and L.A. Lyon,2001. Interfacial nonradiative energy transfer in responsive core-shell hydrogel nanoparticles [J]. Journal of the American Chemical Society,123(34): 8203-8209.
    (17)Debord, J.D., et al.,2002. Color-tunable colloidal crystals from soft hydrogel nanoparticles [J]. Advanced Materials,14(9):658-662.
    (18)Jones, C.D., J.G. McGrath, and L.A. Lyon,2004. Characterization of cyanine dye-labeled poly(N-isopropylacrylamide) core/shell microgels using fluorescence resonance energy transfer [J]. Journal of Physical Chemistry B,108(34):12652-12657.
    (19)Gan, D.J. and L.A. Lyon,2003. Fluorescence nonradiative energy transfer analysis of crosslinker heterogeneity in core-shell hydrogel nanoparticles [J]. Analytica Chimica Acta, 496(1-2):53-63.
    (20)Hugel, T., et al.,2002. Single-molecule optomechanical cycle [J]. Science,296(5570): 1103-1106.
    (21)Lendlein, A. and R. Langer,2002. Biodegradable, elastic shape-memory polymers for potential biomedical applications [J]. Science,296(5573):1673-1676.
    (22)Lendlein, A., et al.,2005. Light-induced shape-memory polymers [J]. Nature,434(7035): 879-882.
    (23)Yerushalmi, R., et al.,2005. Stimuli responsive materials:new avenues toward smart organic devices [J]. Journal of Materials Chemistry,15(42):4480-4487.
    (24)Plunkett, K.N., et al.,2005. Light-regulated electrostatic interactions in colloidal suspensions [J]. Journal of the American Chemical Society,127(42):14574-14575.
    (25)Mal, N.K., M. Fujiwara, and Y. Tanaka,2003. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica [J]. Nature,421(6921):350-353.
    (26)Nishiyama, N., et al.,2005. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer [J]. Nature Materials,4(12):934-941.
    (27)Schworer, M. and J. Wirz,2001. Photochemical reaction mechanisms of 2-nitrobenzyl compounds in solution Ⅰ.2-nitrotoluene:Thermodynamic and kinetic parameters of the aci-nitro tautomer [J]. Helvetica Chimica Acta,84(6):1441-1458.
    (28)Bradley, M., et al.,2006. Photoresponsive surfactants in microgel dispersions [J]. Langmuir, 22(1):101-105.
    (29)Pease, A.C., et al.,1994. Light-Generated Oligonucleotide Arrays for Rapid DNA-Sequence Analysis [J]. Proceedings of the National Academy of Sciences of the United States of America,91(11):5022-5026.
    (30)Hu, J., et al.,2001. Competitive photochemical reactivity in a self-assembled monolayer on a colloidal gold cluster [J]. Journal of the American Chemical Society,123(7):1464-1470.
    (31)Bochet, C.G.,2000. Wavelength-selective cleavage of photolabile protecting groups [J]. Tetrahedron Letters,41(33):6341-6346.
    (32)Kim, M.S. and S.L. Diamond,2006. Photocleavage of o-nitrobenzyl ether derivatives for rapid biomedical release applications [J]. Bioorganic& Medicinal Chemistry Letters,16(15): 4007-4010.
    (33)McGall, G.H., et al.,1997. The efficiency of light-directed synthesis of DNA arrays on glass substrates [J]. Journal of the American Chemical Society,119(22):5081-5090.
    (34)Il'ichev, Y.V., M.A. Schworer, and J. Wirz,2004. Photochemical reaction mechanisms of 2-nitrobenzyl compounds:Methyl ethers and caged ATP [J]. Journal of the American Chemical Society,126(14):4581-4595.
    (35)Gaplovsky, M., et al.,2005. Photochemical reaction mechanisms of 2-nitrobenzyl compounds: 2-Nitrobenzyl alcohols form 2-nitroso hydrates by dual proton transfer [J]. Photochemical& Photobiological Sciences,4(1):33-42.
    (36)Nakanishi, J., et al.,2009. Light-Regulated Activation of Cellular Signaling by Gold Nanoparticles That Capture and Release Amines [J]. Journal of the American Chemical Society,131(11):3822-+.
