等离子体点火对脉冲爆轰发动机两相爆轰过程影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲爆轰发动机(Pulse Detonation Engine,简称PDE)是一种利用脉冲式爆轰波产生的高温、高压燃气来获得推力的新概念发动机。它具有热循环效率高、结构简单、重量轻、工作范围宽等特点,在未来的航空航天与兵器领域具有广阔的应用前景。等离子体点火具有点火能量大、能量转移效率高、可加速化学反应等特点,能够极大地缩短点火延迟时间和提高点火起爆成功率。本文以等离子体点火的液体燃料脉冲爆轰发动机为研究对象,根据脉冲爆轰发动机流场的特点,建立合理的数学物理模型,应用时空守恒元和求解元方法(简称CE/SE方法)进行数值求解,用Fortran语言编写程序,对脉冲爆轰发动机中等离子体点火和汽油/空气两相燃烧转爆轰过程进行了一维、二维、三维的数值模拟,并在此基础上,进行了相关的脉冲爆轰发动机实验研究。主要内容包括:
     (1)建立了脉冲爆轰发动机中考虑等离子体点火的一维两相爆轰的数学物理模型,推导了相应的一维CE/SE方法计算格式,编写了相关计算程序,实现了对脉冲爆轰发动机中等离子体点火和气液两相燃烧转爆轰过程的数值模拟。
     (2)建立了等离子体发生器内外流场的二维/轴对称数学物理模型,推导了二维含扩散项CE/SE方法的计算格式以及流场、电磁场参数耦合的雅可比系数矩阵,编写了相关计算程序,通过对耦合的流体力学方程与电磁学方程求解,实现了对等离子体发生器内外流场的数值模拟,获得了等离子体射流的温度、压力、速度等参数的变化规律。
     (3)建立了考虑等离子体点火的脉冲爆轰发动机二维/轴对称两相爆轰的数学物理模型,采用CE/SE方法数值求解,编写了相关计算程序,实现了对脉冲爆轰发动机中等离子体点火和气液两相爆轰的二维/轴对称数值模拟,分析了两种等离子体点火位置对脉冲爆轰发动机点火起爆过程的影响。结果表明:点火位置对燃烧转爆轰过程有影响。采用壁面点火方式时,点火位置靠近推力壁可以缩短点火起爆的时间和距离。
     (4)建立了脉冲爆轰发动机中考虑组分反应的二维/轴对称两相爆轰控制方程,采用CE/SE方法进行数值求解,编写了相关计算程序,分析了不同的等离子体射流能量和射流时间对点火起爆过程的影响以及考虑组分反应模型和不考虑组分反应模型在描述脉冲爆轰发动机点火起爆过程中的异同。结果表明:在一定范围内增加等离子体射流能量与射流时间可以缩短形成稳定爆轰波的时间和距离。在爆轰波形成之前,考虑组分反应模型能更为细致地反映管内流场变化;在稳定爆轰波形成之后,考虑组分反应模型和不考虑组分反应模型对爆轰波的描述基本相同。
     (5)建立了等离子体点火的脉冲爆轰发动机三维数学物理模型,推导了三维CE/SE方法的计算格式,编写了相关计算程序,实现了对考虑点火室结构的脉冲爆轰发动机点火起爆过程的数值模拟,分析了不同进气速度条件下凹槽+单环片、凹槽+双环片点火室结构对点火起爆过程的影响以及三维模型和二维模型在脉冲爆轰发动机内反映流场时的异同。结果表明:在脉冲爆轰发动机中设置点火室可以显著降低点火位置的气流速度,并在点火室内形成大范围的高压区域。在10m/s~200m/s的填充气流速度下,凹槽+双环片点火室的点火起爆时间和距离距略小于凹槽+单环片点火室,随着气流速度的提高,两者间的差距逐渐缩小。随着爆轰管内填充气流速度提高,形成稳定爆轰波的时间和距离均缩短。在点火室区域波传播的三维效应非常明显,在稳定爆轰波形成之后,管内的三维效应不明显。
     (6)建立了脉冲爆轰发动机中考虑组分反应的三维两相爆轰控制方程,采用CE/SE方法进行数值求解,编写了相关计算程序,比较了等离子体点火条件下在点火室局部形成的三种燃料/氧化剂配比对点火起爆过程的影响。结果表明:提高点火室局部氧气的质量浓度能在点火后加速化学反应速率,增强燃烧波强度,缩短点火起爆的时间和距离。同时增加点火室局部燃料和氧气的质量浓度则可以在初始阶段形成强度较弱的爆轰波,进一步缩短点火起爆的时间和距离。
     (7)进行了以液态汽油/空气为工质、工作频率为10Hz~30Hz的脉冲爆轰发动机实验研究,通过改变点火室局部的燃料/氧化剂配比,得到了等离子体点火和常规火花点火条件下脉冲爆轰发动机的点火延迟时间、燃烧转爆轰时间和工作频率之间的关系。实验结果表明:随着脉冲爆轰发动机工作频率的提高,点火延迟时间逐渐减少。燃烧转爆轰时间基本不受工作频率的影响。等离子体的点火延迟时间小于常规火花点火的点火延迟时间,随着工作频率的提高,点火延迟时间减少的程度下降。在多种工作频率下,等离子体点火的燃烧转爆轰时间均略小于常规火花点火的燃烧转爆轰时间。提高点火室局部氧气质量浓度可以缩短点火延迟时间和燃烧转爆轰时间。
     本文在国内首次将等离子体点火技术应用于脉冲爆轰发动机的点火起爆过程,分析了等离子体点火对脉冲爆轰发动机燃烧转爆轰过程的影响,研究了脉冲爆轰发动机中等离子体点火起爆的机理,实现了用等离子体点火起爆技术缩短燃烧转爆轰时间和距离的目的,对提高脉冲爆轰发动机的性能具有重要的理论意义和工程实际价值。
Pulse Detonation Engine (PDE) is an innovative propulsion system that utilizes repetitive detentions to produce thrust and power. It has a broad application prospect in future aerospace and weapon fields with the advantages of high thermal cycle efficiency, hardware simplicity, light weight and wide working scope. Plasma ignition has large ignition energy, high transfer efficiency and