甜瓜果实发育相关基因的鉴定、表达特性及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜是全世界广泛栽培的园艺作物,是重要的经济作物之一。随着对甜瓜研究的深入和它本身的植物学特性,甜瓜已成为阐明肉质果实发育成熟分子机理的另一种重要的模式植物。
     乙烯对跃变型果实的成熟衰老起到重要作用,同时影响着果实的成熟及采后的耐贮藏性。为了分离鉴定甜瓜果实乙烯跃变中关键基因和在转录水平上阐明果实发育的分子机理,本研究以典型的呼吸跃变型甜瓜品种河套蜜瓜为研究对象,以甜瓜果实内源乙烯跃变中上升、峰值、下降三个时期中果皮组织mRNA等量混合物作为乙烯跃变期样品,以乙烯跃变前5天的mRNA为乙烯跃变前期样品,构建了正向和反向抑制性差减文库,并对所分离的EST进行克隆、测序和数据库中寻找同源基因。其中,正向文库中分离得到386条有效的EST序列,总计179个unigenes;反向文库中得到417条有效的EST序列,总计213个unigenes;所获得的EST主要编码物质和能量代谢、转录、蛋白翻译后修饰与转运及分子伴侣、结合蛋白、信号转导、生长发育、转运、机体防御与自救、未知功能等相关基因。对文库中随机选取6个候选基因实时荧光定量PCR检测结果显示,Chibl、L-Asp、CSGP和ACO1基因的1mRNA含量在果实内源乙烯跃变时期(授粉后40-45天)的果实中急剧增高,其峰值期与果实内源乙烯峰值期同步,而DAFP和XTH2基因在果实跃变前期表达水平较高。
     分别克隆了甜瓜信号转导组分Cm-CTR1、Cm-EIN2、Cm-EIL1、Cm-EIL2. Cm-ERF1、Cm-ERF2基因的全长cDNA.应用荧光定量PCR技术分析了上述基因在甜瓜果实不同发育时期的表达特性。定量PCR分析结果显示:15DAP到45DAP的果实中,Cm-CTR1基因均具有较高的表达,且转录水平变化较少,在果实内源乙烯跃变时稍减少。cm-EIN2在幼叶和花瓣组织中的表达量相似,约为根中表达量的2倍,茎中表达最低,子房中最高。在果实发育成熟过程中,cm-EIN2基因:mRNA水平从20DAP开始缓慢增高,在授粉后35天达到峰值,随后下降。将幼叶用不同浓度的IAA和ABA处理后,Cm-EIN2基因转录水平减少。Cm-EIL1、Cm-EIL2、Cm-ERF1和Cm-ERF2表达模式与甜瓜果实成熟过程及乙烯生成量显著相关。上述基因表达分析结果表明,Cm-EIL1、Cm-EIL2、 cm-ERF1、cm-ERF2基因可能在甜瓜果实乙烯跃变过程中具有重要作用,而cm-EIN2和Cm-CTR1可能在甜瓜果实发育过程中发挥重要作用。
     利用烟草核基质附着区序列和甜瓜果实特异性表达的黄瓜素基因启动子,构建了无载体无选择标记基因的果实特异性稳定表达反义ACO1基因线性表达盒(RB-MAR-CMC-antiACO1-nos-MAR-LB),应用花粉管通道法转化甜瓜。经PCR检测证明外源基因已经整合到受体植物的基因组中。获得了耐贮性强的3个株系,经正常商业采摘期采收果实后,转基因T2果实内源乙烯的含量均明显低于未转基因对照果实,在采后第12天,约为对照果实的4%,没有出现内源乙烯释放高峰;刚采摘时,转基因和未转基因果实硬度基本相同,贮藏到一定天数时,转基因果实硬度基本保持不变,而未转基因果实硬度逐渐下降;转基因与对照果实的可溶性固形物在贮藏过程中基本相同。
Melon is one of the important economic crops and widely cultivated all over the world. However, it gives rise to huge economic losses because of the over ripeness, softening and rottenness within a short postharvest storage. Melon has become another important model plant to clarify the molecular mechanisms of fleshy fruit development and ripening due to it's research in-depth and botanical characteristics. Ethylene regulates the ripening process and affects the ripening rate and postharvest storability in climacteric fruit. Therefore, it has become a hot topic to study the molecular mechanism of melon fruit ripening via ethylene.
     To screen for genes that are differentially expressed at the burst of ethylene climacteric, and help to elucidate the molecular mechanism of ethylene climacteric at the transcriptional level in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which2groups of fruit samples, from the typically respiratory climacteric melon fruit of Hetao, at disparate stages were used. Forward subtraction was performed using ethylene climacteric fruit cDNA (poly A+RNA of the fruits—when ethylene production increased, peaked, and decreased respectively—mixed in equal proportions) as the tester and pre-ethylene climacteric (5days before the ethylene climacteric) fruit cDNA as the driver. For the corresponding reverse libraries, the cDNAs were reciprocated. The isolated EST clones were sequenced, and databases were searched for homologous genes. From the forward library, the386EST sequences were assembled into179unigenes, while the417EST sequences were assembled into213unigenes in the reverse library. The identified ESTs encoded proteins that mediate metabolism of energy and substances, transcription, posttranslational modification, protein turnover and chaperones, binding protein, signal transduction, growth and development, transport, body defense and self-rescue, unknown function etc. The expression patterns of the6randomly selected candidate genes in fruit at various stages of development were analyzed by qRT-PCR. The results of showed that the transcription of the Chib1, L-Asp, CSGP and ACO1genes increased dramatically during fruit ripening (40-45DAP) and the peaks of Chibl, L-Asp, CSGP and ACO1mRNAs coincided with the climacteric peak of ethylene production. The XTH2and DAFP mRNAs levels were higher during pre-climacteric stage of ethylene.