    (37)Park, C., K. Lee, and C. Kim,2009. Photoresponsive Cyclodextrin-Covered Nanocontainers and Their Sol-Gel Transition Induced by Molecular Recognition [J]. Angewandte Chemie-International Edition,48(7):1275-1278.
    (38)Park, C., et al.,2009. Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests [J]. Journal of the American Chemical Society, 131(46):16614-+.
    (39)Vivero-Escoto, J.L., et al.,2009. Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere [J]. Journal of the American Chemical Society,131(10):3462-+.
    (40)Han, G, et al.,2006. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles [J]. Angewandte Chemie-International Edition,45(19): 3165-3169.
    (41)Kloxin, A.M., et al.,2009. Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties [J]. Science,324(5923):59-63.
    (42)Luo, Y. and M.S. Shoichet,2004. A photolabile hydrogel for guided three-dimensional cell growth and migration [J]. Nature Materials,3(4):249-253.
    (43)Mamada, A., et al.,1990. Photoinduced Phase-Transition of Gels [J]. Macromolecules,23(5): 1517-1519.
    (44)M. Irie and D. Kunwatchakun,1986. Photoresponsive polymers.8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives [J]. Macromolecules,19:2476-2480.
    (45)Irie, M.,1986. Photoresponsive polymers. Reversible bending of rod-shaped acrylamide gels in an electric field [J]. Macromolecules,19:2890-2892.
    (46)Suzuki, A. and T. Tanaka,1990. Phase-Transition in Polymer Gels Induced by Visible-Light [J]. Nature,346(6282):345-347.
    (1)Kim, J.S. and D.T. Quang,2007. Calixarene-derived fluorescent probes [J]. Chemical Reviews,
    107(9):3780-3799.
    (2)Lourdes, B.D., N.R. David, and C.C. Mercedes,2007. Design of fluorescent materials for chemical sening [J]. Chem. Soc. Rev.,36:993-1017.
    (3)Royzen, M., et al.,2006. A sensitive probe for the detection of Zn(II) by time-resolved fluorescence [J]. Journal of the American Chemical Society,128(12):3854-3855.
    (4)Huang, F.H., et al.,2003. Ion pairing in fast-exchange host-guest systems:Concentration dependence of apparent association constants for complexes of neutral hosts and divalent guest salts with monovalent counterions [J]. Journal of the American Chemical Society, 125(47):14458-14464.
    (5)Brummer, O., J.J. La Clair, and K.D. Janda,1999. A colorimetric ligand for mercuric ion [J]. Organic Letters,1(3):415-418.
    (6)Wen, Z.C., et al.,2006. A highly selective charge transfer fluoroionophore for Cu2+[J]. Chemical Communications, (1):106-108.
    (7)Kim, S.H., et al.,2006. Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam [J]. Organic Letters,8(3):371-374.
    (8)Gunnlaugsson, T., J.P. Leonard, and N.S. Murray,2004. Highly selective colorimetric naked-eye Cu(II) detection using an azobenzene chemosensor [J]. Organic Letters,6(10): 1557-1560.
    (9)Wu, Q.Y. and E.V. Anslyn,2004. Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing off Cu(II) [J]. Journal of the American Chemical Society, 126(45):14682-14683.
    (10)Bag, B. and P.K. Bharadwaj,2005. Attachment of electron-withdrawing 2,4-dinitrobenzene groups to a cryptand-based receptor for Cu(II)/H+-specific exciplex and monomer emissions [J]. Organic Letters,7(8):1573-1576.
    (11)Kramer, R.,1998. Fluorescent chemosensors for Cu2+ ions:Fast, selective, and highly sensitive [J]. Angewandte Chemie-International Edition,37(6):772-773.
    (12)Rurack, K., et al.,2000. A selective and sensitive fluoroionophore for Hg-II, Ag-I, and Cu-II with virtually decoupled fluorophore and receptor units [J]. Journal of the American Chemical Society,122(5):968-969.
    (13)Inoue, M.B., et al.,1997. A new chelating cyclophane and its complexation with Ni2+, Cu2+, and Zn2+:Spectroscopic properties and allosterism via ring contraction [J]. Inorganic Chemistry,36(11):2335-2340.
    (14)Ghosh, P., et al.,1996. Ni(II), Cu(II), and Zn(II) cryptate-enhanced fluorescence of a trianthrylcryptand:A potential molecular photonic OR operator [J]. Journal of the American
    Chemical Society,118(6):1553-1554.