can accelerate chemical reaction rate, which can greatly shorten the ignition delay time and improve the success rate of ignition-detonation. The plasma ignition PDE with gasoline/air mixture was researched. The proper mathematical and physical models were built according to the flow characteristics. The governing equations were solved by CE/SE (the method of conservation element and solution element). The processes of plasma ignition and two-phase flow of detonation were simulated by one-dimensional, two-dimensional and three-dimensional numerical method. The main contents are as following.
     (1)The One-dimensional two-phase detonation equations of plasma jet ignition were established. One-dimensional CE/SE was induced to simulate the processes of plasma jet ignition and two-phase DDT (Deflagration to Detonation Transition). The corresponding numerical calculation was programmed.
     (2)The two-dimensional axial-symmetry mathematical and physical model of the internal and external flow field in plasma generator was established. The computing format of two-dimensional CE/SE with diffusion item was deduced to solve the coupled fluid dynamic equations and Maxwell equations. The variation of temperature, pressure and velocity of plasma jet were obtained.
     (3)The two-dimensional/axisymmetric two-phase detonation mathematical and physical model of plasma ignition was established. The processes of plasma ignition and two-phase detonation were numerical simulated by CE/SE. The effects of two different ignition methods on ignition-detonation process were analyzed. The results show that the ignition position has an effect on DDT. When it's near the thrust wall, the time and distance of ignition-detonation can be shortened by radial ignition.
     (4)The multicomponent two-dimensional/axisymmetric two-phase detonation equations were solved by CE/SE. The effects of different plasma jet time and jet energy on the ignition-detonation process were analyzed and discussed, and the similarities and differences were analyzed on condition that considering the multicomponent reaction model or not. The results show that increasing the energy and time of plasma jet can shorten the time and distance of forming stable detonation wave within certain scope. Before the detonation wave is formed, the two-phase detonation flow field is more meticulous reacted by considering the multicomponent reaction model, while after that, the discretions of the detonation wave are almost the same by considering the multicomponent reaction model or not.
