甲醇低压气相羰基合成醋酸的镍基催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇羰基合成醋酸较成熟的是Monsanto公司开发的均相催化合成工艺,催化剂为羰基铑-碘,该工艺存在设备腐蚀严重、产物与催化剂难分离、活性金属铑价格昂贵等问题,而甲醇气相羰基化在解决上述问题方面显示了很好的前景,并具有在低压下操作和生产效率高等优点,因而成为合成醋酸的新的研究领域。
    本文选取具有较高羰化活性、非贵金属镍(Ni)为主活性金属,比表面较大的活性炭(AC)为载体,在系统研究Ni/AC催化体系的基础上,对双金属和多金属负载催化剂进行了筛选和羰化工艺的考察,并对甲醇气相羰基化中其他因素的影响做了探索性的研究。具体内容如下:
    1. 采取浸渍法制备Ni/ AC催化剂,确定了合适的浸渍、干燥、活化处理方法。发现经适宜的热处理和还原有助于增加活性中心数目,提高羰化活性和收率,最佳热处理温度为400℃、还原温度为550℃。
    2. 在低压气-固相反应条件下,研究了Ni/AC负载型催化剂用于甲醇羰化反应的情况。按正交表L9(34)设计了正交试验,发现镍含量和反应温度是低压羰化活性的重要影响因素,增加镍含量会提高羰化活性,但也促使副反应的产生;温度的升高可大大增加反应收率,但温度过高会造成助剂碘甲烷的分解。
    3. 甲醇低压气相羰化反应最佳工艺条件:在温度300℃,压力1MPa,接触时间为10gcat·h/mol,n(CO/CH3OH/CH3I)为60/20/1,镍含量取8.5%(wt)的条件下,羰化产物的总选择性超过90%,甲醇转化率为92.85%,羰化收率为48.19%。与山西煤化所在280℃、1.5MPa、镍含量2.5%,经高温(930℃)活化处理的催化体系相比,醋酸收率提高了1.83%,副产物选择性减少了12.26%。
    4. 研究了双金属和三金属负载型催化剂的低压甲醇气相羰化反应。以Ni/AC催化剂为基础,对加入的第二种金属元素进行了简单筛选,发现Cu、Zn、Sn、La等作为第二种添加金属有助催化作用,Fe 、Mo、Pb等反而会使催化活性降低,副产物增多。
    5. 镍含量为5%,Cu、Zn不同负载配比的Ni-Zn-Cu/AC的三金属催化剂的羰化实验的考察表明:在压力为1MPa, 温度为300℃,n(CO/CH3OH/CH3I)为60/20/1,接触时间为10gcat·h/mol时,(5%Ni-5%Zn-5%Cu)/AC的配比组
    
    合催化活性最好,此时,甲醇的转化率为94.58%,醋酸的单程选择性为16.58%,羰基类化合物的总收率为51.26%。
    6.在其他因素对低压气相羰化活性影响的探索性研究中,发现稀土的添加能缩短反应的诱导期,氢气能抑制羰化活性,床层压力的提升对羰化性活影响不明显,而碘甲烷的助催化作用是羰化活性的关键。
The carbonylation of methanol to synthesize acetic acid is a comparatively mature technique currently that developed by Monsanto, utilizes a homogeneous Rh-I based catalyst for implementing the reaction in the presence of methyl iodide. But the liquid homogeneous process has several disadvantages, such as corrosive attack to the reactors, difficult separation of products from the catalyst, limited supply of Rh, etc..
    Recently, the studies of vapor phase carbonylation show good foreground in solving above-mentioned problems, and has virtue of good production efficiency and low on-stream pressure as well,so exploratory research on related fields are drawing more and more attention from both industrial and academic sectors.
    Since nickel is inexpensive with superior catalytic activity, active carbon has better specific area, in this paper, a series of nickel-loaded catalysts (Ni/AC )were prepared and studied systematically, then bimetal catalysts were carefully examined and compared, technological conditions of tri-metals catalyst were observed, finally, exploratory researches were carried out on some possible influencing factors in the oxo process.
    The studies of this thesis mainly include the following aspects:
    1. Ni/AC catalysts were prepared by dip-molding, and appropriate ways of steep, desiccation, heat and activation treatment were ascertained .It is discovered that the optimal temperature of heat and H2 activation treatment, which turned out to be 400℃ and 550℃, conduced to increasing number of active centers and enhancing the yield of acetic acid .