    (15)Martinez-Manez, R. and F. Sancenon,2003. Fluorogenic and chromogenic chemosensors and reagents for anions [J]. Chemical Reviews,103(11):4419-4476.
    (16)deSilva, A.P., et al.,1997. Signaling recognition events with fluorescent sensors and switches [J]. Chemical Reviews,97(5):1515-1566.
    (17)Czarnik, A.W.,1994. Chemical Communication in Water Using Fluorescent Chemosensors [J]. Accounts of Chemical Research,27(10):302-308.
    (18)Zeng, H.H., et al.,2003. Real-time determination of picomolar free Cu(II) in seawater using a fluorescence based fiber optic biosensor [J]. Analytical Chemistry,75(24):6807-6812.
    (19)Beltramello, M., et al.,2001. A new selective fluorescence chemosensor for Cu(II) in water [J]. Tetrahedron Letters,42(52):9143-9146.
    (20)Yang, H., et al.,2006. Highly selective ratiometric fluorescent sensor for Cu(II) with two urea groups [J]. Tetrahedron Letters,47(17):2911-2914.
    (21)Zheng, Y., et al.,2003. Development of fluorescent film sensors for the detection of divalent copper [J]. Journal of the American Chemical Society,125(9):2680-2686.
    (22)Royzen, M., Z.H. Dai, and J.W. Canary,2005. Ratiometric displacement approach to Cu(II) sensing by fluorescence [J]. Journal of the American Chemical Society,127(6):1612-1613.
    (23)Zeng, L., et al.,2006. A selective turn-on fluorescent sensor for imaging copper in living cells [J]. Journal of the American Chemical Society,128(1):10-11.
    (24)Kim, H.N., et al.,2008. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions [J]. Chemical Society Reviews,37(8):1465-1472.
    (25)Martinez, R., et al.,2005. New Hg2+ and CU2+ selective chromo-and fluoroionophore based on a bichromophoric azine [J]. Organic Letters,7(26):5869-5872.
    (26)Lee, M.H., et al.,2008. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine [J]. Organic Letters,10(2):213-216.
    (27)Suresh, M., A. Ghosh, and A. Das,2008. A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock [J]. Chemical Communications, (33):3906-3908.
    (28)Xie, J., et al.,2007. Synthesis of bispyrenyl sugar-aza-crown ethers as new fluorescent molecular sensors for Cu(II) [J]. Journal of Organic Chemistry,72(16):5980-5985.
    (29)Kaur, N. and S. Kumar,2007. Single molecular colorimetric probe for simultaneous estimation of Cu2+ and Ni2+[J]. Chemical Communications, (29):3069-3070.
    (30)Qi, X., et al.,2006. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+:Cooperative selectivity enhancement toward Cu2+[J]. Journal of Organic Chemistry,71(7):2881-2884.
    (31)Weng, Y.Q., et al.,2007. A Copper(II) ion-selective on-off-type fluoroionophore based on zinc porphyrin-dipyridylamino [J]. Inorganic Chemistry,46(19):7749-7755.
    (32)Swamy, K.M.K., et al.,2008. Boronic acid-linked fluorescent and colorimetric probes for copper ions [J]. Chemical Communications, (45):5915-5917.
    (33)Xiang, Y., et al.,2006. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity [J]. Organic Letters,8(13):2863-2866.
    (34)Yu, M.X., et al.,2008. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging [J]. Chemistry-a European Journal,14(23):6892-6900.
    (35)Schuster, M. and M. Sandor,1996. N-dansyl-N'-ethylthiourea for the fluorometric detection of heavy metal ions [J]. Fresenius J. Anal. Chem.,356(5):326-330.
    (36)Bhalla, V., et al.,2007. Bifunctional fluorescent thiacalix[4]arene based chemosensor for Cu2+ and F-ions [J]. Tetrahedron,63(45):11153-11159.
    (37)Lewis, W.G., et al.,2004. Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching [J]. Journal of the American Chemical Society, 126(30):9152-9153.
    (38)Prodi, L.,2005. Luminescent chemosensors:from molecules to nanoparticles [J]. New Journal of Chemistry,29(1):20-31.
    (39)Shao, N., et al.,2005. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative [J]. Analytical Chemistry,77(22):7294-7303.