     (5)The three-dimensional mathematical and physical model of the plasma ignition was established. The computing format of three-dimensional CE/SE was deduced. The numerical simulation of ignition-detonation process was carried out by considering the ignition chamber structure. The influences of groove-single ring piece and groove-double ring piece ignition chambers structure on the ignition-detonation process were analyzed in different air inlet velocity. The similarities and differences between two-dimensional model and three-dimensional model were analyzed in reactions of the internal flow field. The results show that using ignition chamber can significantly reduce the airflow velocity in ignition position and form a wide range of high-pressure areas in the ignition chamber. In lOm/s-200m/s filled airflow velocity, the ignition-detonation time and distance of groove-double loop piece ignition chamber are shorter than that of groove-single ring piece ignition chamber. As air inlet velocity increases, the difference between them gradually reduces. The time and distance of developing steady detonation wave are shortened by increasing air inlet velocity. The three-dimensional effect of wave propagation in ignition chamber is very obvious, while the result is just the opposite after the steady detonation wave is formed.
     (6)The multicomponent three-dimensional two-phase detonation equations were solved by CE/SE. The effects of three kinds of fuel/oxidant mass ratio on the ignition-detonation process which formed in the ignition local areas during plasma ignition were analyzed and compared. The results show that increasing the quality concentration of local oxygen in ignition areas can accelerate chemical reaction rate, enhance the combustion wave intensity and shorten the time and distance of ignition-detonation process. Meanwhile increasing the local fuel and oxygen concentration in ignition areas can form weak detonation wave at the beginning, which further shorten the time and distance of ignition-detonation process.
     (7)The air breathing PDE which used gasoline/air was experimental researched under 10Hz-30Hz. By changing the fuel/oxidant mass ratio in the ignition local areas, the relationships among ignition delay time, DDT time and working frequency were obtained in plasma ignition and conventional spark ignition. The results show that the ignition delay time decreases when the working frequency increases. The DDT time is mainly free from the impact of working frequency. The ignition delay time of plasma ignition is less than that of conventional spark ignition, while the percentage of the reduced ignition delay time declines as the working frequency increases. The DDT time is slightly shorter than that of conventional spark ignition in all working frequency. Increasing the oxygen quality concentration can shorten the ignition delay time and DDT time.
