中国明对虾在胁迫条件下肝胰脏的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对虾养殖业的发展面临着病害严重和环境恶化的严重挑战。对虾细菌和病毒性疾病的频发已给对虾的养殖业造成了严重损失。养殖环境恶化造成的环境胁迫,不但影响对虾的生长性状,而且导致对虾的抵抗力下降,更容易引发病害的发生。研究对虾在外界胁迫(环境胁迫、病原感染)后蛋白表达模式的变化有助于弄清对虾的抗病抗逆机理,为抗病抗逆对虾的培育提供理论依据。肝胰脏是对虾的重要器官,参与各种重要的生理活动包括消化、吸收、储存和代谢,并且在启动对虾免疫反应起重要作用,其蛋白质表达的变化与对虾的健康状况密切相关。
     本研究运用蛋白质组学技术平台(双向电泳、串联质谱、数据库搜索),对中国明对虾肝胰脏蛋白进行研究,获得了一些重要进展,结果如下:
     1.初步构建了覆盖范围广、分辨率高、重复性好的中国明对虾肝胰脏双向电泳参考图谱,并利用质谱分析和多种数据库搜索方法成功鉴定了122个(68种)蛋白质点,包括14个(9种)能量代谢蛋白、15个(9种)氨基酸代谢蛋白、10个(5种)碳水化合物代谢蛋白、2个(1种)多聚糖代谢蛋白、11个(5种)辅酶和维生素代谢蛋白、1个(1种)脂类代谢蛋白、5个(3种)核酸代谢蛋白、7个(3种)消化酶、3个(1种)细胞骨架蛋白、14个(8种)免疫相关蛋白、9个(6种)抗氧化蛋白、19个(7种)伴侣蛋白、4个(3种)信号转导蛋白、3个(3种)翻译功能蛋白和5个(4种)未分组蛋白。
     2.在参考图谱的基础上,研究了缺氧胁迫下中国明对虾肝胰脏蛋白质表达模式的变化,成功鉴定了52个(15个上调、37个下调)差异表达的蛋白,包括11个能量产生相关蛋白、13个免疫相关蛋白、11个代谢相关蛋白、6个抗氧化蛋白、7个分子伴侣、2个细胞骨架蛋白和2个未分类蛋白,利用实时定量PCR技术,研究了缺氧胁迫下10个差异蛋白的基因在转录水平上的变化;同时研究了金属镉胁迫后中国明对虾肝胰脏蛋白质表达模式的变化,成功鉴定了29个(4个上调、25个下调)差异表达的蛋白,包括9个能量产生相关蛋白、3个免疫相关蛋白、9个代谢相关蛋白、5个抗氧化蛋白、2个分子伴侣和1个未分类蛋白。
     3.分别进行了灭活鳗弧菌和WSSV感染后中国明对虾肝胰脏的差异蛋白质组学研究。灭活鳗弧菌刺激后,45个差异表达的蛋白质(4个上调、41个下调)被成功鉴定出,包括6个能量产生相关蛋白、4个免疫相关蛋白、22个代谢相关蛋白、4个抗氧化蛋白、7个分子伴侣、1个翻译相关蛋白和2个未分类蛋白;WSSV感染后, 48个差异表达的蛋白质(11个上调、37个下调)被成功鉴定出,包括7个能量产生相关蛋白、9个免疫相关蛋白、20个代谢相关蛋白、5个抗氧化蛋白和7个分子伴侣。
     通过对上述实验数据的分析,初步探讨了中国明对虾对虾对环境胁迫和病原感染的应答机理。为下一步筛选中国明对虾环境胁迫及免疫应答关键蛋白并研究其功能奠定了基础。
Shrimp diseases and the deterioration of environment are two serious challenges faced by shrimp farming in the world. The frequent shrimp diseases caused by bacteria and virus have led to serious economics loss of shrimp production. The environmental stress caused by the deterioration of aquiculture environment not only stunted normal growth of shrimp, but also decreased the immune capability leading to an increased susceptibility to infectious disease of shrimp. The studies on changes of proteins expression patterns in shrimp challenged by stresses and pathogen infection are very important to know more about the mechanisms of anti-stress and anti-disease in shrimp, and support information to anti-stress and anti-disease shrimp culture.
     Hepatopancreas, a main organ of decapods for digestion, absorption, storage and metabolism, play a major role in initiating the defense response in shrimp. The variations of protein expression profiles in hepatopancreas have a close relationship with the health situation of shrimp.
