地铁隧道变形监测关键技术与分析预报方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程及城市的大规模发展,我国各大城市均在建设高效的地下轨道交通网以解决越来越严重的交通阻塞问题。城市轨道交通网大规模发展建设过程中必然会遇到线路之间交叉、换乘等问题,存在新建线路与既有线路的相互穿越等工程;同时,地铁的开通带来了沿线经济的发展,地铁沿线区间隧道上方、侧方的基坑工程越来越多,临近地铁隧道的地下工程打破了既有地铁隧道的受力平衡,从而引起地铁隧道的变形,如果这些变形得不到控制将会导致严重的后果。对于像北京、天津等城市,早期的地铁线路已建设近50年,需要对地铁线路进行全线整体监测,了解隧道的整体状况。因此研究地铁隧道的长期实时监测方法以及变形数据的分析处理理论对于保障城市地下轨道交通线网安全具有重要的现实意义。
     目前地铁隧道监测主要都是针对受到预期荷载变化的局部区间的监测,很少涉及整体隧道的长期监测;现有的监测方法是以单一监测点的点位变化来反映隧道变形,不能准确反映隧道断面整体变形;同时在大范围、曲线路段变形监测区域无法保证稳定的基准点。因此论文首先提出建立低成本、高效率的地铁隧道全线监测解决方案,以满足地铁隧道整体线路的长期监测以及局部区域重点监测的需要。针对地铁隧道监测方法、隧道统一坐标基准的建立、断面变形特征的提取以及变形数据的分析、预报等方面进行了研究。主要研究内容如下:
     1.在了解现有地铁变形监测的内容、方法的基础上,介绍了无线传感器网络系统,针对其在地铁隧道这一特殊环境的应用进行了深入研究,提出了基于无线传感器网络的地铁隧道相对变形长期监测的可行方案。并将其与局部区域重点监测的自动变形监测和周期性的地铁隧道基准网监测、轨道监测相结合,共同构建低成本、高效率的地铁隧道监测、管理系统。
     2.研究建立隧道统一坐标基准的方法,对自由设站边角交会网在地铁隧道的布网、观测方式进行了研究,分别构建平面网和三角高程网。分析了基准网平面数据的预处理、网平差以及结果精度。针对地铁隧道的大气环境特点提出了自由设站边角交会高程网的构建标准,构建高程控制网并研究其数据处理方法。采用本文方法对某高速铁路建设期间建立的边角交会网观测数据进行处理,分别对其平面网和高程网进行平差计算。计算得到的测站平面点位精度、相邻点位精度以及各测点的平面点位精度均与分析结果一致,能够满足地铁变形监测的需求。同时比较了三角高程网的解算结果与精密几何水准测量平差结果,验证了三角高程基准网的精度和有效性。
     3.顾及已知控制点的误差和各点之间的相关性,进行了自由设站的模拟计算,分析了测站精度。针对自由设站的情况,研究了基于基准点坐标变化的基准网稳定性分析方法。
     4.分析了不均匀B样条曲线的节点矢量确定方法,提出了改进的基于主点的节点矢量确定方法以及非断面信息的自动剔除算法。研究了利用扫描断面点拟合断面特征信息来代替少量单点位移分析断面变形的方法。
     5.分析比较了自由曲线之间的距离度量算法,详细介绍了自由曲线之间的Hausdorff距离的计算方法,确定了以Hausdorff距离作为隧道断面变形特征的距离度量。
     6.提出了顾及施工分析结果的卡尔曼滤波、预报模型。对现有的变形监测数据动态处理方法进行分析比较,主要研究了卡尔曼滤波和时间序列分析算法,以及它们之间的相互转换。采用Midas软件的施工模拟分析功能计算基坑开挖的数值分析模拟结果,并将其作为已知信息加入数据处理中。
Due to the urbanization and large scale development, kinds of cities are considering underground traffic as an efficient means to solve the problem of worsening ground traffic. On one hand, construction of rail systems has to face the issue of transposition or transfer, newly built lines have to pass through the old ones. On the other hand, metros give a boost to the economy along its path, thus the foundation pits around the section is increasing. Those underground projects break the force balance of the existing tunnels, deformation resulted from this will cost significantly if not handled properly. In the cities like Beijing, Tianjing with a history of underground railway operation more than50years, overall monitoring of the whole line is necessary for a better comprehensive understanding. Therefore, the study for long-term, real-time monitoring solution of underground railway tunnels, and data processing and analysis method is crucial to ensure the safe operation of underground traffic systems.