     In this thesis, the plasma ignition was first used in ignition-detonation progress of PDE in domestic.The effect of plasma ignition on ignition-detonation process was analyzed, the mechanism of plasma ignition was researched, the purpose to shorten the time and distance of combustion to detonation was achieved, all of which have great theoretical and practical value of improving the performance of PDE.
引文
[1]Bussing T, Pappas G. An Introduction to Pulse Detonation Engines. AIAA,1994-0263
    [2]Nicholas C, Ephraim G. A Review of Pulse Detonation Engine Research at the University of Cincinnati. AIAA,2007-5697
    [3]Dean A J. A Review of PDE Development for Propulsion Applications. AIAA, 2007-985
    [4]翁春生,王浩.计算内弹道学.北京:国防工业出版社,2006
    [5]严传俊,范伟.脉冲爆震发动机原理及关键技术.西安:西北工业大学出版社,2005
    [6]金志明,翁春生.高等内弹道学.北京:高等教育出版社,2003
    [7]Meyer T R, Hoke J L, Brown M S. Experimental Study of Deflagration to Detonation Enhancement Techniques in a H2/Air Experiments During the Development of a Pulse Detonation Engine. AIAA,1996-3263
    [8]Cooper M, Jackson S. Direct Experimental Impulse Measurements for Detonation and Deflagrations. AIAA,2001-3812
    [9]Cooper M. The Effect of Nozzles and Extensions on Detonation Tube Performance. AIAA,2002-3628
    [10]Rasheed A, Dean A J. Detonation Initiation in Moving Ethylene-Air Mixtures at Elevated Temperature and Pressure. AIAA,2006-4793
    [11]吴其芬,李桦.磁流体力学.长沙:国防科技大学出版,2007
    [12]张孝勇.等离子燃烧器点火特性的试验研究与数值模拟:[博士学位论文].保定:华北电力大学,2007
    [13]Rodriguez J. Investigation of Transient Plasma Ignition for a Pulse Detonation Engine. ADA432979,2005
    [14]Medina C A. Evaluation of Straight and Swept Ramp Obstacles on Enhancing Deflagration-to-Detonation Transition in Pulse Detonation Engines. ADA462657, 2006
    [15]李海鹏,何立明,张建邦.脉冲爆震发动机技术发展研究.火力与指挥控制.2001,33(2):1-4
    [16]Hoffmann N. Reaction Propulsion by Intermittent Detonative Combustion. Ministry of Supply, Volkenrode Transition,1940
    [17]Krzycki L J. Performance Characteristics on Intermittent-Detonation Devices. Navweps Report 7655, AD-284312, U. S. Naval Ordnance Test Station, China Lake, California,1962(6)
    [18]Helman D, Shreeve R P, Eidelman S. Detonation Pulse Engine. AIAA,1986-1683
    [19]范玮,严传俊,黄希桥等.新概念脉冲爆震发动机研究的最新进展.飞机设计,2003,(2):55-61
    [20]张志宏.脉冲爆震发动机研究现状与展望.飞航导弹,2009,(05):58-61
    [21]Barr L. Pulse Detonation Engine Flies into History. Press Release, Air Force Material Command, http://www.afmc.af.mil/news/story_print.asp?id=123098900, May 2008
    [22]Kasahara J, Hirano M, Matsuo A, et al. Flight Experiments Regarding Ethylene-oxygen Single-tube Pulse Detonation Rockets. AIAA,2004-3918
    [23]Kasahara J, Hasegawa A, Nemoto T, et al. Thrust Demonstration of a Pulse Detonation Rocket 'TODOROKI'. AIAA,2007-5007
    [24]Piton D, Prigent A, Serr L, et al. Performance of a Valveless Air Breathing Pulse Detonation Engine. AIAA,2004-3749
    [25]张群,严传俊,范玮等.煤油/空气两相脉冲爆震发动机探索性试验研究.航空动力学报,2006,21(1):50-55
    [26]蒋波,严传俊,黄希桥等.脉冲爆震火箭发动机模拟运动的初步探索性实验研究.西北工业大学学报,2008,26(3):368-372
    [27]范伟,严传俊,邓君香等.模型两相脉冲爆震发动机推力的测试与研究.航空动力学报,2001,16(2):185-187