     In this study, proteomics approach (2-DE, tandem MS and database search) were used to research protein expression profiles of the hepatopancreas in Fenneropenaeus chinensis. Some important progresses are as followes:
     1. A proteomic reference map with wide pH/MW range, high resolution and good reproduction for hepatopancreas of healthy adult Chinese shrimp was obtained using 2-DE. By tandem MS and multifarious database search methods, 122 spots (68 proteins) were successfully identified. Among these protein spots, 14 spots (9 proteins) participate in energy metabolism, 15 spots (9 proteins) participate in amino acid metabolism, 10 spots (5 proteins) participate in carbohydrate metabolism, 2 spots (1 proteins) participate in glycan metabolism, 11 spots (5 proteins) participate in metabolism of cofactors and vitamins, 1 spots (1 proteins) participate in lipid metabolism, 5 spots (3 proteins) participate in nucleotide metabolism, 7 spots (3 proteins) participate in digestive enzymes, 3 spots (1 proteins) participate in cytoskeleton proteins, 14 spots (8 proteins) participate in immune, 9 spots (6 proteins) are antioxidant proteins, 19 spots (7 proteins) are chaperone, 4 spots (3 proteins) participate in signal transduction, 3 spots (3 proteins) participate in translation and 5 spots (4 proteins) are ungrouped proteins.
     2. Based on the reference map, the mechanisms of envionmental stress response in Chinese shrimp were investigated using proteomic approach. In hepatopancreas of Chinese shrimp, after hypoxic stress, 52 differentially expressed protein spots (15 up-regulated, 37 down-regulated) were successfully identified, including 11 protein spots related to energy production, 13 protein spots related to immune, 11 protein spots involved in the metabolism, 6 antioxidant protein spots, 7 chaperone spots, 2 cytoskeleton protein spots and 2 ungrouped protein spots; after cadmium stress, 29 differentially expressed protein spots (4 up-regulated, 25 down-regulated) were successfully identified, including 9 protein spots related to energy production, 3 protein spots related to immune, 9 protein spots involved in the metabolism, 5 antioxidant protein spots, 2 chaperone spots and 1 ungrouped protein spots. The transcription levels of 10 selected genes which encode the differentially expressed proteins after hypoxia were also analyzed by real-time PCR.
     3. The mechanisms of immune response in Chinese shrimp were investigated using proteomic approach. In hepatopancreas of Chinese shrimp challenged with killed Vibrio anguillarum, 45 differentially expressed protein spots (4 up-regulated, 41 down-regulated) were successfully identified, including 6 protein spots related to energy production, 4 protein spots related to immune, 22 protein spots involved in the metabolism, 4 antioxidant protein spots, 7 chaperone spots, 1 translation related protein spot and 2 ungrouped protein spots; in hepatopancreas of Chinese shrimp challenged with white spot syndrome virus, 48 differentially expressed protein spots (11 up-regulated, 37 down-regulated) were successfully identified, including 7 protein spots related to energy production, 9 protein spots related to immune, 20 protein spots involved in the metabolism, 5 antioxidant protein spots and 7 chaperone spots.
     Based on these results, we discussed the mechanism of stresses response and immune response of shrimp and shed light on the relationship between environmental stresses and shrimp’s immune capability. This study set a basis for further analyses of some key genes in stresses and immune response in shrimp.
引文
Abe, H., Hirai, S., Okada, S., Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 40-46.
    Abele, D., Puntarulo, S., Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2004, 138, 405-415.
    Albery, W. J., Knowles, J. R., Free-Energy Profile for the Reaction Catalyzed by Triosephosphate Isomerase. Biochemistry 1976, 15 (25): 5627-5631.
    Allan, G. L., Magurire, G. B., Lethal levels of low dissolved oxygen and effects of short-term oxygen stress on subsequent growth of juvenile Penaeus monodon. Aquaculture 1991, 94, 27-37.
    Anderson, D. P., Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture. Annual Review of Fish Diseases 1992, 2, 281-307.
    Anguera, M. C., Field, M. S., Perry, C., Ghandour, H., et al., Regulation of folate-mediated one-carbon metabolism by 10-formyltetrahydrofolate dehydrogenase. J. Biol. Chem. 2006, 281, 18335-18342.
    Aquacop, Bedier, E., Soyez, C., Effects of dissolved oxygen concentration on survival and growth of Penaeus vannamei and Penaeus stylirostris. J. World Aquac. Soc. 1988, 19, 13A.
    Arnaud-Dabernat, S., Masse, K., Smani, M., Peuchant, E., et al., Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-M1/NDP kinase A overexpression in BAF3 cells. Both NDP kinases protect the cells from oxidative stress-induced death. Exp. Cell Res. 2004, 301, 293-304.
    Arts,J.A.,Cornelissen,F.H.,Cijsouw,T.,Hermsen,T.,Savelkoul,H.F.,Stet,R.J..Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol. 2007; 23(3): 504-513.
    Bachère, E., Hervio, D., Mialhe, E., Luminoldependent chemiluminescence byhemocytes of two marine bivalves, Ostrea edulis and Crassostrea gigas. Dis. Aquat. Org. 1991, 11, 173-180.
    Bacich DJ, Wozniak KM, Lu X-CM et al., Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury. J Neurochem. 2005, 95: 314-323.