    2.Under low pressure vapor phase and Ni/AC catalysts, orthogonal experiments L9(34) were utilized to inspect factors affecting the oxo process. According to the results, the content of Ni and reaction temperature are crucial in the carbonylation, the increase of both standards could impove catalytic activity and by-products .
    3. Under the optimal reaction conditions: n( CO/MeOH/CH3I)=60/20/1, 1MPa ,
    
    300℃, contact time is 10gcat·h/mol and the content of Ni is 8.5%(wt),a maximum activity is achieved. The total selectivity of carbonyl products is more than 90%,the conversion of methanol reaches 92.85% and the yield of carbonyl products is 48.19%.
    Compared with the results from Institute of Coal Chemistry, which reaction conditions are 1.5MPa,280℃, 2.5%,the yield of acetic acid in this paper is increased by 1.83%,while the selectivity of by-products is decreased by 12.26%.
    4. A series of Ni-based bimetallic catalysts were investigated under low pressure vapor-solid phase . It is revealed that the additive of Cu、Zn、Sn、La into Ni/AC facilitated the reaction while Fe 、Mo、Pb restrained it.
    5. The simultaneous addition of Cu and Zn to Ni/AC has better catalytic activity in the oxo process of methanol to acetic acid, the appropriate ratio of the three metals is 5%Ni:5%Zn:5%Cu(wt),under the optimal conditions, the conversion of methanol reaches 94.58%,and the total yield of carbonyl products is 51.26%.
    6. Exploratory researches on some possible influencing factors in the oxo process revealed that the addition of rare earth could shorten the induction period, hydrogen could suppress the catalytic activity, increasing of pressure contributed little to the oxo synthesis, and methyl iodide as a promoter was pivotal.
引文
[1] 王瑞峰,醋酸工业生产方法及其深加工[J],辽宁化工,1997,26(6):316-319
    [2] 李好管,合成醋酸新工艺进展[J],化学工业与工程技术,20001,22(2):10-13
    [3] 渡边正夫.酢酸[J],(日)化学经济,1999,46(3月临时增刊):58
    [4] 邹劲松,醋酸供需现状及展望[J],精细石油化工,2000,(1):46-49
    [5] 沈菊华,醋酸生产技术发展动向[J],化工科技,2000,8(2):60-64
    [6] 殷元骐主编,羰基合成化学[M],北京:化学工业出版社, 1996,144-177
    [7] 夏求真,化工百科全书第二卷(陈冠荣主编)[A],北京:化学工业出版社,1991,717
    [8] 加藤 顺,小林博行,村田义夫编著,金革译,碳一化学工业生产技术[M],北京:化学工业出版社,1988,56
    [9] J.Falbe, New Syntheses with Carbon Monoxide, Spring - Verlag ,New York,1980
    [10] Dekleva J.W. et al.The Rhodium-catalyzed carbonylation of linear primary alcohols[J], J. Am. Chem. Soc.,1985,107(12):3565-3567
    [11] 冯景贤,王大为,谢莉等,用于乙醇气相羰化反应的Ni/C催化剂研究[J],华南理工大学学报,1996,24(10):117-120
    [12] Forster D.J. et al, Catalysis of the carbonylation of the alcohols to carboxylic acids concluding acetic acid synthesis from methanol[J] , J. Chem.Educ.,1986, 63(3): 204-206