     In this study, the full-length cDNAs of the ethylene signal transduction component genes Cm-CTR1, Cm-EIN2, Cm-EIL1, Cm-EIL2, Cm-ERF1and Cm-ERF2were cloned, and the expression patterns of these genes were analyzed by QRT-PCR. Quantitative RT-PCR analysis indicated as follows:The transcript level of the Cm-CTR1was higher and had few changes from15DAP to45DAP, while slightly reduced at ethylene climacteric stage; Cm-EIN2had similar expression patterns in young leaves and petal tissues—approximately2times higher than in root, the minimum and maximum expression were observed in the stem and ovary, respectively. During fruit development, Cm-EIN2mRNA increased slightly from20DAP, peaked at35DAP, and declined. Leaves that were treated with IAA and ABA had lower levels of Cm-EIN2transcripts. The expression patterns of Cm-EILl, Cm-EIL2, Cm-ERF1and Cm-ERF2genes were highly relative to fruit ripening process and ethylene production. The expression patterns of these genes reveals that Cm-EIL1, Cm-EIL2, Cm-ERF1and Cm-ERF2genes may regulate the climacteric ripening, while Cm-EIN2and Cm-CTR1gene may affect the fruit development.
     The vector-free and marker-free linear cassettes of a fruit-specific stable expression of ACO1antisense gene was constructed, which was combined with the matrix attachment region sequence of tobacco and fruit-specific expression promoter of Cucumisin gene in melon, for the first time (RB-MAR-CMC-antiACO1-nos-MAR-LB). The melon cultivar Hetao was transformed with these linear gene cassettes via pollen-tube pathway. The PCR data showed that the transgenes were inserted into the recipient's genome.3strains with improved storage capacity have been selected. The fruits were harvested in normal commercial picking stages. The endogenous ethylene contents of the transgenic T2fruits were significantly lower than non-transgenic ones, and were approximately4%of the control at12days post-harvest. It was not found the peak of endogenous ethylene in transgenic fruits. The fruit firmness between the transgenic T2and non-transgenic control was approximately the same when harvest, however, the transgenic fruit firmness remained basically unchanged, while the control one gradually decreased after storage a number of days. The soluble solids contents between the transgenic T2and non-transgenic control were approximately the same during storage.
引文
[1]Guo H W, Ecker J R. The ethylene signaling pathway:new insights. Current Opinion in Plant Biology [J], 2004,7:40-49
    [2]杨晓颖,胡伟,徐碧玉,等.乙烯与果实成熟关系的研究进展.热带农业科学,2008,28(2):70-75
    [3]Jennifer C C, Varvara P G, Bernard R G Genetic modulation of ethylene biosynthesis and signaling in plant. Biotechnology Advances [J],2006,24:410-419
    [4]Yang S F, Hoffmann N E. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology,1984,35:155-189
    [5]Lin Z, Zhong S, Grierson Don. Recent advances in ethylene research. Journal of Experimental Botany [J], 2009,60 (12):3311-3336
    [6]Wang W Y, Esch J J, Shiu SH H, etc. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. The Plant Cell [J],2006, 18:3429-3442
    [7]Zhong G V, Burns J K. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Molecular Biology [J],2003,53:117-131
    [8]安丰英,郭红卫.乙烯信号转导的分子机制.植物学通报[J],2006,23(5):531-542
    [9]Bisson M M, Bleckmann A, Allekotte S, etc. EIN2, the central regulator of ethylene signaling, is Iocalized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochemistry [J],2009,424:1-6
    [10]Solano R, Stepanova A, Chao Q, etc. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ethylene insensitive3 and ethylene-response factorl. Genes & Development [J],1998,12:3703-3714
    [11]Kendrick M D, Chang C. Ethylene signaling:new levels of complexity and regulation. Current Opinion in Plant Biology [J],2008,11:479-485
    [12]Christians M J, Larsen P B. Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. Journal of Experimental Botany [J],2007,58:2237-2248
    [13]Guo H W, Ecker J R. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell [J],2003,115:667-677
    [14]Wang X L, Kong H Z, Ma H. F-box proteins regulate ethylene signaling and more. Genes&Development [J],2009,23:391-396
    [15]Hirayama T, Kieber J J, Hirayama N, etc. Responsive-to-antagonist1, a Menkes/Wilson disease related copper transporter, is required for ethylene signaling in Arabidopsis. Cell [J],1999,97:383-393
    [16]Dong C H, Rivarola M, Resnick J S, etc. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant Journal [J],2008,53:275-286
    [17]Resnick J S, Wen C K, Shockey J A, etc., Reversion-to ethylene sensitivity1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America [J],2006,103:7917-7922
    [18]Barry C S, Giovannoni J J. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proceedings of the National Academy of Sciences of the United States of America [J],2006,103:7923-7928
    [19]Qiao H, Chang K N, Yazaki J, etc. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes & Development [J],2009,23:512-521
    [20]Alonso J M, Hirayama T, Roman G, etc. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science [J],1999,284:2148-2152
    [21]Robles L, Wampole J, Christians M, etc. Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. Journal of Experimental Botany [J],2007,58:2627-2639
    [22]Binder B, Walker J, Gagne J, etc. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. The Plant Cell [J],2007,19:509-523
    [23]Olmedo G, Guo H, Gregory B, etc. Ethylene-insensitive5 encodes a 5'-3'exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proceedings of the National Academy of Sciences of the United States of America [J],2006,103:13286-13293
    [24]Potuschak T, Vansiri A, Binder B, etc. The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. The Plant Cell [J],2006,18:3047-3057