     At present, the tunnel monitoring is mainly about segment deformation under expected stress change, and long-term, overall monitoring has never been tapped:The monitoring method now in use bases its analysis of overall deformation on the changes of individual points, so the overall deformation of tunnel section cannot be reflected accurately. Additionally, the reliable base points cannot be guaranteed in large-scale or curve areas. Therefore, the dissertation presents a subway monitoring and management system featuring low-cost and high-efficiency, targeting at long-term overall monitoring of railway tunnel, as well as major monitoring locally. The study focuses on the method of subway monitoring, the establishment of unified coordinate system, the extraction of section deformation information, the analysis and predicament of deformation data. The main contents are as follows.
     1. On the foundation of the proven contents and methods of subway deformation monitoring, the dissertation introduces wireless sensor network, presenting a feasible program on wireless sensor network applying in long-term monitoring of subway relative deformation. Combining the program with automatic local deformation monitoring and periodic datum network monitoring, a low-cost, high-efficient subway monitoring and management system hence is established.
     2. By combining relative deformation and overall tunnel cross section deformation, a method of unifying tunnel-based coordinate datum is presented. It studies the netting and observation methods of the free station marginal intersection net which is used in tunnels; relatively, structure the plane net and trigonometric height networks; has analyzed preprocessing, net adjustment and results accuracy of the benchmark network graphic data. It proposes a structuring standard of the vertical control network and studies its data processing. The afore said method is utilized in processing the monitoring data of an Intersection Net established during the constructing period of a certain high speed railway. The precision of planar point coordinate and consecutive point coordinate thusly obtained is in accordance with the result of laboratory analysis, and it can meet with subway deformation monitoring. In the meantime, the result of adjusted height obtained by the above method is compared with that of geometrical leveling to verify the precision of trigonometric height networks.
     3. With regard to the error of control points and the correlation between each point, the precision of free station by unified datum network is analyzed and simulated. The dissertation introduces the commonly used methods of stability analysis of datum network, and studies the method based on datum coordinate change for free station.
     4. The approach of describing section deformation feature by scanning the cross section, specifically B-spline curve simulation, is proposed to replace the traditional method, by which the section deformation is simply analyzed by individual points' deformation. Based on study of different methods for knot placement of uneven B-spline curves, a modified approach to resolve knot vector using doiminat points and new algorithm to distinguish section and out-of-section information is presented.
     5. The Hausdorff distance algorithm is selected to be the proper distance measurement method of characterizing tunnel cross section deformation based on study and analysis of different methods of distance measuring between free curves. It is described in detail and then applied in deformation data of a selected cross section.
     6. The comparison and interconversion of different dynamic processing methods that are currently used is presented. The construction simulation analysis function of Midas is used to analyze the data obtained during excavation of foundation trench. The result is then used as control information for data processing. Finally, the Kalman filtering model with regard to construction analysis result is proposed.
引文
[1]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报.1998,20(1):112-113.
    [2]杨广武.地下工程穿越既有地铁线路变形控制标准和技术研究[D].北京交通大学,2010.
    [3]吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].西南交通大学,2003.
    [4]行车事故案例汇编及典型行车事故案例分析[R].铁道部安全检查司,2005.
    [5]B. K B P A. Redline underpinning-lessons learned[C]. Boston/Massachusetts/USA:2000.
    [6]T. B B A N. Design and management for underground uncertainty on the Central Artery/Tunnel Project[C]. Boston/Massachusetts/USA:2000.
    [7]戴加东,王艳玲,褚伟洪.静力水准自动化监测系统在某工程中的应用[J].工程勘察.2009,37(5):80-84.
    [8]白韶红.静力水准仪在北京地铁变形监测中的应用[J].中国仪器仪表.2003(11):34-36.