    (40)Jung, H.S., et al.,2009. Coumarin-Derived Cu2+-Selective Fluorescence Sensor:Synthesis, Mechanisms, and Applications in Living Cells [J]. J. Am. Chem. Soc.,131:2008-2012.
    (41)Kovbasyuk, L. and R. Kramer,2006. A selective fluorescent sensor for Cu2+ and its immobilization on CPG beads [J]. Inorganic Chemistry Communications,9(6):586-590.
    (42)Xu, Z.C., et al.,2005. Ratiometric and selective fluorescent sensor for Cu-II based on internal charge transfer (ICT) [J]. Organic Letters,7(5):889-892.
    (43)Xu, Z.C., X.H. Qian, and J.N. Cui,2005. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission:Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore [J]. Organic Letters, 7(14):3029-3032.
    (44)Grandini, P., et al.,1999. Exploiting the self-assembly strategy for the design of selective Cu-II ion chemosensors [J]. Angewandte Chemie-International Edition,38(20):3061-3064.
    (45)Berton, M., et al.,2001. Self-assembling in surfactant aggregates:An alternative way to the realization of fluorescence chemosensors for Cu(II) ions [J]. Langmuir,17(24):7521-7528.
    (46)Mancin, F., et al.,2006. Self-assembled fluorescent chemosensors [J]. Chemistry-a European Journal,12(7):1844-1854.
    (47)Rampazzo, E., et al.,2005. Surface modification of silica nanoparticles:a new strategy for the realization of self-organized fluorescence chemosensors [J]. Journal of Materials Chemistry,15(27-28):2687-2696.
    (48)Arduini, M., et al.,2005. Turning fluorescent dyes into Cu(II) nanosensors [J]. Langmuir, 21(20):9314-9321.
    (49)Brasola, E., et al.,2003. A fluorescence nanosensor for Cu2+ on silica particles [J]. Chemical Communications, (24):3026-3027.
    (50)Arduini, M., et al.,2007. Template assisted self-organized chemosensors [J]. Inorganica Chimica Acta,360(3):721-727.
    (51)Montalti, M., et al.,2006. Size effect on the fluorescence properties of dansyl-doped silica nanoparticles [J]. Langmuir,22(13):5877-5881.
    (52)Montalti, M., et al.,2002. Solvent-induced modulation of collective photophysical processes in fluorescent silica nanoparticles [J]. Journal of the American Chemical Society,124(45): 13540-13546.
    (53)Ding, L.P., et al.,2007. Sensing performance enhancement via chelating effect:A novel fluorescent film chemosensor for copper ions [J]. J. Photochem. Photobio. A:Chem., 186(2-3):143-150.
    (54)Kim, Y.R., et al.,2008. Rhodamine-Based "Turn-On" Fluorescent Chemodosimeter for Cu(II) on Ultrathin Platinum Films as Molecular Switches [J]. Advanced Materials,20(23): 4428-4432.
    (55)Kim, H.J., et al.,2008. Detection of Cu-II by a chemodosimeter-functionalized monolayer on mesoporous silica [J]. Advanced Materials,20(17):3229-+.
    (56)Shang, L. and S.J. Dong,2008. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II) [J]. Journal of Materials Chemistry,18(39):4636-4640.
    (57)Lu, F.T., et al.,2006. Spacer layer screening effect:A novel fluorescent film sensor for organic copper(II) salts [J]. Langmuir,22(2):841-845.
    (58)Mu, L.M., et al.,2008. Silicon Nanowires-Based Fluorescence Sensor for Cu(II) [J]. Nano Lett.,8(1):104-109.
    (59)Meallet-Renault, R., et al.,2004. Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+[J]. Chemical Communications, (20):2344-2345.
    (60)Gouanve, F., et al.,2007. Fluorescence quenching upon binding of copper ions in dye-doped and ligand-capped polymer nanoparticles:A simple way to probe the dye accessibility in nano-sized templates [J]. Advanced Functional Materials,17(15):2746-2756.
    (61)Horie, K., et al.,2003. Dansyl fluorescence and local structure of dansyl-labeled core-shell and core-hair type microspheres in solution [J]. Macromolecular Chemistry and Physics, 204(1):131-138.