    [28]邱华,李红江,严传俊等.脉冲爆震发动机试验模型测控系统设计与实现.计算机测量与控制学报,2006,14(1):5-11
    [29]邓君香,郑龙席,严传俊等.脉冲爆震燃烧室与涡轮相互作用的试验.航空动力学报,2009,24(2):307-312
    [30]郑龙席,邓君香,严传俊等.混合式脉冲爆震发动机原理性试验系统设计、集成与调试.实验流体力学,2009,23(1):74-78
    [31]郑殿峰,王家骅,王波等.脉冲爆震发动机旋流式气动阀工作机理和扰流器阻力特性的实验研究.南京航空航天大学学报,2005,37(1):101-105
    [32]范育新,王家骅,李建中等.脉冲爆震发动机供油自适应控制优化设计.推进技术,2005,26(1):62-67
    [33]张义宁,王家骅,张靖周.脉冲爆震火箭发动机关键技术和样机研究.南京航空航天大学学报,2006,38(5):529-534
    [34]张义宁,王家骅,刘鸿等.多循环脉冲爆震发动机工作过程中延迟时间研究.航空动力学报,2007,22(2):228-232
    [35]何小民,张膨岗,王家骅.爆震管内燃烧到爆震转捩过程的实验研究.推进技术,2005,26(3):252-255
    [36]李建中,王家骅,唐豪.煤油/空气三管脉冲爆震发动机共用尾喷管研究.航空动力学报,2009,30(11):2052-2058
    [37]Ma D H, Weng C S. Application of Two-dimensional Viscous CE/SE Method in Calculation of Two-phase Detonation. Journal of China Ordnance,2010,6(1):5-9
    [38]王杰,翁春生.不同喷管形状对PDE性能影响分析.弹箭制导学报,2008,27(2):177-180
    [39]王杰,刘建国,白桥栋等.填充系数对脉冲爆震发动机性能影响分析.南京理工大学学报,2008,32(1):1-4
    [40]王杰,翁春生.多管脉冲爆震发动机管外复杂波系的研究.力学与实践,2008,30(4):39-43
    [41]王杰,翁春生.多管脉冲爆轰发动机外三维流场的数值计算.力学学报,2009,41(6):835-839
    [42]王研艳,翁春生.带收敛喷管脉冲爆轰发动机的性能分析.南京师范大学学报,2010,10(4):34-40
    [43]翁春生,王杰,白桥栋等.脉冲爆轰发动机进气压力对爆轰影响的实验研究.弹道学报,2008,20(3):1-4
    [44]秦鹏高,李宁,翁春生等.无阀式汽油/空气两相脉冲爆轰发动机试验研究.弹道学报,2010,22(4):54-58
    [45]李建中,王家骅.煤油/空气脉冲爆震发动机强化燃烧装置.航空动力学报,2007,22(4):547-553
    [46]Qiang Li. Experiment on Kerosene-Fueled PDRE:DDT Enhancement by Shchelkin Spirals and Exhaust Plume. AIAA,2007-5008
    [47]New T H. Experimental Investigations on DDT Enhancements by Shchelkin Spirals in a PDE. AIAA,2006-552
    [48]Bradley R P. Impact of DDT Mechanism, Combustion Wave Speed, Temperature, and Charge Quality on Pulsed-Detonation-Engine Performance. AIAA,2005-1342
    [49]Cooper M. Direct Experimental Impulse Measurements for Detonations and Deflagrations in Pulse Detonation Engine. AIAA,2001-3812
    [50]De Witt B, Ciccarelli G, Zhang F, et al. Shock Reflection Detonation Initiation Studies for Pulse Detonation Engines. AIAA,2004-3747
    [51]Hutcheson P, Brophy C, Sinibaldi J, et al. Investigation of Flow Field Properties on Detonation Initiation. AIAA,2006-5099
    [52]Schauer F R, Miser C L, Tucker K C, et al. Detonation Initiation of Hydrocarbon-Air Mixtures in a Pulsed Detonation Engine. AIAA,2005-1343
    [53]Ciccarelli G, Hickey M, Bardon Mike, et al. Investigation of Flame Acceleration Enhancement for a Pulse Detonation Engine Initiation System. AIAA,2004-3746
    [54]Miser C L, King P I, Schauer F R. PDE Flash Vaporization System for Hydrocarbon Fuel Using Thrust Tube Waste Heat. AIAA,2005-3511
    [55]Tucker K C, King P I, Bradley R P, et al. The Use of a Flash Vaporization System With Liquid Hydrocarbon Fuels in a Pulse Detonation Engine. AIAA,2004-868
    [56]Ciccarelli G, Cards J. Detonation Cell Size Measurements for Gaseous Mixtures of JP-10 and Air. AIAA,2005-4212
    [57]Helfrich T M, King P I, Hoke J L, et al. Effect of Supercritical Fuel Injection on the Cycle Performance of a Pulsed Detonation Engine. AIAA,2006-5133
    [58]Miser C L, Helfrich T M, Phelps D K, et al. Supercritical Fuel Density from an Experimental Pulsed Detonation Engine. AIAA,2006-1025