    [9]王如路.电子水平尺在地铁监护工程中的应用[J].地下工程与隧道.2003(2):30-32.
    [10]徐祥其.电水平尺沉降自动遥测系统在地铁监护中的应用[J].岩土工程界.2009,12(2):71-74.
    [11]Cooper M L, Chapman D N. RECENT IN-TUNNEL MOVEMENT MONITORING EXPERIENCE IN LONDON[C].2001.
    [12]城市轨道交通工程测量规范[Z].2008.
    [13]姚成虎.南京地铁2号线结构安全监测技术方案的研究[J].现代测绘.2009,32(1):10-12.
    [14]张正禄,孔宁,沈飞飞,等.地铁变形监测方案设计与变形分析[J].测绘信息与工程.2010,35(6):25-27.
    [IS]Kontogianni V, Stiros S. Tunnel monitoring during the excavation phase:3-D kinematic analysis based on geodetic data[C].2003.
    [16]梅文胜,张正禄,郭际明,等.测量机器人变形监测系统软件研究[J].武汉大学学报(信息科学版).2002,27(2):165-171.
    [17]包欢,徐忠阳,张良琚.自动变形监测系统在地铁结构变形监测中的应用[J].测绘学院学报.2003,20(2):103-105.
    [18]梅文胜,张正禄,郭际明,等.精密工程测量数据处理综合系统讲座第五讲测量机器人测量自动化系列软件及其应用[J].测绘信息与工程.2010,35(5):53-54.
    [19]邱冬炜,梁青槐,杨松林.北京地铁隧道结构整体变形监测的研究[J].测绘科学.2008(S1):16-17.
    [20]Ishikawa K, Takiguchi J, Amano Y, et al. Tunnel Cross-Section Measurement System Using a Mobile Mapping System[J]. Journal of Robotics and Mechatronics.2009,2(21):193-199.
    [21]Seo D, Lee J C, Lee Y, et al. Development of cross section management system in tunnel using terrestrial laser scanning technique[J]. Proc. Of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. ⅩⅩⅩⅦ. Part B5. pp 573-582, Beijing, China. 2008.
    [22]田胜利.隧道及地下空间结构变形的数字化摄影测量与监测数据处理新技术研究[D].上海交通大学, 2005.
    [23]崔天麟,肖红渠,王刚.自动化监测技术在新建地铁穿越既有线中的应用[J].隧道建设.2008,28(3):359-361.
    [24]Li H, Li D, Song G. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures.2004,26(11):1647-1657.
    [25]Macpherson W N, Silva-Lopez M, Barton J S, et al. Tunnel monitoring using multicore fibre displacement sensor[J]. Measurement Science and Technology.2006,17(5):1180.
    [26]Yasue N, Naruse H, Masuda J, et al. Optical Fiber Sensors. Concrete Pipe Strain Measurement Using Optical Fiber Sensor.[J]. IEICE Trans Electron.2000,3(E83-C):468-474.
    [27]Ohno H, Naruse H, Kihara M, et al. Industrial Applications of the BOTDR Optical Fiber Strain Sensor[J]. Optical Fiber Technology.2001,7(1):45-64.
    [28]施斌,徐学军,王镝,等.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J].岩石力学与工程学报.2005(15):2622-2628.
    [29]丁勇,施斌,孙宇,等.基于BOTDR的白泥井3号隧道拱圈变形监测[J].工程地质学报.2006(05):649-653.
    [30]施斌,徐洪钟,张丹,等.BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J].岩石力学与工程学报.2004(03):493-499.
    [31]Erik G S. A Modular,wireless damage monitoring system for sturctures[D]. Stanford University, 1998.
    [32]Lynch J P, Sundararajan A, Law K H, et al. Field validation of a wireless structural monitoring system on the Alamosa Canyon Bridge [Z]. San Diego,CA,USA:2003.
    [33]Kim S, Pakzad S, Culler D, et al. Health monitoring of civil infrastructures using wireless sensor networks[C]. Cambridge,Massachusetts,USA:2007.
    [34]Stajano F, Hoult N, Wassell I, et al. Smart bridges, smart tunnels:Transforming wireless sensor networks from research prototypes into robust engineering infrastructure[J]. Ad Hoc Networks.2010, 8(8):872-888.