    [25]Kastenmayer J, Green P. Novel features of the XRN-family in Arabidopsis:evidence that AtXRN4, one of several orthologous of nuclear Xrn2p/Ratlp, functions in the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America [J],2000,97:13985-13990
    [26]Yoo S, Cho Y, Tena G, etc. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature [J],2008,451:789-795
    [27]Whitelaw C A, Lyssenko N N, Chen L, etc. Delayed abscission and shorter internodes correlate with a reduction in the ethylene receptor LeETRl transcript in transgenic tomato. Plant Physiology [J],2002, 128:978-987
    [28]Lehman A, Black R, Ecker J R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell [J],1996,85:183-194
    [29]Stepanova A N, Hoyt J M, Hamilton A A, etc. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. The Plant Cell [J] 2005, 17:2230-2242
    [30]Beaudoin N, Serizet C, Gosti F, etc. Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell [J] 2000,12 (7):1103-1115
    [31]Vogel J P, Woeste K E, Theologis A, etc. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proceedings of the National Academy of Sciences of the United States of America [J] 1998,95:4766-4771
    [32]Hansen M, Chae H S, Kieber J J. The regulation of ACS protein stability by cytokinin and brassinosteroid. Plant Journal [J],2009,57:606-614
    [33]Yi H C, Joo S, Nam K H, etc. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-l-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Molecular Biology [J],1999,41:443-454
    [34]Calvo A P, Nicola s C, Nicola s G, etc. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20oxl) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiologia Plantarum [J],2004,120:623-630
    [35]Achard P, Baghour M, Chapple A, etc. The plant stress hormone ethylene controls floral transition via DELLA dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences of the United States of America [J],2007,104:6484-6489
    [36]Zhu Z, An F, Feng Y, etc. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America [J],2011,108(30):12539-12544
    [37]张伟玉,杨静慧,刘玉冬,等.水杨酸对NR基因的表达和乙烯信号转导的影响.西南农业大学学报,2003,25(3): 189-192
    [38]汪承刚,黄军艳,董彩华,等.油菜BnERF56基因通过乙烯和水杨酸信号途径调控对多种腐生真菌 的抗性[A].见:中国植物病理学会2010年学术年会论文集[C].中国植物病理学会第九届全国会员代表大会暨2010年学术年会,福建厦门,2010-07-03
    [39]Giovannoni J J. Genetic regulation of fruit development and ripening. The Plant Cell [J],2004,16:170-180
    [40]Ezura H, Owino W O. Melon, an alternative model plant for elucidating fruit ripening. Plant Science [J], 2008,175:121-129
    [41]Portnoy V, Diber A, Pollock S, etc. Use of Non-Normalized, Non-Amplified cDNA for 454-Based RNA-Seq of Fleshy Melon Fruit. The Plant Genome [J],2011,4(1):36-46
    [42]Garcia-Masa J, Benjaka A, Sanseverinoa W, etc. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America [J],1091:1872-11877
    [43]Pech J C, Bouzayen M, Latche A. Climacteric fruit ripening:Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science [J],2008,175:114-120
    [44]Rose J K C, Hadfield K A, Labavitch J M, etc. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiology. [J],1998,117:345-361
    [45]Nishiyama K, Guis M, Rose J K C, etc. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. Journal of Experimental Botany [J],2007,58:1281-1290
    [46]Hadfield K A, Dang T, Guis M, etc. Characterization of ripening-related cDNAs and their expression in ethylene-suppressed Charentais melon fruit. Plant Physiology [J],2000,122:977-983
    [47]Flores FB, Martinez-Madrid M C, Sanchez-Hidalgo F J, etc. Differential rind and pulp ripening of transgenic antisense ACC oxidase melon. Plant Physiology and Biochemistry [J],2001,39:37-43
    [48]Pech J C, Guis M, Botondi R, etc. Ethylene-dependent and ethylene-independent pathways in a climacteric fruit, the melon [A].In:Kanellis A, Chang C, Klee H, etc. Biology and Biotechnology of the Plant Hormone Ethylene II [C]. Netherlands:Kluwer Academic Publishers,1999,105-110.
    [49]Nuez-Palenius H, Huber DJ, Klee H J, etc. Fruit ripening characteristics in a transgenic 'Galia'male parental muskmelon (Cucumis melo L.var.reticulatus Ser.) line. Postharvest Biology and Technology [J],2007, 44:95-100
    [50]Yamamoto M, Miki T, Y. Ishiki, etc.The synthesis of ethylene in melon fruit during the early-stage of ripening. Plant Cell Physiology [J],1995,36:591-596
    [51]Ishiki Y, Oda A, Y. Yaegashi, etc. Cloning of an auxin-responsive 1-aminocyclopropane-l-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits. Plant Science [J] 2000,159:173-181
    [52]Mizuno S, Hirasawa Y, Sonoda M, etc. Isolation and characterization of three DREB/ERF-type transcription factors from melon (Cucumis melo L). Plant Science [J],2006,170:1156-1163
    [53]Li Z, Yao L, Yang Y, etc. Transgenic approach to improve quality traits of melon fruit. Scientia Horticulturae [J],2006,108:268-277
    [54]Yamamoto M, Miki T, Ishiki Y, etc. The synthesis of ethylene in melon fruit during the early-stage of ripening. Plant Cell Physiology [J],1995,36:591-596
    [55]Lasserre E, Godard F, Bouquin T, etc. Differential activation of two ACC oxidase gene promoters frommelon during plant development and in response to pathogen attack. Molecular and General Genetics [J],1997, 256:211-222
    [56]Sato-Nara K, Yuhashi K, Higashi K, etc. Stage-and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiology [J],1999,120:321-329
    [57]Ma B, Cui M L, Sun H J, etc. Subcellular localization and membrane topology of the melon ethylene receptor CmERSl. Plant Physiology [J],2006,141:587-597
    [58]Takahashi H, Kobayashi T, Sato-Nara K, etc. Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon(Cucumis melo L.). Journal of Experimental Botany [J],2002,53:415-422
    [59]Owino W O, Ma B, Sun H J, etc. Characteristics of an ethylene inducible ethylene receptor Cm-ETR2 in melon fruit [A]. In:Ramina A, Chang C, Giovannoni JJ, etc. Advances in Plant Ethylene Research [C], Netherlands:Springer,2007.39-40.