    [59]Sinibaldi J O, Brophy C M. Initiator Detonation Diffraction Studies in Pulse Detonation Engines. AIAA,2001-3466
    [60]Brophy C M, Sinibaldi J O. Performance Characterization of a Valveless Pulse Detonation Engine. AIAA,2003-1344
    [61]Hoke J L, Bradley R P, Gallia J R. The Impact of Detonation Initiation Techniques on Thrust in a Pulsed Detonation Engine. AIAA,2006-1023
    [62]Hoke J L, Schauer F R, King P I. Branched Detonation in a Multi-Tube PDE. ADA453067,2003
    [63]Hausman A, King P, Hoke J L, et al. Direct Initiation by Detonation Branching in a Pulsed Detonation Engine. AIAA,2008-0108
    [64]Hopper D, King P, Hoke J L, et al. Development of a Continuous Branching Pulsed Detonation Engine. AIAA,2008-0112
    [65]Panzenhagen K L. Detonation Branching in a PDE with Liquid Hydrocarbon Fuel. ADA424361,2004
    [66]范伟,严传俊.点火能量等因素对脉冲爆震室压的影响实验.推进技术,2002,23(3):198-201
    [67]黄希桥,严传俊,范玮等.脉冲爆震燃烧强化混合过程的实验研究.燃烧科学与技术,2005,11(3):282-285
    [68]李建玲,范玮,严传俊等.脉冲爆震火箭发动机间接起爆实验研究.热科学与技术,2007,6(3):269-272
    [69]王治武,严传俊,范玮等.点火能量对脉冲爆震发动机性能的影响.推进技术,2009,30(2):224-228
    [70]王治武,严传俊范玮等.脉冲爆震发动机的点火-起爆性能.燃烧科学与技术,2009,15(5):412-416
    [71]李建中,王家骅,范育新等.煤油/空气脉冲爆震发动机激波反射起爆研究.工程热物理学报,2007,28(2):347-350
    [72]张义宁,王家骅,刘鸿等.汽油/空气两相脉冲爆震发动机触发爆震的研究.航空动力学报,2006,21(4):663-667
    [73]范育新,王家骅,李建中等.脉冲爆震发动机的蒸发助爆器试验.航空动力学报,2006,21(2):308-314
    [74]范育新,王家骅,李建中等.脉冲爆震发动机扩焰器试验研究.推进技术,2006,27(2):171-175
    [75]张义宁,唐豪,王家骅等.预爆管式脉冲爆震原型机试验研究.航空学报,2009,30(3):391-396
    [76]Cambier J L, Adelman H G. Preliminary Numerical Simulation of a Pulsed Detonation Wave Engine, AIAA,1988-2960
    [77]Li C, Kailasanath K. Detonation Initiation in Pulse Detonation Engines. AIAA, 2003-1170
    [78]Cheatham S, Kailasanath K. Numerical Simulations of Multiphase Detonations in Tubes. AIAA,2003-1315
    [79]Cheatham S, Kailasanath K. Multiphase Detonations in Pulse Detonation Engines. AIAA,2004-306
    [80]Ma F H, Choi J Y, Yang V. Numerical Modeling of Valveless Airbreathing Pulse Detonation Engine. AIAA,2005-0227
    [81]Gamezo V N, Ogawa T, Oran E S. Deflagration-to-Detonation Transition in Premixed H2-Air in Channels with Obstacles. AIAA,2007-1172
    [82]孙孔倩,樊未军,杨茂林.CE/SE法模拟爆震波点火及传播过程.航空动力学报,2008,23(2):344-350
    [83]陈英.脉冲爆震发动机不同点火方式DDT过程模拟:[硕士学位论文].南京:南京理工大学,2008
    [84]张宇.脉冲爆震发动机DDT过程数值模拟研究:[硕士学位论文].南京:南京理工大学,2009
    [85]邓君香,严传俊,郑龙席.障碍物对脉冲爆震发动机性能影响的数值模拟.航空学报,2009,30(4):614-621
    [86]张群,闫朝,严传俊.两相爆震波爆燃向爆震转变过程的数值模拟.计算机仿真,2008,25(2):8-12
    [87]张群,蒋建军,严传俊.点火能量对两相爆震波形成影响的数值研究.弹箭与制导学报,2008,28(5):131-134
    [88]王健平,刘云峰,李廷文.脉冲爆轰发动机预爆轰点火数值模拟.空气动力学学报,2004,22(4):475-480
    [89]刘云峰,余荣国,王健平.脉冲爆震发动机快起爆的二维数值模拟.推进技术,2004,25(5):454-457
    [90]董刚,范宝春,蒋勇.连续点火诱导爆轰的数值研究.中国科学技术大学学报,2007,37(11):1439-1444
    [91]陈永刚,何立明,刘建勋.时空守恒元和求解元方法的爆轰波一维数值模拟.推进技术,2005,26(3):256-259
    [92]马丹花,翁春生.二维守恒元和求解元方法在两相爆轰流场计算中的应用.燃烧科学与技术,2010,16(1):86-91
    [93]马丹花,翁春生.考虑液滴尺寸分布气液两相爆轰流场数值仿真.计算机仿真,2011,28(2):401-405
    [94]马丹花,翁春生.脉冲爆轰发动机内三维两相爆轰的数值计算.推进技术,2010,31(4):503-507