    [35]李宏伟,欧进萍.无线传感器网络在土木工程应用中的试验研究[J].计算机工程与应用.2005(15):207-210.
    [36]喻言,欧进萍.海洋平台结构振动监测的无线传感实验研究[J].哈尔滨工业大学学报.2007(02):187-190.
    [37]唐旋来,汪秉文,汤强,等.无线传感器网络在桥梁健康监测中的应用研究[J].计算机技术与发展.2011(01):174-177.
    [38]Li X, Ji Z, Zhu H, et al. A feasibility study of the measuring accuracy and capalibity of wireless sensor network in tunnel monitoring[J]. Frontiers of Structural and Civil Engineering.2012,6(2): 111-120.
    [39]刘启琛.我国研制的第一台地铁轨道检查车[J].地铁与轻轨.1994(01):35-36.
    [40]柴东明,魏世斌,刘玲平,等.深圳地铁轨检车检测系统的研制[J].中国铁道科学.2005(05):140-143.
    [41]杜茂金.轨检车在地铁轨道设备养修中的运用[J].现代城市轨道交通.2009(4):72-74.
    [42]郭介平,吴旺青.工长用轨检小车的研制[J].铁道标准设计.2005(3):63-64.
    [43]托雷,康志忠,谢远成,等.利用三维点云数据的地铁隧道断面连续截取方法研究[J].武汉大学学报(信息科学版).2013,38(2):171-175,185.
    [44]李万莉,曹筠,周奇才,等.隧道监测车探头分布方式及拟合算法[J].中国工程机械学报.2008,6(4):484-488.
    [45]周奇才,金奇,高嵩,等.基于激光测距技术的隧道断面形变检测系统[J].测控技术.2010,29(5):44-46,49.
    [46]王荣权.轨道交通工程隧道结构断面测量技术与方法[J].铁道勘察.2008,34(1):17-19.
    [47]Schoenberg I J. Spline functions and the problem of graduation[C]. USA:1964.
    [48]Bezier P. Numerical control-Mathematics and applications[M]. New York:Wiley,1972.
    [49]Schoenberg I J. On Spline function[C]. New York:Academic Press,1967.
    [50]De Boor C. On Calculation with B-splines[J]. J Appox Theory.1972(6):50-62.
    [51]Cox M G. The numerical evaluation of B-spline[J]. IMA Journal Of Applied Mathematics.1972, 10(2):134-149.
    [52]Riesenfeld R F. Applications of B-spline approximation to geometric problem of computer aided design[D]. Univ. of Utah,1973.
    [53]Gordon W J, Reisenfeld R F. Bernstein-Bezier methods for the computer-aided design of free form curve and surfaces[J]. Journal of the ACM.1974,2(21):293-310.
    [54]Computer-aided geometric design[M]. academic press,1974.
    [55]Riesenfeld R F. Nonuniform B-spline curves[C].1975.
    [56]Hardey D J, Juld C J. Parametrization of Bezier-type B-splne curves and surfaces[J]. Comput Aided Design.1978,10(2):130-134.
    [57]Boehm W. Inserting new knots into B-spline curve[J]. Computer Aided Design.1980,12(4): 199-201.
    [58]Cohen E, Lyche T, Riesenfeld R F. Discrete B-splines and subdivision techniques in computer aided geometric design and conputer graphics[J]. Computer Graphics and Image Processing.1980(14): 87-111.
    [59]Teixeira J C, Rix J, Daniel M. Data Fitting with B-splines Curves[M]. Modelling and Graphics in Science and Technology, Teixeira J C, Rix J, Springer Berlin Heidelberg,1996,91-104.
    [60]Dietz U. B-spline approximation with energy constraints[M]. Advanced Course on FAIRSHAPE, Springer,1996,229-240.
    [61]Hoschek J. Intrinsic parametrization for approximation [J]. Computer Aided Geometric Design. 1988(5):27-31.
    [62]Saux E, Daniel M. An improved Hoschek intrinsic parametrization[J]. Computer Aided Geometric Design.2003,20(8-9):513-521.