    (62)Pelton, R.,2000. Temperature-sensitive aqueous microgels [J]. Advances in Colloid and Interface Science,85(1):1-33.
    (63)Berndt, I. and W. Richtering,2003. Doubly temperature sensitive core-shell microgels [J]. Macromolecules,36(23):8780-8785.
    (64)Senff, H. and W. Richtering,1999. Temperature sensitive microgel suspensions:Colloidal phase behavior and rheology of soft spheres [J]. Journal of Chemical Physics,111(4): 1705-1711.
    (65)Liu, T., et al.,2009. Enhancing Detection Sensitivity of Responsive Microgel-Based Cu(Ⅱ) Chemosensors via Thermo-Induced Volume Phase Transitions [J]. Chem. Mater.,21:ASAP.
    (66)Shea, K.J., et al.,1990. Synthesis and Characterization of Highly Cross-Linked Polyacrylamides and Polymethacrylamides. A New Class of Macroporous Polyamides [J]. Macromolecules,23(21):4497-4507.
    (67)Tong, Z., B.Y. Ren, and F. Gao,2001. Dual behavior of polyelectrolyte and ionomer for an ionizable polymer containing sulfonate groups in DMSO/THF mixtures [J]. Polymer,42(1): 143-149.
    (68)Ren, B.Y., et al.,1999. Solvent polarity scale on the fluorescence spectra of a dansyl monomer copolymerizable in aqueous media [J]. Chemical Physics Letters,307(1-2):55-61.
    (69)Uchiyama, S., et al.,2004. Fluorescent polymeric AND logic gate with temperature and pH as inputs [J]. Journal of the American Chemical Society,126(10):3032-3033.
    (70)Iwai, K., et al.,2005. Development of fluorescent microgel thermometers based on thermo responsive polymers and their modulation of sensitivity range [J]. Journal of Materials Chemistry,15(27-28):2796-2800.
    (71)Sigel, H. and R.B. Martin,1982. Coordinating Properties of the Amide Bond. Stability and Structure of Metal Ion Complexes of Peptides and Related Ligands [J]. Chem. Rev.,82: 385-426.
    (72)Tsuboyama, B.S., T. Sakurai, and K. Kobayashi,1984. pH Dependence of Binding Site in Complexation of Cu with Picolinamide Groups:Crystallographic Studies of Mono-and Binuclear Complexes with N,N'-Dipicolinoyl-1,3-propanediamine [J]. Acta Cryst., B40:466-473.
    (1)Zhang, M.F., M. Drechsler, and A.H.E. Muller,2004. Template-controlled synthesis of
    wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes [J]. Chemistry of Materials,16(3):537-543.
    (2)Zhang, M.F. and A.H.E. Muller,2005. Cylindrical polymer brushes [J]. Journal of Polymer Science Part a-Polymer Chemistry,43(16):3461-3481.
    (3)Tsukahara, Y, et al.,1989. Study on the radical polymerization behavior of macromonomers [J]. Macromolecules,22(4):1546-1552.
    (4)Tsukahara, Y., et al.,1990. Radical Polymerization Behavior of Macromonomers.2. Comparison of Styrene Macromonomers Having a Methacryloyl End Group and a Vinylbenzyl End Group [J]. Macromolecules,23(25):5201-5208.
    (5)Zhu, H., G.H. Deng, and YM. Chen,2008. Amphiphilic polymer brushes with alternating PCL and PEO grafts through radical copolymerization of styrenic and maleimidic macromonomers [J]. Polymer,49(2):405-411.
    (6)Li, Y.G., et al.,2004. Synthesis and characterization of block comb-like copolymers P(A-MPEO)-block-PSt [J]. Polymer International,53(3):349-354.
    (7)Hugenberg, N., et al.,2002. Synthesis and large scale fractionation of non-linear polymers: brushes and hyperbranched polymers [J]. Journal of Non-Crystalline Solids,307:765-771.
    (8)Neugebauer, D., et al.,2006. Densely heterografted brush macromolecules with crystallizable grafts. Synthesis and bulk properties [J]. Macromolecules,39(2):584-593.
    (9)Neugebauer, D., et al.,2005. PDMS-PEO densely grafted copolymers [J]. Macromolecules, 38(21):8687-8693.