    [95]Sinibaldi J O, Rodriguez J, Channel B, et al. Investigation of Transient Plasma Ignition For Pulse Detonation Engines. AIAA,2005-3774
    [96]Gundersen M. Energy-Efficient Transient Plasma Ignition and Combustion. ADA422219,2004
    [97]Gundersen, M. Energy Efficient Transient:Plasma Ignition:Physics and Technology. ADA468806,2007
    [98]Liu J B, Gundersen M, Wang F, et al. Transient Plasma Ignition for Lean Burn Applications. AIAA,2003-0877
    [99]Wang F, Jiang C, Kuthi A, et al. Transient Plasma Ignition of Hydrocarbon-air Mixtures in Pulse Detonation Engines. AIAA,2004-834
    [100]Wang F, Kuthi A, Gundersen M A. Technology for Transient Plasma Ignition [for pulse detonation engines]. AIAA,2005-951
    [101]Wang F, Liu J B, Sinibaldi J, et al. Transient Plasma Ignition of Quiescent and Flowing Air Fuel Mixtures. IEEE Transactions on Magnetics,2005,33(2):844-849
    [102]Busby K, Corrigan J, Yu S T, et al. Effects of Corona, Spark and Surface Discharges on Ignition Delay and Deflagration-to-Detonation Times in Pulsed Detonation Engines. AIAA,2007-1028
    [103]Hackard J C N. Ignition Characteristics for Transient Plasma Ignition of Ethylene/air and JP-10/Air Mixtures in a Pulse Detonation Engine. ADA476068,2007
    [104]Hutcheson P D. Design, Modeling and Performance of a Split Path JP-10/Air Pulse Detonation Engine. ADA462628,2006
    [105]Brophy C. Initiation Improvements for Hydrocarbon/Air Mixtures in Pulse Detonation Applications. AIAA,2009-1611
    [106]Brophy C, Dvorak T, Dausen D. Detonation Initiation Improvements Using Swept-Ramp Obstacles. AIAA,2010-1336
    [107]Ershov A P, Chernikov V A, Surcont O S, et al. Parameters of a Plasma Jet Injected in a Supersonic Air and Propane-Air Mixture Fldws. AIAA,2005-986
    [108]Minato R, Niioka T, Sugiyama H, et al. Numerical Analysis of Supersonic Combustion by a Plasma Torch. AIAA,2005-3424
    [109]Ardelyan N, Bychkov V, Kosmachevsvskii K, et al. Modeling of Plasmas in Electron Beams and Plasma Jets for Aerodynamic Applications. AIAA,2001-3101
    [110]Ardelyan N, Malmuth N, Timofeev I, et al. Modeling of Plasma Jet Interaction with Crossflows for Propulsion Enhancement. AIAA,2003-1191
    [111]Ardelyan N, Bychkov V, Kosmachevsvskii K, et al. Ignition of a Propane-Air Stoichiometric Mixture by A Plasma Jet Generator with a Divergent Nozzle. AIAA, 2005-990
    [112]王丰华,金之俭,朱子述.直流电弧炉电弧等离子体射流的数值模拟.高压电器,2005,41(4):241-248
    [113]张冠忠,谢巍,王俊华.常压下超音速等离子体射流的数值模拟.工程力学,2003,20(5):139-143
    [114]袁行球,李辉,赵太泽.超声速等离子体射流的数值模拟.物理学报,2004,53(8):2638-2643
    [115]Chang S C. The Method of Space-time Conservation Element and Solution Element-a New Approach for Solving the Navier-Stokes and Euler Equations. Journal Computational Physics,1995,119:295-324
    [116]Chang S C, Wang X Y, To W M. Application of the Space-time Conservation Element and Solution Element Method to One-dimensional Convection-diffusion Problems. Journal of Computational Physics,2000,165:189-215