    [63]Alhanaty M, Bercovier M. Curve and surface fitting and design by optimal control methods[J]. Computer-Aided Design.2001,33(2):167-182.
    [64]Goldenthal R, Bercovier M. Spline curve approximation and design by optimal control over the knots[J]. Computing.2004,72(1-2):53-64.
    [65]More J, Garbow B S, Hillstrom K E. Users'Guide for MINPACK-I[Z]. Argonne Nat.Lab,1980.
    [66]Speer T, Kuppe M, Hoschek J. Global reparametrization for curve approximation[J]. Computer Aided Geometric Design.1998,15(9):869-877.
    [67]Pottmann H, Hofer M. Geometry of the squared distance function to curves and surfaces[J]. Visualization and Mathematics Ⅲ, Springer.2003:221-242.
    [68]Yang H, Wang W, Sun J. Control point adjustment for B-spline curve approximation[J]. Computer-Aided Design.2004,36(7):639-652.
    [69]Wang W, Pottmann H, Liu Y. Fitting B-spline curves to point clouds by curvature-based squared distance minimization[J]. ACM Trans. Graph.2006,25(2):214-238.
    [70]Liu Y, Wang W. A revisit to least squares orthogonal distance fitting of parametric curves and surfaces[M]. Advances in Geometric Modeling and Processing, Springer,2008,384-397.
    [71]Crofts J E, Menzies B K, Tarzi A I. Lateral displacement of shallow buried pipelines due to adjacent deep trench excavations [J]. Geotechnique.1977,27(2):161-179.
    [72]Li W, Xu S, Zhao G, et al. A heuristic knot placement algorithm for b-spline curve approximation[J]. Computer-Aided Design and Applications.2004,1(1-4):727-732.
    [73]Li W, Xu S, Zhao G, et al. Adaptive knot placement in B-spline curve approximation[J]. Computer-Aided Design.2005,37(8):791-797.
    [74]Park H, Lee J. B-spline curve fitting based on adaptive curve refinement using dominant points[J]. Computer-Aided Design.2007,39(6):439-451.
    [75]Jacobson T J, Murphy M J. Optimized knot placement for B-splines in deformable image registration[J]. Medical physics.2011,38:4579.
    [76]Peck R B. Deep excavation and tunneling in soft ground[C]. Mexico City:1969.
    [77]候学渊.日本隧道盾构新技术[M].武汉市:华中理工大学出版社,1997:317.
    [78]刘国彬,候学渊.软土基坑隆起变形的残余应力分析法[J].地下工程与隧道.1996(2):2-7.
    [79]吉茂杰,刘国彬.开挖卸荷引起地铁隧道位移的预测方法[J].同济大学学报:自然科学版.2001,29(5):531-535.
    [80]刘国彬,黄院雄,等.基坑工程下已运行地铁区间隧道上抬变形的控制研究与实践[J].岩石力学与工程学报.2001,20(2):202-207.
    [81]陈郁,李永盛.基坑开挖卸荷引起下卧隧道隆起的计算方法[J].地下空间与工程学报.2005,1(1):91-94.
    [82]Lo K Y, Ramsay J A. The effect of construction on existing subway tunnels—a case study from Toronto[J]. Tunnelling and underground space technology.1991,6(3):287-297.
    [83]Dole V Z A A M. Tunnel complex unloaded by a deep excavation[J]. Computers and Geotechnics.2001,28(6):469-493.
    [84]Sharma J S, Hefny A M, Zhao J, et al. Effect of large excavation on deformation of adjacent MRT tunnels[J]. Tunnelling and Underground Space Technology.2001,16(2):93-98.
    [85]毛朝辉,刘国彬.基坑开挖引起下方隧道变形的数值模拟[J].地下工程与隧道.2005(04):24-27.
    [86]张晓丽.浅埋暗挖下穿既有地铁构筑物关键技术研究与实践[D].北京交通大学,2007.
    [87]魏少伟.基坑开挖对坑底已建隧道影响的数值与离心试验研究[D].天津大学,2010.
    [88]况龙川,李智敏,殷宗泽.地下工程施工影响地铁隧道的实测分析[J].清华大学学报(自然科学版).2000,40(S1):79-82.