    [60]Perin C, Gomez-Jimenez M C, Hagen L, etc. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiology [J],2002, 129:209-300
    [61]Bower J, Holdford P, Latche A, etc. Culture conditions and detachment of the fruit influence the effect of ethylene on the climacteric respiration of the melon. Postharvest Biology and Technology [J],2002, 26:135-146
    [62]Flores F, Ben Amor M, Jones B, etc. The use of ethylene-suppressed lines to assess differential sensitivity to ethylene of the various ripening pathways in Cantaloupe melons, Plant Physiology [J],2001,113:128-133
    [63]Bower J, Holdford P, Latche A, etc. Culture conditions and detachment of the fruit influence the effect of ethylene on the climacteric respiration of the melon. Postharvest Biology and Technology [J],2002,26: 135-146
    [64]Bauchot A D, Mottram D S, Dodson A T, etc. Effect of aminocyclopropane-1- carboxylic aci oxidase antisense gene on the formation of volatile esters in Cantaloupe Charentais melon (cv. Vedrantais). Journal of Agricultural and Food Chemistry [J],1998,46:4787-4792
    [65]Katzir N, Harel-Beja R, Portnoy V, etc. Melon fruit quality:A genomic approach [A]. In:Pittrat M. Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae [C]. Avignon (France):INRA, May21-24th,2008.231-240
    [66]Shalit M, Katzir N, Tadmor Y, etc. Acetyl CoA:alcohol acetyl transferase activity and aroma formation in ripening melon fruits. Journal of Agricultural and Food Chemistry [J],2001,49:794-799
    [67]Aubert C, Bourger N. Investigation of volatiles in Charentais cantaloupe melons(Cucumis melo var. cantalupensis). Characterization of aroma constituents in some cultivars. Journal Agricultural and Food Chemistry [J],2004,52:4522-4528
    [68]Manriquez D, Flores F B, Sharkawy I El, etc. Molecular control of fruit ripening and sensory quality of Charentais melon. Ⅲ international symposium on cucurbit
    [69]Burger Y, Saar U, Paris H, etc. Genetic variability for valuable fruit quality traits in Cucumis melo. Israel Journal of Plant Sciences [J],2006,54:233-242
    [70]Monforte A J, Oliver M, Gonzalo M J, etc. Identification of quantitative trait loci involved in fruit quality traits in melon(Cucumis melo L.). Theoretical and Applied Genetics [J],2004,108:750-758
    [71]Ayub R, Guis M, Ben Amor M, etc. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechnology [J],1996,14:862-866
    [72]Flores F, Martinez-Madrid M C, Sanchez-Hidalgo F J, etc. Differential rind and pulp ripening of transgenic antisense ACC oxidase melon. Plant Physiology and Biochemistry [J],2001,39:37-43
    [73]阎爱华,王冬梅.抑制性差减杂交技术(SSH)在植物学研究中的应用.华北农学报,2008,23(增刊):78-83
    [74]Diatchenko L, Lau Y Ch, Aaron P. etc. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America [J],1996,93:6025-6030
    [75]Pascual L, Blanca J M, Canizares J, etc. Analysis of gene expression during the fruit set of tomato:A
    comparative approach. Plant Science [J],2007,173:609-620
    [76]Manrique-Trujillo S M, Ramirez-Lopez A C, Ibarra-Laclette E, etc. Identification of genes differentially expressed during ripening of banana. Journal of Plant Physiology [J],2007,164:1037-1050
    [77]Mbeguie-A-Mbeguie D, Hubert O, Sabau X, etc. Use of suppression subtractive hybridization approach to identify genes differentially expressed during early banana fruit development undergoing changes in ethylene responsiveness. Plant Science [J],2007,172:1025-1036
    [78]Xu B Y, Su W, Liu J H, etc. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta [J],2007,226(2):529-539
    [79]Jin Z Q, Xu B Y, Liu J H, etc. Identification of genes differentially expressed at the onset of the ethylene climacteric in banana. Postharvest Biology and Technology [J],2009,52:307-309
    [80]de Godoy A, Cordenunsi B R, Lajolo F M, etc. Differential display and suppression subtractive hybridization analysis of the pulp of ripening banana. Sciential Horticulturae [J],2010,124:51-56
    [81]Pimentel P, Salvatierra A, Moya-Leon M A, etc. Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization. Journal of Plant Physiology [J],2010,167:1179-1187
    [82]Nagasawa M, Mori H, Shiratake K, Yamaki S. Isolation of cDNAs for genes expressed after/during fertilization and fruit set of melon (Cucumis melo L.). Journal of the Japanese Society for Horticultural Science [J],2005,74(1):23-30
    [83]Choi J W, Kim G B, Huh Y C, etc. Cloning of genes differentially expressed during the initial stage of development in melon (Cucumis melo cv. Reticulatus). Molecules and Cells [J],2004,17(2):237-241
    [84]Miguel F C, De Bolle, Katleen M J, etc. The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants. Plant Molecular Biology [J],2007,63: 533-543
    [85]Hall G, Allent G C, Loer D S, etc. Nuclear scaffolds and scaffold-attachment regions in higher plants. Proceedings of the National Academy of Sciences of the United States of America [J],1991,88:9320-9324
    [86]周丛照,钱信果,李振刚.MAR文库及其在真核基因组作图上的应用.生物化学与生物物理进展[J],1998,25:483-485
    [87]Michalowski S M, Allen G C, Hall G E, etc. Characterization of randomly-obtained matrix attachment regions (MARs) from higher plants. Biochemistry [J],1999,38:12795-804
    [88]李旭刚,徐军望,朱祯.核基质结合区的研究进展.农业生物技术学报[J],2000,8:200-204
    [89]Allen G C, Hall G E, Childs L C, etc. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. The Plant Cell [J],1993,5:603-613
    [90]Allen G C, Hall G, Michalowski S, etc. High-level transgene expression in plant cells:effects of a strong scaffold attachment region from tobacco. The Plant Cell [J],1996,8:899-913
    [91]李旭刚,陈松彪,徐军望等.玉米MAR序列的分离及其在转基因烟草中功能的研究.自然科学进展[J], 2002,12:491-496
    [92]Mirkovitch J, Mirault M E, Laemmli U K. Organization of the higher-order chromatin loop:specific DNA attachment sites on nuclear scaffold. Cell [J],1984,39:223-232
    [93]Breyne P, Van Montagu M, Depicker A, etc. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. The Plant Cell [J],1992,4:463-471