    (10)Roos, S.G, A.H.E. Muller, and K. Matyjaszewski,1999. Copolymerization of n-butyl acrylate with methyl methacrylate and PMMA macromonomers:Comparison of reactivity ratios in conventional and atom transfer radical copolymerization [J]. Macromolecules, 32(25):8331-8335.
    (11)Cianga, I. and Y. Yagci,2002. Synthesis and characterization of comb-like polyphenylenes via Suzuki coupling of polystyrene macromonomers prepared by atom transfer radical polymerization [J]. European Polymer Journal,38(4):695-703.
    (12)Ishizu, K., et al.,2003. Architecture and surfactant behavior of amphiphilic prototype copolymer brushes [J]. Journal of Materials Science Letters,22(17):1219-1222.
    (13)Ishizu, K., X.X. Shen, and K.I. Tsubaki,2000. Radical copolymerization reactivity of methacryloyl-terminated poly(ethylene glycol methylether) with vinylbenzyl-terminated polystyrene macromonomers [J]. Polymer,41(6):2053-2057.
    (14)Tsubaki, K., et al.,2001. Dilute solution properties and aggregation behavior of alternate hetero-arm copolymer brushes [J]. Journal of Colloid and Interface Science,241(1):275-279.
    (15)Cianga, L., et al.,2005. Synthesis and characterization of new alternating, amphiphilic, comblike copolymers of poly(ethylene oxide) macromonomer and N-phenylmaleimide [J]. Journal of Polymer Science Part a-Polymer Chemistry,43(3):479-492.
    (16)He, L.H., et al.,2005. Inclusion Complexation between Comblike PEO Grafted Polymers and a-Cyclodextrin [J]. Macromolecules,38:3351-3355.
    (17)Deng, G.H. and Y.M. Chen,2004. Preparation of novel macromonomers and study of their polymerization [J]. J Polym Sci Part A:Polym Chem,42(15):3887-3896.
    (18)Zhang, Y.H., et al.,2007. Codendronized polymers pendent with alternating dendritic wedges [J]. J. Polym. Sci., Part A:Polym. Chem.,45:3994-4001.
    (19)Zhang, Y.H., et al.,2007. Synthesis of dendronized polymer brushes containing metallo-supramolecular polymer side chains [J]. Journal of Polymer Science Part a-Polymer Chemistry,45(15):3303-3310.
    (20)Cianga, I. and Y. Yagci,2001. Polystyrene macromonomer with boronic acid propanediol diester functionality prepared by ATRP for synthesis of comb-like polyphenylenes [J]. Polym. Bull.,47(1):17-24.
    (21)Neugebauer, D., et al.,2003. Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers [J]. Macromolecules,36(18):6746-6755.
    (22)Cheng, G.L., et al.,2001. Amphiphilic cylindrical core-shell brushes via a "grafting from" process using ATRP [J]. Macromolecules,34(20):6883-6888.
    (23)Xu, Y.Y., et al.,2008. pH and salt responsive poly(N,N-dimethylaminoethyl methacrylate) cylindrical brushes and their quatemized derivatives [J]. Polymer,49(18):3957-3964.
    (24)Luan, B., B.Q. Zhang, and C.Y. Pan,2006. Synthesis and characterizations of well-defined branched polymers with AB(2) branches by combination of RAFT polymerization and ROP as well as ATRP [J]. Journal of Polymer Science Part a-Polymer Chemistry,44(1):549-560.
    (25)Xie, M.R., et al.,2008. Well-Defined Brush Copolymers with High Grafting Density of Amphiphilic Side Chains by Combination of ROP, ROMP, and ATRP [J]. Macromolecules, 41(23):9004-9010.
    (26)Yamamoto, S., J. Pietrasik, and K. Matyjaszewski,2007. ATRP synthesis of thermally responsive molecular brushes from oligo(ethylene oxide) methacrylates [J]. Macromolecules, 40(26):9348-9353.
    (27)Lee, H.I., et al.,2005. Molecular brushes with spontaneous gradient by atom transfer radical polymerization [J]. Macromolecules,38(20):8264-8271.
    (28)Qin, S.H., et al.,2003. Synthesis and visualization of densely grafted molecular brushes with crystallizable poly(octadecyl methacrylate) block segments [J]. Macromolecules,36(3): 605-612.