    [13] Paulik F.E.and Roth J.F.,Novel catalysts for the low-pressure carbonylation of methanol to acetic acid[J],Chem.Commun.,1968,13(24):1578-1579
    [14] 蒋大智,袁国卿,甲醇羰基化制乙酸催化剂的研究进展[J],化学通报,1993,3:15-19
    [15] 蒋大智,李小宝,王恩来,羰基合成乙酸和乙酐,羰基合成化学[A],北京:化学工业出版社,1996,147
    [16] Fujimoto K, Omata K, Shikada K et al. Vapor phase carbonlyation of organic compounds over supported transition-metal catalyst:2. Synthsis Acetic Acid and Methylacetate from methanol,with Nickel-ActiveCarbon catalyst. [J]. Ind Eng Chem Prod Res Dev,1983,22:436-439
    [17] 魏文德主编,有机化工原料大全(第二卷)[M],北京:化学工业出版社,1988,430
    [18] 姚阳照,醋酸生产工艺的发展趋势[J],辽宁化工,1994,3,3-7
    [19] Heck R.F.,The mechanism of allyl halide carboxylation reaction catalyzed by nickel carbonyl[J],J.Am.Chem.Soc.,1963,85(13),2013-2015
    [20] 汪多仁,煤化工,乙酸的生产和消费[J],1998,4,22-28
    [21] Russell S D,et al,Ionic attachment as a feasible approach to hetergenizing anionic catalysts,carbonylation of methanol[J],Inor.Chem.,1981,20:641
    [22] 袁国卿,潘平来,王殿勋,蒋大智,2-乙烯吡啶-丁烯酮共聚物及其羰基铑配合物的XPS研究[J],分子催化,1993,7(1):37-41
    [23] Kinitaichi Y,Kuwahara Y,Hamada H,et al.,Selective synthesis of C2-oxygenates by CO hydrogenation over silica-supported Co-Ir catalyst [J], Chem.Lett., 1985,1305-1306
    [24] Yamakawa T, Tsai P K, Shinoda S, Acetic acid and methyl acetate formation from methanol alone over ruthenium(Ⅱ)-tin(Ⅱ) cluster complex catalysts supported on copper-containing oxides [J].Appl.Catal.A:General,1992,92:L1-L5
    [25] Yamakawa T,Hiroi M,Shinoda S,Catalytic reaction of methanol with a series of ruthenium(Ⅲ) complexs and the mechanism of the formation of acetic acid from methanol alone[J]. J.Chem.Soc.,
    
    Dalton Trans.,1994,2265-2269
    [26] 宗言恭,UOP/Chiyoda醋酸生产新工艺[J],化工技术经济,1998,16(3):14-15
    [27] 周邦荣,昭和电工醋酸生产新工艺[J],石油化工动态,1998,6(4):47-50
    [28] 王洪记,醋酸生产技术及产需现状[J],现代化工,2000,20(4):40-44
    [29] 郑宁来,醋酸生产新技术概述[J],中国化工信息,2000,(2):11-14
    [30] 王军伟,杨先贵,刘昭铁等,钯-镍均相催化甲酸甲酯异构化反应的研究[ J ],石油与天然气化工,1999,28(4):231-233
    [31] Jenner G,Catalysts and solvent effects on the synthesis of acetic acid from methyl formate[J],Tetrahedron Letters,1990,31(27):3887-3890
    [32] Nishiguchi T,Nakata K,Takaki K,et al.,Transition metal catalyzed acetic acid synthesis from methane and CO[J].Chem.Lett.,1992,1141-1142
    [33] Magglie R,Michel G B,Herve P,Volta J C,Vanadium-molybdenum phosphates supported by TiO2-anatase as new catalysts for selective oxidation of ethane to acetic acid[J].Catal. Lett.,1996,42(1,2):93-97
    [34] Minren L,Ayusman S,A highly catalytic system for the direct oxidation of lower alkanes by dioxygen in aqueous medium.A formal heterogeneous analog of alkane monooxygenases[J]. J.Am.Chem.Soc.,1992,114:7307-7308