    [117]Zhang Z C, Yu S T, Chang S C. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes. Journal of Computational Physics,2002,175:168-199
    [118]Zhang Z C, Yu S T, Wang X Y, et al. The CE/SE Method for Navier-Stokes Equations Using Unstructured Meshes for Flows at All Speeds. AIAA,2000-0393
    [119]He Hao, Yu S T, Zhang Moujin. Three-dimensional Simulations of Cavity Flows by the Space-Time CE/SE Method. AIAA,2006-1381
    [120]Wang X Y, Chang S C, Jorgenson Philip C E. Accuracy Study of the Space-time CE/SE Method for Computational Aeroacoustics Problems Involve Shock Waves. AIAA,2000-0474
    [121]Yu S T, Chang S C. Direct Calculations of Detonation with Multi-step Finite-rate Chemistry by the Space-time Conservation Element and Solution Element Method. AIAA,1999-3772
    [122]Loh C Y, Hultgren L S, Jorgenson Philip C E. Near Field Screech Noise Computation for an Underexpanded Super Sonic Jet by the CE/SE Method. AIAA,2001-2252
    [123]翁春生,Tay P Gore. CE/SE方法在非定常爆轰计算中的应用.空气动力学学报,2003,21(3):301-310
    [124]李听,翁春生,白桥栋.CE/SE方法在障碍物对爆炸冲击波干扰流场计算中的应用.南京师范大学学报,2007,7(4):33-39
    [125]白桥栋,翁春生.二维CE/SE方法在内弹道湍流两相流动中的应用.兵工学报,2009,30(6):682-687
    [126]白桥栋,翁春生.CE/SE方法在内弹道瞬态两相流中的应用.力学与实践,2008,30(2):21-25
    [127]Wang X Y, Chen C L, Liu Y. The Space-time CE/SE Method for Solving Maxwell's Equations in Time-domain. IEEE Antennas and Propagation Society International Symposium,2002,1:164-167
    [128]Zhang M J, Henry Lin S C, John Yu S T. Application of the Space-time Conservation Element and Solution Element Method to the Ideal Magnetohydrodynamic Equations. AIAA,2002-3888
    [129]李昕,翁春生CE/SE方法模拟等离子体电枢二维MHD效应.工程力学,2009,26(10):240-244
    [130]Li X, Weng C S.2-D Viscous MHD Simulation of Plasma Armatures by the CE/SE Method. Chinese Science Bulletin,2009,54(10):1641-1647
    [131]洪滔,秦承森.气体/燃料液滴两相系统爆轰的数值模拟.爆炸与冲击,1999,19(4):335-342
    [132]张文宏.层流等离子体射流的产生及其某些特性的研究.北京:中国科学院力学研究所,2000
    [133]Malmuth N D, Fomin V M, Maslov A, et al. Influence of a Counterflow Plasma Jet on Supersonic Blunt Body Pressures. AIAA,1999-4883
    [134]吴其芬,李桦.磁流体力学.长沙:国防科技大学出版,2007
    [135]李听.电磁轨道炮电枢特性理论研究:[博士学位论文].南京:南京理工大学,2009
    [136]袁行球.直流电弧等离子体发生器的数值模拟及电子束离子阱物理研究:[博士学位论文].上海:复旦大学现代物理研究所,2004
    [137]Hsu K C, Etemadi K, Pfender E. Study of the Free-burning High-intensity Argon Arc. Journal of Applied Physics,1983,54(3):1293-1299.
    [138]Inaba K. Numerical Simulation of Mixed Fuel Detonations. AIAA,2006-4309
    [139]Venkat E. Investigations of Two-phase Detonations for Performance Estimations of a Pulse Detonation Engine. AIAA,2007-1173
    [140]Westbrook C K, Dryer F L. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology,1981,27:31-43
    [141]Gordon S, Mcbride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. National Aeronautics and Space Administration,1994:NASA-RP-1311
    [142]Brophy C M, Netzer D W. Effects of Ignition Characteristics and Geometry on the Performance of a JP-10/O2 Fueled Pulse Detonation Engine. AIAA 99-2635

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700