    [89]王者超,李术才,陈卫忠.分岔隧道变形监测与施工对策研究[J].岩土力学.2007,28(4):785-789.
    [90]王穗辉.变形数据处理、分析及预测方法若干问题研究[D].同济大学土木工程学院同济大学,2007.
    [91]王穗辉,潘国荣.人工神经网络在隧道地表变形预测中的应用[J].同济大学学报:自然科学版.2001,29(10):1147-1151.
    [92]朱海国,尹晖,陈雪丰.地铁变形监测中曲线拟合与自回归模型的综合应用[J].测绘与空间地理信息.2006(06):89-91.
    [93]潘国荣.地铁隧道变形的神经网络法预测[J].大地测量与地球动力学.2007(01):80-84.
    [94]麻凤海,颜柳.城市地铁变形预测的三次指数平滑法[J].大连大学学报.2007,28(6):1-4.
    [95]刘华夏,张献州.基于时间序列分析的地铁变形监测数据建模与预报研究[J].铁道勘察.2009(06):17-19.
    [96]吴北平,岳昊,王建军.择优动态灰色模型的研究及其在变形监测中的应用[J].工程勘察.2011(06):68-72.
    [97]梁禹.广州地铁一号线隧道结构变形监测及成果分析[J].施工技术.2002,31(6):10-11.
    [98]张正禄,李广云,潘国荣,等.工程测量学[M].武汉:武汉大学出版社,2005.
    [99]李青岳,陈永奇.工程测量学(第三版)[M].北京:测绘出版社,2008.
    [100]梁炯筠.锚固与注浆技术手册[M].北京:中国电力出版社,1999.
    [101]李兴高.既有地铁线路变形控制标准研究[J].铁道建筑.2010(04):84-88.
    [102]广州地铁线路维修规程[S].广州,2007.
    [103]北京地铁工务维修规则(试行)[S].2002.
    [104]Burland J B, Standing J R, Jardine F M. Building Response to Tunneling, case studies from construction of the Jubilee Line Extension, London[J]. Thomas Telford publishing.2001(2):509-545.
    [105]姜景山,陈浩,张洪威.崇文门车站下穿地铁既有线施工变形控制措施[J].铁道标准设计.2005(10):85-88.
    [106]曹伟飚,姚燕明.上海市轨道交通8号线(曲阜路—人民广场)区间隧道盾构穿越2号线影响分析[J].地下工程与隧道.2005,15(3):7-12.
    [107]周正,赵国堂.轨道质量指数计算问题的探讨[J].中国铁道科学.2003(03):65-69.
    [108]胡庆丰.安博格GRP1000轨检小车进行无碴轨道检测的作业方法[J].铁道勘察.2008(03):17-20.
    [109]梅文胜.隧道下穿既有隧道实时监测及其风险控制研究[J].武汉大学学报·信息科学版.2011,8(36):923-927.
    [110]包欢,卫建东,徐忠阳等.“智能全站仪网络监测系统”在地铁监测中的应用[J].北京测绘.2005(03):19-22.
    [111]简骁,童鹏.基于地面激光雷达技术的隧道变形监测方法研究[J].铁道勘察.2011,37(6):19-22.
    [112]Wu Y, Wassell I. Investigation of close-to-wall wireless sensor deployment using 2D finite-difference time-domain modelling[C].2008.
    [113]Liu R, Wu Y, Wassell I, et al. Frequency diversity measurements at 2.4 GHz for wireless sensor networks deployed in tunnels[C].2009.
    [114]Devices H U. http://www.hexamite.com[Z].
    [115]潘正风,杨正尧.数字测图原理与方法[M].2002.
    [116]王志坚,杨友元,李明领,等.武广铁路客运专线CPⅢ控制测量[M].北京:中国铁道出版社,2012.
    [117]刘成龙,杨雪峰,卢建康,等.高速铁路CPⅢ三角高程网构网与平差计算方法[J].西南交通大学学报.2011,46(3):434-439,450.
    [118]王庆,于先文.顾及已知点精度的自由设站算法及精度分析[J].东南大学学报(自然科学版).2009,39(2):372-376.
    [119]施法中.计算机辅助几何设计与非均匀有理B样条[M].2001.