    [94]Mlynarova L, Loonen A, Heldens J, etc. Recuced position effect in mature transgenic plants conferred by the chicken lysozyme matrix attachment region. The Plant Cell [J],1994,6:417-426
    [95]Spiker S, and Thompson W.F. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiology [J],1996,110(1):15-21
    [96]Rudd S, Frisch M, Grote K, etc. Genome-wide in silico mapping of scaffold/matrix attachment regions in Arabidopsis suggests correlation of intragenic scaffold/matrix attachment regions with gene expression. Plant Physiology [J],2004,135:715-722
    [97]Tetko I V, Haberer G, Rudd S, etc. Spatiotemporal expression control correlates with intragenic scaffold matrix attachment regions (S/MARs) in Arabidopsis thaliana. PLoS Computational Biology [J],2006, 2:0136-0145
    [98]李旭刚,吴茜,朱祯,等.豌豆核基质结合区的功能研究.高技术通报[J],2000,10:9-13
    [99]张可伟,王健美,杨国栋,等.强MAR的分离及其体内外功能鉴定.科学通报[J],2002,47:1527-1577
    [100]张可伟.植物MAR序列的分离鉴定与高效表达载体的构建[D].泰安:山东农业大学,2003
    [101]李宏,杨予涛,张可伟,等.6个植物MARs的ARS功能鉴定与分析.科学通报[J],2003,48:2544-2548
    [102]张应华,王小佳.MAR调控的胰岛素样生长因子-I转化甘蓝的研究[J],2005,32:307-309
    [103]王天云.杜氏盐藻核基质结合区的分离及其对转基因的表达调控作用[D].郑州:郑州大学,2005
    [104]王天云,田芳,张胜力,等.核基质结合区提高稳定整合的CAT报告基因在NIH3T3细胞中的表达.细胞生物学杂志[J],2005,27:183-186
    [105]薛华.烟草TM2序列在转基因植物中的应用与功能分析[D].泰安:山东农业大学,2006
    [106]王瑶,黄慧珍,张勇,等.欧洲黑杨MARs的分离克隆及序列分析.武汉植物学研究[J],2007,25:24-28
    [107]邓智年,魏源文,吕维莉,等.MAR序列介导野苋菜凝集素基因在白菜中的表达.园艺学报[J],2007,34:381-386
    [1]Burg S P, Burg E A. Role of ethylene in fruit ripening. Plant Physiology [J],1962,37:179-189
    [2]Giovannoni J J. Genetic regulation of fruit development and ripening. The Plant Cell [J],2004,16:170-180
    [3]Rose J K, Saladie M, Catala C. The plot thickens:new perspectives of primary cell wall modification. Current Opinion in Plant Biology [J],2004,7,296-301
    [4]Theologis A. One rotten apple spoils the whole bushel:the role of ethylene in fruit ripening. Cell [J],1992, 70:181-184
    [5]Giovannoni J J. Fruit ripening mutants yield insights into ripening control. Current Opinion in Plant Biology [J],2007,10,283-289
    [6]Katzir N, Harel-Bega R, Protnoy V, etc. Melon fruit quality:a genomic approach, In:Pitrat M (ed): Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon (France),21-24th May,2008,231-240
    [7]Pech J C, Bouzayen M, Latchq A. Climacteric fruit ripening:ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science [J],2008,175:114-120
    [8]Ezura H, Owino W O. Melon, an alternative model plant for elucidating fruit ripening. Plant Science [J],2008, 175:121-129
    [9]Moreno E, Obando J, Dos-Santos N, etc. Candidate genes and QTLs for fruit ripening and softening in melon. Theoretical and Applied Genetics [J],2008,116:589-602
    [10]Owino W, Ma B, Sun H, etc. Characteristics of an ethylene inducible ethylene receptor Cm-ETR2 in melon fruit, [A]. In:Ramina A, Chang C, Giovannoni JJ, etc. Advances in Plant Ethylene Research [C], Netherlands:Springer,2007.39-40.
    [11]Yahyaoui F E L, Wongs-Aree C, Latche A, etc. Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening. European Journal of Biochemistry [J],2002,269:2359-2366
    [12]Nishiyama K, Guis M, Rose J K C, etc. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. Journal of Experimental Botany [J],2007,58:1281-1290
    [13]Ibdah M, Azulay Y, Portnoy V, etc. Functional characterization of CmCCDl, a carotenoid cleavage dioxygenase from melon. Phytochemistry [J],2006,67:1579-1589
    [14]Li Z, Yao L, Yang Y, etc. Transgenic approach to improve quality traits of melon fruit. Scientia Horticulturae [J],2006,108:268-277
    [15]Pitrat M. Gene list for melon. Cucurbit Genetics Cooperative Report [J],2002,25:76-93
    [16]Portnoy V, Diber A, Pollock S, etc. Use of non-normalized, non-amplified cDNA for 454-based RNA sequencing of fleshy melon fruit. Plant Genome [J],2011,4,36-46
    [17]Clepet C, Joobeur T, Zheng Y, etc. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics [J],2011,12:252
    [18]Garcia-Masa J, Benjaka A, Sanseverinoa W, etc. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America [J],109:11872-11877
    [19]Diatchenko L, Lau Y F, Campbell A P, etc. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America [J],199693:6025-6030
    [20]Kesari R, Trivedi P K, Nath P. Ethylene-induced ripening in banana evokes expression of defense and stress related genes in fruit tissue. Postharvest Biology and Technology [J],2007,46:136-143
    [21]Manrique-Trujillo S M, Ramirez-Lopez A C, Ibarra-Laclette E, etc. Identification of genes differentially expressed during ripening of banana. Journal of Plant Physiology [J],2007,164:1037-1050
    [22]Xu B, Su W, Liu J, Wang J, etc. Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta [J],2007,226:529-539
    [23]Jin Z Q, Xu B Y, Liu J H, etc. Identification of genes differentially expressed at the onset of the ethylene climacteric in banana. Postharvest Biology and Technology [J],2009,52:307-309
    [24]de Godoy A, Cordenunsi B R, Lajolo F M, etc. Differential display and suppression subtractive hybridization analysis of the pulp of ripening banana. Scientia Horticulturae [J],2010,124:51-56
    [25]Choi J W, Kim G B, Huh Y C, etc. Cloning of genes differentially expressed during the initial stage of fruit development in melon (Cucumis melo cv. Reticulatus). Molecules and Cells [J],2004,17:237-241
    [26]Nagasawa M, Mori H, Shiratake K, etc. Isolation of cDNAs for genes expressed after/during fertilization and fruit set of melon(Cucumis melo L.). Journal of the Japanese Society for Horticultural Science [J],2005, 74:23-30
    [27]Portnoy V, Benyamini Y, Bar E, etc. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon(Cucumis melo L.) rinds. Plant Molecular Biology [J],2008,66:647-661
    [28]Pimentel P, Salvatierra A, Moya-Leon M A, etc. Isolation of genes differentially expressed during development and ripening of Fragaria chiloensis fruit by suppression subtractive hybridization. Journal of Plant Physiology [J],2010,167:1179-1187