    [35] Shikada T,Yagita H,Fujimoto K,et al.,Vapor phase carbonylation of methyl chloride with transition metal-active carbon catalysts [J]. Appl. Catal., 1986, 22:379-384
    [36] Nakajo T, Sand K I, Matsuhira S, Arakawa H, Selective synthesis of acetic acid in high-pressure carbon monoxide hydrogenation over a Rh-Mn-Zr-Li/SiO2 catalyst [J],J.Chem.Soc., Chem. Commun, 1987,647-649
    [37] B.L.Smith,G.P.Torrence,A.Aguilo,J.S.Alder,US 5 026 908(1991)[P]
    [38] 蒋大智,李小宝,王恩来等,中国专利申请号:CN 95 108 277.2[P]
    [39] 蒋大智,李小宝,王恩来等,中国专利申请号:CN 95 104 298.X[P]
    [40] Omata K.,Fujimoto K.,Shikada.T.et al, Vapor phase carbonlyation of organic compounds over supported transition-metal catalyst:6. On the character of nickel -active carbon as methanol carbonylation catalyst[J],Ind.Eng.Chem.Prod.Res. Dev,1988,27:2211-2213
    [41] Omata K.,Fujimoto K.,Shikada.T., Vapor phase carbonlyation of organic compounds over supported transition-metal catalyst:3. Kinetic Analysis of Methanol Carbonylation with Nickel-Active Carbon Catalyst[J],Ind.Eng.Chem.Prod.Res. Dev,1985,24:234-239
    [42] Fujimoto.k ,Omata.k, Shikada.t, Synthsis of acetic acid via methanol carbonylation [J].触媒(日),1982,24(3):198
    [43] Fujimoto.k,Shikada.t,Tominaga.H, Vapour phase carbonylation of methanol with supported nickel metal catalyst[J] ,Ind.Eng.Chem.Prod.Res.Dev, 1982, 21:429-432
    [44] Liu T.C.,Chiu S.J.,Kinetics of primary Reactions of Vapour-Phase Methanol Carbonylation on Sn-Ni/C catalyst[J] , Ind.Eng.Chem.Res,1994,33,1674-1679
    [45] Liu T.C.,Chiu S.J.,Promoting Effect of Tin on Ni/C catalyst for methanol carbonylation[J],Ind.Eng.Chem.Res,1994,33:488-492
    [46] Liu T.C.,Chiu S.J.,Effect of metal loading sequence on the activity of Sn-Ni/C for methanol carbonylation[J],Applied Catalystis A:General 1994,117:17-27
    [47] Andrei S. Merenov,Martin A.Abraham, Catalyzing the carbonylation of methanol using a heterogeneous vapor phase catalyst[J].Catalysis Today,1998,40:397-404
    [48] 袁国卿,黄茂开,蒋大智,甲醇气相羰基化合成乙酸的镍催化剂(YhNi)的研究[J],
    
    1993,7(2):141-144
    [49] 杨彩虹,韩怡卓,李文彬,甲醇羰基化制醋酸镍基双金属催化剂的研究[J],燃料化学学报,1999,27(4):323-327
    [50] 杨彩虹,韩怡卓,李文彬等,热处理对Ni/C催化剂上甲醇羰基化性能的影响[J],催化学报,1999,20(4):397-401
    [51] 彭峰,郑国胜,反应条件对甲醇气相羰化反应的影响[J],燃料化学学报,2000,28(4):340-343
    [52] 彭峰,黄仲涛,谭荣国,甲醇气相羰化非铑非卤素新催化剂体系研究:硫化的CoMo/C系催化剂制备[J],天然气化工,1998,23(1):9-12
    [53] J Gauthier-Lafaye and R Perron,Methanol and Carbonylation Edition Technip Paris and Rhone-Poulence Recherches[J],Courbevoie,1987,ch.6.
    [54] N Rizkalla,in Industrial Chemicals Via C1 Process(D.R.Fahey,ed.)[A],ACS Symp. Seris 328 Washington 1987,61