    [120]Piegl L, Tiller W. The NURBS Book[M]. Springer Berlin Heidelberg,1995.
    [121]Cook W J, Cunningham W H, Pulleyblank W R, et al. Combinatorial optimization[M]. New York:John Wiley and Sons,1998.
    [122]Razdan A. Knot placement for B-spline curve approximation[J]. Tempe, AZ:Arizona State University.1999.
    [123]Hamann B, Chen J. Data point selection for piecewise linear curve approximation J]. Computer Aided Geometric Design.1994,11(3):289-301.
    [124]Liu G H, Wong Y S, Zhang Y F, et al. Adaptive fairing of digitized point data with discrete curvature[J]. Computer-Aided Design.2002,34(4):309-320.
    [125]Park H. An error-bounded approximate method for representing planar curves in B-splines[J]. Computer Aided Geometric Design.2004,21(5):479-497.
    [126]Park H, Kim K, Lee S. A method for approximate NURBS curve compatibility based on multiple curve refitting[J]. Computer-Aided Design.2000,32(4):237-252.
    [127]Hoschek J, Lasser D, Schumaker L L. Fundamentals of computer aided geometric design[M]. AK Peters, Ltd.,1993.
    [128]Weiss V, Andor L, Renner G A B, et al. Advanced surface fitting techniques[J]. Computer Aided Geometric Design.2002,19(1):19-42.
    [129]Laurent-Gengoux P, Mekhilef M. Optimization of a NURBS representation[J]. Computer-Aided Design.1993,25(11):699-710.
    [130]Borges C F, Pastva T. Total least squares fitting of Bezier and B-spline curves to ordered data[J]. Computer Aided Geometric Design.2002,19(4):275-289.
    [131]Lourakis M I. A brief description of the Levenberg-Marquardt algorithm implemented by levmar[J]. Institute of Computer Science, Foundation for Research and Technology.2005,11.
    [132]Bogacki P, Weinstein S, Xu Y. Distances between oriented curves in geometric modeling[J]. Advances in Computational Mathematics.1997,7(4):593-621.
    [133]Alt H, Knauer C, Wenk C. Comparison of distance measures for planar curves[J]. Algorithmica. 2004,38(1):45-58.
    [134]Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on.1993,15(9):850-863.
    [135]Son H, Kim S, Kim J. Text image matching without language model using a Hausdorff distance[J]. Information Processing & Management.2008,44(3):1189-1200.
    [136]Driemel A, Har-Peled S, Wenk C. Approximating the Frechet Distance for Realistic Curves in Near Linear Time[J]. Discrete & Computational Geometry.2012,48(1):94-127.
    [137]Alt H, Godau M. Computing the Frechet distance between two polygonal curves[J]. Internet. J. Comput. Geom. Appl.1995(5):75-91.
    [138]Albers S, Alt H, Her S N, et al. The Computational Geometry of Comparing Shapes[M]. Efficient Algorithms, Albers S, Alt H, Her S N, Springer Berlin Heidelberg,2009,235-248.
    [139]王国瑾,汪国昭等.计算机辅助几何设计[M].2001.
    [140]Scharf L. Computing the Hausdorff distance between sets of curves[J].2003.
    [141]Alt H, Scharf L. Computing the Hausdorff distance between curved objects[J]. International Journal of Computational Geometry & Applications.2008,18(04):307-320.
    [142]M O Rken K. Some identities for products and degree raising of splines[J]. Constructive Approximation.1991,7(1):195-208.
    [143]邓自立.最优滤波理论及其应用:现代时间序列分析方法[M].2000.
    [144]陶本藻,崔希璋,於宗俦等.广义测量平差[M].2009.
    [145]邓自立.自校正滤波理论及其应用:现代时间序列分析方法[M].2003.
    [146]姚海波.大断面隧道浅埋暗挖法下穿既有地铁构筑物施工技术研究[D].北京交通大学,2005.
    [147]石伟.有限元分析基础与应用教程[M].北京市:机械工业出版社,2010:151.
    [148]商跃进,王红.有限元原理与AANSYS实践[M].北京市:清华大学出版社,2012:294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700