    [29]郝金凤,哈斯阿古拉.富含多糖的甜瓜果肉中提取总RNA方法的比较研究.北方园艺[J],2010(5):15-18
    [30]Tatusov R L, Natale D A, Garkavtsev I V, etc. The COG database:new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research [J],2001,29(1):22-28
    [31]Ashburner M, Ball C A, Blake J A, etc. Gene ontology:tool for the unification of biology. Nature Genetics [J], 2000,25:25-29
    [32]Ye J, Fang L, Zheng H, etc.2006. WEGO:a web tool for plotting GO annotations. Nucleic Acids Research [J],2006,34:293-297
    [33]Nafees A K. Ethylene action in plants. Heidelberg:Springer, Berlin,2006
    [34]Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plant. Annual Review of Plant Physiology and Plant Molecular Biology [J],1984,35:155-189
    [35]Howe C, Feamley I, Walker J, etc. Nucleotide sequences of the genes for the alpha, beta and epsilon subunits of wheat chloroplast ATP synthase. Plant Molecular Biology [J],1985,4:333-345
    [36]Schwab W, Vidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant Journal [J],2008,54:712-732
    [37]Buescher R H, Buescher R W. Production and stability of (E, Z)-2,6-nonadienal, the major flavor volatile of cucumbers. Journal of Food Sciences [J],2001,66:357-361
    [38]Cho M J, Buescher R W, Johnson M, etc.2004. Inactivation of pathogenic bacteria by cucumber volatiles (E, Z)-2,6-nonadienal and (E)-2-nonenal. Food Protection [J],2004,67:1014-1016
    [39]Giovannoni J J. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology [J],2001,52:725-749
    [40]Lois L M, Rodriguez-Concepcion M, Gallego F, etc. Carotenoid biosynthesis during tomato fruit development:regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant Journal [J],2000, 22:503-513
    [41]Rodriguez-Concepcion M, Ahumada I, Diez-Juez E, etc.1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant Journal [J],2001,27:213-222
    [42]Ren G, An K, Liao Y, etc. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiology [J],2007,144:1429-1441
    [43]Grant M, Bevan M W. Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen-sink tissues. Plant Journal [J],1994,5:695-704
    [44]Dickson J M J J, Vincze E, Grant M R, etc. Molecular cloning of the gene encoding developing seed 1-asparaginase from Lupinus angustifolius. Plant Molecular Biology [J],1992,20:333-336
    [45]Manrique-Trujillo S M, Ramirez-Lopez A C, Ibarra-Laclette E, etc. Identification of genes differentially expressed during ripening of banana. Journal of Plant Physiology [J],2007,164:1037-1050
    [46]Nakamura Y, Sawada H, Kobayashi S, etc. Expression of soybean b-1,3-endoglucanase cDNA and effect on disease tolerance in kiwi fruit plants. Plant Cell Reports [J],1999,18:527-532
    [47]Fotopoulos V, Gilbert M J, Pittman J K, etc. The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, At beta fructl, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiology [J],2003,132:821-829
    [48]Fragoso S, Espindola L, Paez-Valencia J, etc. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation. Plant Physiology [J],2009,149:1906-1916
    [49]Whitaker B D, Lester G E. Cloning of phospholipase Da and lipoxygenase genes CmPLDal and CmLOX1 and their expression in fruit, floral, and vegetative tissues of "Honey Brew'hybrid Honeydew melon. Journal of the American Society for Horticultural Science [J],2006,131:544-550
    [50]Goulao L F, Oliveira C M. Molecular identification of novel differentially expressed mRNAs up-regulated during ripening of apples. Plant Science [J],2007,172:306-318
    [51]Huang S, Li R, Zhang Z, etc. The genome of the cucumber, Cucumis sativus L. Nature Genetics [J],2009, 41:1275-1281
    [52]Nieto C, Morales M, Orjeda G, etc. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant Journal [J],2006,48:452-462
    [53]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants. Plant Molecular Biology [J],1996,32:191-222
    [54]Vierling E. The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology [J],1991,42:579-620
    [55]Lin B L, Wang J S, Liu H C, etc. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones [J],2001.6:201-208
    [56]Sung D Y, Vierling E, Guy C L. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiology [J],2001,126:789-800
    [57]Guy C L, Li Q B. The organization and evolution of the spinach stress 70 molecular chaperone gene family. The Plant Cell [J],199810:539-556
    [58]Pua E C, Lee Y C. Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana(Musa acuminata cv. Williams). Gene [J],2003,305:133-140
    [59]Reddy A R, Ramakrishna W, Sekhar A C, etc. Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. subsp. indica cv. Nagina 22). Genome [J] 2002, 45:204-211
    [60]Thomine S, Lelievre F, Debarbieux E, etc. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant Journal [J],2003,34:685-695
    [61]Segond D, Dellagi A, Lanquar V, etc. NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection. Plant Journal [J],2009,58,195-207
    [62]Hagen G, Guilfoyle T. Auxin-responsive gene expression:genes, promoters and regulatory factors. Plant Molecular Biology [J],2002,49:373-385
    [63]Timpte C, Lincoln C, Pickett F B, etc. The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant Journal [J],1995,8:561-569
    [64]van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis:conservation and divergence in structure and function. BMC Genomics [J],2003,4:50
    [65]Goulao L F, Oliveira C M. Molecular identification of novel differentially expressed mRNAs up-regulated during ripening of apples. Plant Science [J] 2007,172:306-318
    [66]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology [J],2001,4:447-456
    [67]Zimmermann I M, Heim M A, Weisshaar B, etc. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant Journal [J],2004,40:22-34
    [68]Matus J, Aquea F, Arce-Johnson P. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology [J],2008,8:83