    (29)Tang, C., et al.,2007. Synthesis and morphology of molecular brushes with polyacrylonitrile block copolymer side chains and their conversion into nanostructured carbons [J]. Macromolecules,40(17):6199-6205.
    (30)Cheng, C., E. Khoshdel, and K.L. Wooley,2006. Facile one-pot synthesis of brush polymers through tandem catalysis using Grubbs' catalyst for both ring-opening metathesis and atom transfer radical polymerizations [J]. Nano Letters,6(8):1741-1746.
    (31)Peng, D., et al.,2007. Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly(acrylic acid) backbone and hydrophobic poly(methyl methacrylate) side chains [J]. Polymer,48(18):5250-5258.
    (32)Peng, D., X.H. Zhang, and X.Y. Huang,2006. Synthesis of amphiphilic graft copolymer with hydrophilic poly(acrylic acid) backbone and hydrophobic polystyrene side chains [J]. Polymer,47(17):6072-6080.
    (33)Gu, L.N., et al.,2007. Novel amphiphilic centipede-like copolymer bearing polyacrylate backbone and poly(ethylene glycol) and polystyrene side chains [J]. Macromolecules,40(13): 4486-4493.
    (34)Ishizu, K. and H. Yamada,2007. Architecture of prototype copolymer brushes by grafting-from ATRP approach from functionalized alternating comb-shaped copolymers [J]. Macromolecules,40(9):3056-3061.
    (35)Cakir, T., I.E. Serhatli, and A. Onen,2006. Graft copolymerization of methylmethacrylate with N-substituted maleimide-styrene copolymer by ATRP [J]. Journal of Applied Polymer Science,99(5):1993-2001.
    (36)He, L.H., et al.,2006. Double-hydrophilic polymer brushes:Synthesis and application for crystallization modification of calcium carbonate [J]. Macromolecular Chemistry and Physics, 207(7):684-693.
    (37)Shi, GY., P. Zou, and C.Y. Pan,2008. Synthesis and characterization of asymmetric centipede-like copolymers with two side chains at each repeating unit via ATRP and ring-opening polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry, 46(16):5580-5591.
    (38)Pietrasik, J., et al.,2007. Solution behavior of temperature-responsive molecular brushes prepared by ATRP [J]. Macromolecular Chemistry and Physics,208(1):30-36.
    (39)Peng, D., et al.,2007. A starlike Amphiphilic graft copolymer with hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains [J]. Journal of Polymer Science Part a-Polymer Chemistry,45(16):3687-3697.
    (40)Gao, H.F. and K. Matyjaszewski,2007. Synthesis of molecular brushes by "grafting onto" method:Combination of ATRP and click reactions [J]. Journal of the American Chemical Society,129(20):6633-6639.
    (41)Zhang, Y., H.K. He, and G. C.,2008. Clickable Macroinitiator Strategy to Build Amphiphilic Polymer Brushes on Carbon Nanotubes [J]. Macromolecules,41:9581-9594.
    (42)Gacal, B., et al.,2006. Anthracene-maleimide-based Diels-Alder "click chemistry" as a novel route to graft copolymers [J]. Macromolecules,39(16):5330-5336.
    (43)Yang, S.K. and M. Weck,2008. Modular covalent multifunctionalization of copolymers [J]. Macromolecules,41(2):346-351.
    (44)Riva, R., et al.,2007. Combination of ring-opening polymerization and "click chemistry" Toward functionalization and grafting of poly(epsilon-caprolactone) [J]. Macromolecules, 40(4):796-803.
    (45)Li, H.Y., et al.,2007. Combination of ring-opening polymerization and "click" chemistry for the synthesis of an amphiphilic tadpole-shaped poly(epsilon-caprolactone) grafted by PEO [J]. Macromolecules,40(4):824-831.
    (46)Tsarevsky, N.V., S.A. Bencherif, and K. Matyjaszewski,2007. Graft copolymers by a combination of ATRP and two different consecutive click reactions [J]. Macromolecules, 40(13):4439-4445.
    (47)In, I., et al.,2006. Side-chain-grafted random copolymer brushes as neutral surfaces for controlling the orientation of block copolymer microdomains in thin films [J]. Langmuir, 22(18):7855-7860.
    (48)Wang, Y and W.J. Brittain,2007. Simultaneous binary mixed homopolymer brush formation by combining nitroxide mediated radical polymerization and living cationic ring-opening polymerization [J]. Macromol Rapid Commun,28(7):811-815.