    [55] 中村征四郎,乾智行,a)J56-104 838 (1981);b)J56-104 839(1981)[P]
    [56] 中村征四郎,乾智行,J59-053 440(1984)[P]
    [57]Fujimoto K.,Omata K.,Shikada T,H-O.Tominaga,Am.Chem.Soc.,New York Meeting[A], April 13-18,1986
    [58] 杨国荣,甲醇气相羰化合成醋酸镍基催化剂的评选[J],石油化工,1996,1:21-26
    [59] 彭峰,冯景贤,黄仲涛,载体对醇气相羰基化镍催化剂的影响[J],燃料化学学报,1997,25(5):474
    [60] 王定珠,杨彩虹,韩怡卓, 炭担体结构和表面改性对镍催化甲醇气相羰基化的影响[J],天然气化工,1995,20(5):15-20
    [61] Domigo G.M.,Fernandez M.I. and Lopes G.J.,Activated carbons as supports for nickel catalysts[J],Appl.Catal,1994,112(1),75-85
    [62] 蒋大智,李小宝,王恩来等,中国专利申请号:CN 95 103 039.6[P]
    [63] G.W.Adamson,J.J.Daly,D.Forster,J.Organomet.Chem.[J],1974(71):117
    [64] D.Forster,J.Am.Chem.Soc.,1976(98):46
    [65] 冯景贤,王大为,黄仲涛,乙醇在Ni-Pb/C催化剂上羰化反应机理的研究[J],工业催化,1996,2,35-41
    [66] 冯景贤,王大为,黄仲涛,乙醇在Ni-Sn/C催化剂上羰化反应机理的研究[J],华南理工大学学报,1997,25(10):1-6
    [67] 方峻,甲醇常压气相羰基合成醋酸的催化研究[D],南京:南京化工大学硕士论文,1999:16-19,21,41-43,50-51
    [68] 杨彩虹,韩怡卓,李文彬, Mo助剂对Ni/C催化剂上甲醇羰基化性能的影响[J],天然气化工,1996,6,1-6
    [69] Calaft A,Laine J,Factors affecting the carbonylation of methanol over sulfided CoMo/C catalysts at atmospheric pressure[J],Catal.Lett.,1994,28(1),9-69-73
    [70] Souma Y and Sano H, The carbonylation of alcohols catalyzed by Cu(I) carbonyl [J] . Bull.Chem.Soc.Japan.1973,46:3237-3240
    [71] 杨彩虹,韩怡卓,李文彬,Ni-La2O3/C催化剂上甲醇羰基化反应性能的研究[J],燃料化学学报,2000,28,(5):392-395
    [72] 关新新,赵维君,负载型乙醇羰基化催化剂的制备及活性研究 [J],工业催化,1999(3):23-26
    [73] 彭峰,黄仲涛,Ni-Zn/C催化剂上乙醇气相羰基化微反工艺评价[J],化学反应工程与
    
    工艺,1996,12(4)414-418
    [74] 邓祥贵,许松岩,连婉婉等,双金属Ni-Cu负载型催化剂用于乙醇羰化合成丙酸乙酯[J],催化学报,1989,10(3):289
    [75] J.K.勒巴日等著,接触催化[M],北京:石油工业出版社,1984,76-79
    [76] Transter S.J.,Fung S.C.and Garten R.L.,J.Am.Chem.Soc.[J],1978,100:170-175
    [77] Pen Chou and M.Albert Vannice,J.Catal[J],1978,107,129-139
    [78] 黄仲涛,林维明,庞先桑等,工业催化剂设计与开发[M],广州:华南理工大学出版社 1991,44-46
    [79] 王茜,刘汉范,碳负载胶体金属铑催化气相甲醇羰基化反应[J],催化学报,1997,18(2):171-174
    [80] Glenn J. Sunley, Derrick J. Watson. High productivity methanol carbonylation catalysis using iridium-The CativaTM process for the manufacture of acetic acid[J].Catalysis Today, 2000,(58):293-307
    [81] Andrei S. Merenov, Amy Nelson, Martin A.Abraham, Support effects of nickel on activated carbon as catalyst for vapor phase methanol carbonylation[J]. Catalyst Today, 2000,(55):91-101
    [82] 潘平来,柳阳阳,黄茂开等 高分子镍催化剂催化甲醇羰基化制备乙酸[J] 高分子学报, 1995, 5: 632-635
    [83] Noh J.S., Schwarz J.A., Relationship between metal ion adsorption and catalytic propertiee of carbon supported nickel catalysts[J]. J.Catal,1991,127:22
    [84] Fujimoto K, Shikada T, Omata K, Vapor phase carbonylation of methanol with supported nickel metal catalyst[J]. Ind. Eng. Chem. Prod. Res. Dev,1982,21:4303