    [69]Palapol Y, Ketsa S, Lin-Wang K, etc. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen(Garcinia mangostana L.) fruit during ripening. Planta [J],2009,229:1323-1334
    [70]Martin C, Paz-Ares J. MYB transcription factors in plants. Trends in Genetics [J],1997,13:67-73
    [71]Shinozaki K, Yamaguchi S, Urao T, etc. Nucleotide sequence of a gene from Arabidopsis thaliana encoding a myb homologue. Plant Molecular Biology [J],1992,19:493-499
    [1]Guo H W, Ecker J R. The ethylene signaling pathway:new insights. Current Opinion in Plant Biology [J], 2004,7:40-49
    [2]Wang W Y, Esch J J, Shiu SH-H, etc. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. The Plant Cell [J],2006, 18:3429-3442
    [3]Zhong G V, Burns J K. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Molecular Biology [J],2003,53:117-131
    [4]安丰英,郭红卫.乙烯信号转导的分子机制.植物学通报[J],2006,23(5):531-542
    [5]Bisson M M, Bleckmann A, Allekotte S, etc. EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochemistry [J],2009,424:1-6
    [6]Alonso J M, Hirayama T, Roman G, etc. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science [J],1999,284:2148-2152
    [7]Cary A J, Liu W, Howell S H. Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiology [J],1995,107:1075-1082
    [8]Fujita H, Syono K. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiology [J],1996,37:1094-1101
    [9]Penninckx I A M A, Thomma B P H J, Buchala A, etc. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. The Plant Cell [J],1998, 10:2103-2114
    [10]Beaudoin N, Serizet C, Gosti F, etc. Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell [J],2000,12:1103-1116
    [11]Wang Y, Liu C, Li K, etc. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Molecular Biology [J],2007,64:633-644
    [12]Chao Q, Rothenberg M, Solano R, etc. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ethylene-insensitive3 and related proteins. Cell [J],1997,89:1133-1144
    [13]Solano R, Stepanova A, Chao Q, etc. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ethylene insensitive3 and ethylene-response factorl. Genes & Development [J],1998,12:3703-3714
    [14]Ohme-Takagi M. Ethylene-inducible DNA binding proteins that interact with an ethylene responsive element. The Plant Cell [J],1995,7:173-182
    [15]Fujimoto S Y, Ohta M, Usui A, etc. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. The Plant Cell [J],2000, 12:393-404
    [16]Nakano T, Suzuki K, Fujimura T, etc. Genome wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology [J],2006,140:411-432
    [17]Sakuma Y, Liu Q, Dubouzet J, etc. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochemical and Biophysical Research Communications [J],2002,290(3):998-1000
    [18]Yin X R, Chen K S, Allan A C,etc. Ethylene-induced modulation of genes associated with the ethylene signaling pathway in ripening kiwifruit. Journal of Experimental Botany [J],2008,59:2097-2108
    [19]El-Sharkawy I, Kim WS, EI-Kereamy A, etc. Isolation and characterization of four ethylene signal transduction elements in plums (Prunus Salicina L.). Journal of Experimental Botany [J],2007, 58:3631-3643
    [20]Miiller R, Owen C A, Xue Z T, etc. Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. Journal of Experimental Botany [J], 2002,53(371):1223-1225
    [21]Susana Manzano, Cecilia Martinez, Pedro Gomez, etc. Cloning and characterization of two CTRl-like genes in Cucurbita pepo:reulation of their expression during male and female flower development. Sexual Plant Reproduction [J],2010,23:301-313
    [22]Alonso J M, Hirayama T, Roman G, etc. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science [J],1999,284:2148-2152
    [23]Shibuya K, Barry K G, Ciardi J A, etc. The central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiology [J],2004,136:2900-2912
    [24]Jun S H, Han M J, Lee S, etc. OsEEN2 is a positive component in ethylene signaling in rice. Plant Cell Physiology [J],2004,45:281-289
    [25]. Wang J, Chen G, Hu Z, etc. Cloning and characterization of the EIN2-homology gene LeEIN2 from Tomato. DNA Sequence [J],2007,18:33-38
    [26]Penmetsa R, Uribe VP, Anderson J, etc. The Medieago Truncatula Ortholog of Arabidopsis EIN2, Sickle, Is a negative regulator of symbiotic and pathogenic microbial associations. Plant [J],2008,55:580-595
    [27]Begheldo M, Manganaris G A, Bonghi C, etc. Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in stony hard peaches. Postharvest Biology and Technology [J],2008,48:84-91
    [28]Fu Z, Wang H, Liu J, etc. Cloning and characterization of a DCEIN2 gene responsive to ethylene and sucrose in cut flower carnation, Plant Cell Tissue and Organ Culture [J],2011,105:447-455
    [29]Huang Sh Zh, Sawaki T, Takahashi A, etc. Melon EIN3-like transcription factors (CmEIL1 and CmEIL2) are positive regulators of an ethylene- and ripening-induced 1-aminocyclopropane-l-carboxylic acid oxidase gene (CM-ACO1). Plant Science [J],2010,178(3):251-257
    [30]Tournier B, Sanchez-Ballesta Mt, Jones B, etc. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Letters [J],2003, 550(1-3):149-154
    [31]Wang A, Tan D, Takahashi A, etc. MdERFs, two ethylene-response factors involved in apple fruit ripening. Journal of Experimental Botany [J],2007,58(13):3743-3748
    [32]Yin X R, Allan A C, Chen K S, etc. Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant physiology [J],2010,153(3):1280-1292
    [33]Ei-Sharkawy, Sherif S, Mila I, etc. Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening. Journal of Experimental Botany [J],2009, 60(3):907-922
    [34]赵相娟,张静,魏绍冲.桃果实乙烯反应因子PpERF1基因的克隆及序列分析.中国农学通报[J],2009,25(8): 38-41
    [35]Francesco L, Federico G, Sara Z, etc. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics [J],2010,11:719
    [36]张凌云.乙烯诱导柑橘果实脱落的转录基因组学研究及乙烯诱导基因的克隆和鉴定[D].重庆:西南大学,2010
    [37]姚远,高峰,郝金凤,哈斯阿古拉.甜瓜乙烯信号转导途径关键因子基因CTR1的克隆及表达特性分析.生物技术通报[J],2011(11):83-87
    [38]郝金凤,哈斯阿古拉.富含多糖的甜瓜果肉中提取总RNA方法的比较研究.北方园艺[J],2010(5):15-18
    [39]萨姆布鲁克J,拉塞尔D W(著);黄培堂等(译).分子克隆实验指南[M].第三版.北京:科学出版社,2002.