    (49)Cheng, C., et al.,2006. Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures [J]. J Am Chem Soc, 128(21):6808-6809.
    (50)Shi, Y, Z.F. Fu, and W.T. Yang,2006. Synthesis of Comb-like Polystyrene with Poly(N-phenylmaleimide-alt-p-chloromethyl styrene) as Macroinitiator [J]. Journal of Polymer Science Part a-Polymer Chemistry,44:2069-2075.
    (51)Cheng, Z.P., et al.,2005. Dual-brush-type amphiphilic triblock copolymer with intact epoxide functional groups from consecutive RAFT polymerizations and ATRP [J]. Macromolecules, 38(16):7187-7192.
    (52)Yuan, W.Z., et al.,2007. Synthesis, Characterization, Crystalline Morphologies, and
    Hydrophilicity of Brush Copolymers with Double Crystallizable Side Chains [J]. Macromolecules,40:9094-9102.
    (53)Li, A.X., et al.,2006. Synthesis of a novel centipede-like copolymer of styrene, isoprene, and methyl methacrylate [J]. Journal of Polymer Science Part a-Polymer Chemistry,44(12): 3942-3946.
    (54)Kolb, H.C., M.G. Finn, and K.B. Sharpless,2001. Click chemistry:Diverse chemical function from a few good reactions [J]. Angewandte Chemie-International Edition,40(11):2004.
    (55)Wu, P., et al.,2004. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes [J]. Angewandte Chemie-International Edition,43(30):3928-3932.
    (56)Rostovtsev, V.V., et al.,2002. A stepwise Huisgen cycloaddition process:Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes [J]. Angewandte Chemie-International Edition,41(14):2596-+.
    (57)Billiet, L., D. Fournier, and F. Du Prez,2008. Combining "Click" chemistry and step-growth polymerization for the generation of highly functionalized polyesters [J]. Journal of Polymer Science Part a-Polymer Chemistry,46(19):6552-6564.
    (58)Durmaz, H., et al.,2008. One-Pot Synthesis of Star-Block Copolymers Using Double Click Reactions [J]. Journal of Polymer Science Part a-Polymer Chemistry,46(21):7091-7100.
    (59)Deng, G.H. and Y.M. Chen,2004. A Novel Way To Synthesize Star Polymers in One Pot by ATRP of N-[2-(2-Bromoisobutyryloxy)ethyl]maleimide and Styrene [J]. Macromolecules,37: 18-26.
    (60)Kim, Y.A., et al.,2007. Synthesis, biological evaluation and molecular modeling studies of N-6-benzyladenosine analogues as potential anti-toxoplasma agents [J]. Biochemical Pharmacology,73(10):1558-1572.
    (61)Mespouille, L., et al.,2008. Synthesis of adaptative and amphiphilic polymer model conetworks by versatile combination of ATRP, ROP, and "'Click chemistry" [J]. Journal of Polymer Science Part a-Polymer Chemistry,46(15):4997-5013.
    (62)Opsteen, J.A. and J.C.M. Van Hest,2007. Modular synthesis of ABC type block copolymers by "click" chemistry [J]. Journal of Polymer Science Part a-Polymer Chemistry,45(14): 2913-2924.
    (63)Quemener, D., et al.,2008. Graft block copolymers of propargyl methacrylate and vinyl acetate via a combination of RAFT/MADIX and click chemistry:Reaction analysis [J]. Journal of Polymer Science Part a-Polymer Chemistry,46(1):155-173.
    (64)Shi, G.Y., X.Z. Tang, and C.Y. Pan,2008. Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction [J]. Journal of Polymer Science Part a-Polymer Chemistry,46(7):2390-2401.
    (65)Takizawa, K., et al.,2008. Facile syntheses of 4-vinyl-1,2,3-triazole monomers by click azide/acetylene coupling [J]. Journal of Polymer Science Part a-Polymer Chemistry,46(9): 2897-2912.
    (66)Xia, Y, et al.,2005. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization [J]. Macromolecules,38(14):5937-5943.
    (67)Xia, Y, N.A.D. Burke, and H.D.H. Stover,2006. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization [J]. Macromolecules,39(6):2275-2283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700