    [85] 吴永忠,曹荣,陈建梅,低压甲醇羰基化制醋酸用Ni系催化剂及其制备工艺[J],化学工业与工程技术,1995,16(4):36-40
    [86] 曹发海,应卫勇,房鼎业,活性炭载体对甲醇氧化羰化合成碳酸二甲酯催化活性的影响[J],化学世界,2000(4):195-197  
    [87] 彭峰,黄仲涛,活性炭催化载体的表征[J],华南理工大学学报(自然科学版),1997,25(5):111-115
    [88] Gandia L.M., Montes M.,Effect of thermal treatments on the properties of nickel and cobalt activated-charcoal-supported catalysts,J.Catalysis,1994,145:276-288
    [89] 李荣生,甄开吉,王国甲.催化作用基础[M],北京:科学出版社 1990:4,11-15
    [90] (澳)戴维.L.特里姆著,金兴勇,曹美藻译,工业催化剂的设计[M],北京:化学工业出版社,1984:1-44
    [91] 王益,沈俭,Ni-Fe-Al合金制备雷尼镍催化剂的研究[J],无机化学学报,1997,13(3):320-324
    [92] 乔世伟,骨架镍催化剂的制备与木糖加氢反应工艺[J],青岛大学学报1999,14(3):33-36
    [93] 张楠,翟秀静,翟玉春, 超细镍粉的溶液还原法制备研究[J],功能材料,1999,30(3):263-264
    [94] 曹茂盛等著,超微颗粒制备科学与技术[M],哈尔滨:哈尔滨工业大学出版社,1998
    [95] 陈建新,梅海军等. 超细颗粒的制备及应用[J],无机盐工业,2001,1(26)
    [96] 胡蕴青,白亮,赵玉龙等,甲醇羰化动力学研究中的气相色谱分析[J],山西化工,1996,4,26-28
    [97] 李廷云,醋酸及氧化液中杂质含量的色谱分析[J],贵州化工,1994,3,43-44
    [98] 成都科学技术大学分析化学教研室,分析化学手册(第四分册,上册—色谱分析)[A],
    
    北京:化学工业出版社,第一版,1984,470-472
    [99] 石磊,马正飞,生成斌等,甲醇气相羰基化产物的气相色谱分析[J],应用化工,2002(3):15-17
    [100] 彭峰,甲醇羰基化制醋酸[J],化工进展,1999,2,35-37
    [101] 李玉敏.工业催化原理[M],天津:天津大学出版社,1992,11,15,73,169
    [102] 尾崎 萃,田丸,谦二,田部 浩三著(日),催化剂手册(中译本)[A],北京:化学工业出版社,1982,688-705
    [103] 王箴 编著,化工词典[A],北京:化学工业出版社,1985,575-576
    [104] 赵修华,张佐良,施其宏,Zn-Cu-Ni/AC催化剂上丙醇气相羰基化反应[J],天然气化工,1999,24(2):1-4
    [105] 郝茂荣,Ni/γ-Al2O3体系中添加稀土氧化物产生的电子效应[J],稀土,1997,18(3):31-35
    [106] 翟润生等,燃料化学学报,1984,12(2):64.
    [107] 廖巧丽,梁珍成等,镧、铈氧化物对镍催化剂活性的促进作用[J],中国稀土学报,1995,13(1):35.
    [108] 张学文,俞寿明等,La-Cu-Fe/γ-Al2O3催化剂的抗烧结研究[J],应用化学,1992,9(4):107.
    [109] 邹兴,卢惠民,方克明,变价稀土氧化物对催化剂性能的影响[J],稀土,2000,21(2):16-18
    [110] 马紫峰,张煜,林维明等,稀土镍基催化剂在甲烷选择氧化制合成气中的催化性能[J],天然气化工,1995,12(6):12-15
    [111] Y.Z.Chen, K.S.Ling, Carbonylation of methanol over supported nickel boride catalysts[J].J.Chin.Inst.Chem.Eng.,1991,22:103 
    [112] 金钦汉 主编,微波化学[M],北京:科学出版社,1999,86-93
    [113] 尹元根 主编,多相催化剂的研究方法[M],北京:化学工业出版社,1988,112-113
    [114] 赵建宏,宋成盈,王留成,催化剂的结构与分子设计[M],北京:中国工人出版社,1998
    [115] 李蕾,余晨,王作新,甲醇羰基化制乙酸催化剂结构的理论研究(Ⅰ)[J],北京化工大学学报,1997,24(3):66-70
    [116] 李蕾,余晨,王作新,甲醇羰基化制乙酸催化剂结构的理论研究(Ⅱ)[J],北京化工大学学报,1997,24(4):80-88
    [117]Calaft A.,Factors affecting the carbonylation of methanol over sulfided CoMo/C catalysts at atmospheric pressure[J], Catal. Lett.,1994,28(1):9-73
    [118] 彭峰,甲醇直接气相羰基化Mo/C催化剂[J],燃料化学学报,1996,27(3):286-288
    [119] 彭峰,一种甲醇直接气相羰基化新催化剂[J],催化学报,1998(5):387-388
    [120] 刘维桥,孙桂大编著,固体催化剂实用研究方法[M],北京:中国石化出版社,2000
    [121] X.M.米纳切夫,IO.C.霍达科夫,M.A.马尔科夫等著,刘恒潜译,稀土在催化中的应用[M],北京:科学出版社,1987,289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700