    [40]姚远.甜瓜乙烯信号转导途径关键因子CTR1基因的克隆及表达特性分析[D].呼和浩特:内蒙古大学,2011.
    [41]Hu Z, Deng L, Chen X, etc, Co-suppression of the EIN2-Homology Gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russian Journal of Plant Physiology [J],2010,57:554-559
    [42]Zhu H L, Zhu B Z, Shao Y, etc. Tomato fruit development and ripening are altered by the silencing of LEEIN2 gene, Journal of Integrative Plant Biology [J],2006,48:1478-1485
    [43]Guo H W, Ecker J R. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell [J],2003,115:667-677
    [44]Yoo S, Cho Y, Tena G, etc. Dual control of nuclear E1N3 by bifurcate MAPK cascades in C2H4 signaling. Nature [J],2008,451:789-795
    [45]He W R, Brumos J, Li H J, etc. A Small-molecule screen identifies 1-kynurenine as a competitive inhibitor of taal/tar activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. The Plant Cell [J], 2011
    [46]郭红卫,朱自强,冯莹.基因EIN3和EIL1在促进植物根毛发育中的应用[P].中华人民共和国:CN102220370A,2011.04.
    [47]Mizuno Sh, Yosuk H, Sonoda M, etc. Isolation and characterization of three DREB/ERF-type transcription factors from melon (Cucumis melo). Plant Science [J],2006,170(6):1156-1163
    [1]关军锋.果实品质生理[M].北京:科学出版社,2008
    [2]Gray J E, Picton S, Giovannoni J J, etc. The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening. Plant Cell and Environment [J],1994,17:557-571
    [3]Deikman J. Molecular mechanisms of ethylene regulation of gene transcription. Physiologia Plantarum [J], 1997,100:561-566
    [4]Giovannoni J. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology [J],2001,52:725-749
    [5]Oeller P W, Wong L, Taylor L, etc. Reversible inhibition of tomato fruit senescence by antisense RNA. Science [J],1991,254:437-439
    [6]Ezura H, Hitomi A, Higashi K, etc. Introduction of ACC Synthase Antisense Gene to Muskmelon (Cucumis melo L. var. reticulatus) [A]. In:Abak K, Buyukalaca S. First International Symposium on Cucurbits, Adana,Turkey,1997
    [7]Ayub R A, Guis M, Amor M B etc. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechnology [J],1996,14:862-866
    [8]骆蒙,李天然,张治中.河套蜜瓜Cucumis melo L. cv Hetao成熟期中某些生理生化过程的变化.内蒙古大学学报(自然科学版)[J],1996,27(2):234-236
    [9]骆蒙,方天祺,哈斯等.ACC含量、EFE活性在甜瓜乙烯生成中的变化与乙烯生成限速的初探.内蒙古大学学报(自然科学版)[J],1997,28(2):243-247
    [10]哈斯阿古拉.甜瓜耐贮藏基因工程研究[D].呼和浩特:内蒙古大学,2004.
    [11]郝金凤.无载体无选择标记转基因耐贮藏甜瓜的培育[D].呼和浩特:内蒙古大学,2010.
    [12]Hao J F, Niu Y D, Yang B J, etc. Transformation of a marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube pathway. Biotechnology Letters [J],2010,33(1):55-61
    [13]哈斯阿古拉,包秋华,牛一丁,等.甜瓜果实特异性表达黄瓜素基因启动子区的克隆和序列分析.内 蒙古大学学报(自然科学版)[J],2006,37(1):46-49
    [14]包秋华,王磊,牛一丁,等.甜瓜黄瓜素基因启动子表达载体的构建及分析.西北植物学报[J],2011,31(11):2153-2157
    [15]哈斯阿古拉,牛一丁,张丽,等.花粉管通道法转基因技术在甜瓜品种河套蜜瓜上的应用.内蒙古大学学报(自然科学版)[J],2007,38(4):419-423
    [16]Ezura H, Owino W O. Melon, an alternative model plant for elucidating fruit ripening. Plant Science [J], 2008,175:121-129
    [17]玉庄.转ACC氧化酶反义基因河套蜜瓜耐贮藏品系的选育[D].呼和浩特:内蒙古大学,2008.
    [18]陈雷.不同品种薄皮甜瓜果实成熟和采后生理生化变化规律的研究[D].哈尔滨:东北农业大学,2000.
    [19]Xue H, Yang Y T, Wu CA, etc. TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theoretical and Applied Genetics [J] 2005, 110(4):620-627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700