    Badariotti, F., Thuau, R., Lelong, C., Dubos, M.-P., Favrel, P., Characterization of an atypical family 18 chitinase from the oyster Crassostrea gigas: Evidence for a role in early development and immunity. Dev. Comp. Immunol. 2007, 31, 559-570.
    Bailey, L. B., Jesse F. Gregory, I., Folate metabolism and requirements. J. Nutr. 1999, 129, 779-782.
    Barbieri E, Effects of zinc and cadmium on oxygen consumption and ammonium excretion in pink shrimp (Farfantepenaeus paulensis, Pérez-Farfante, 1967, Crustacea). Ecotoxicology. 2009, 18(3): 312-318.
    Bauchau AG. Crustaceans. In: Ratcliffe N. A. and Rowley, A. F. (editors). Invertebrate blood cells.Academic Press, London and New York 1981; pp. 385-420.
    Benhar, M., Engelberg, D., Levitzki, A., ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002, 3, 420-425.
    Benne R, Sloof P, Evolution of the mitochondrial protein synthetic machinery. BioSystems 1987, 21(1):51-68.
    Bosworth, C. A., Chou, C. W., Cole, R. B., Rees, B. B., Protein expression patterns in zebrafish skeletal muscle: Initial characterization and the effects of hypoxic exposure. Proteomics 2005, 5, 1362-1371.
    Bourchookarn Apichai, Havanapan Phattara-Orn, Thongboonkerd Visith, Krittanai Chartchai, Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. Biochimica et Biophysica Acta 2008, 1784:504–511.
    Boyd, J. N., Burnett., L. E., Reactive oxygen intermediate production by oyster hemocytes exposed to hypoxia. J. Exp. Biol. 1999, 202, 3135-3143.
    Brookes P.S., Pinner A., Ramachandran A., Coward L. et al.,Proteomics, 2002, 8: 969-977.
    Brouwer, M., Larkin, P., Brown-Peterson, N., King, C., et al., Effects of hypoxia on gene and protein expression in the blue crab, Callinectes sapidus. Mar. Environ. Res. 2004, 58, 787-792.
    Brouwer, M., Brown-Peterson, N. J., Larkin, P., Patel, V., et al., Molecular and whole animal responses of grass shrimp, Palaemonetes pugio, exposed to chronic hypoxia. J. Exp. Mar. Biol. Ecol. 2007, 341, 16-31.
    Brouwer, M., Brown-Peterson, N. J., Hoexum-Brouwer, T., Manning, S., Denslow, N., Changes in mitochondrial gene and protein expression in grass shrimp, Palaemonetes pugio, exposed to chronic hypoxia. Mar. Environ. Res. 2008, 66, 143-145.
    Brown-Peterson, N. J., Manning, C. S., Patel, V., Denslow, N. D., Brouwer, M., Effects of cyclic hypoxia on gene expression and reproduction in a grass shrimp, Palaemonetes pugio. Biol. Bull. 2008, 214, 6-16.
    Burgents, J. E., Effects of hypoxia and hypercapnic hypoxia on the localization and the elimination of Vibrio campbellii in Litopenaeus vannamei, the pacific white shrimp. Biol. Bull. 2005, 208, 159-168.
    Caceci, T., Neck, K., Lewis, D., Sis, R. F., Ultrastructure of the hepatopancreas of the pacific white shrimp, Penaeus vannamei (Crustacea:Decapoda). J. Mar. Biol. Assoc. 1988, 68, 323-337.
    Chang M, Wang WN, Wang AL, Tian TT, Wang P, Zheng Y, Liu Y, Effects of cadmium on respiratory burst, intracellular Ca2+ and DNA damage in the white shrimp Litopenaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol. 2009, 149(4):581-586.
    Charmantier, G., Soyez, C., Aquacop, Effect of molt stage and hypoxia on osmoregulatory capacity in the penaeid shrimp Penaeus vannamei. J. Exp. Mar. Biol. Ecol. 1994, 178, 233-246.
    Chaurand P., luetzenkirchen F., Spengler B., Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI -post-sourcedecay time of flight mass spectrometry, J.Am.Soc.Mass Spectrom, 1999,10: 91-103.
    Chayen, N. E., Cianci, M., Grossmann, J. G., Habash, J., et al., Unravelling the structural chemistry of the colouration mechanism in lobster shell. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 2072-2082.
    Chen, J. C., Kou, T. T., Hemolymph acid-base balance, oxyhemocyanin, and protein levels of Macrobrachium rosenbergii at different concentrations of dissolved oxygen. J. Crustac. Biol. 1998, 18, 437-441.
    Cheng, W., Liu, C.-H., Kuo, C.-M., Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture 2003, 220, 843-856.
    Chongsatja, P.-o., Bourchookarn, A., Lo, C. F., Thongboonkerd, V., Krittanai, C., Proteomic analysis of differentially expressed proteins in Penaeus vannamei hemocytes upon Taura syndrome virus infection. Proteomics 2007, 7, 3592-3601.
    Chung, S., Secombes, C. J., Analysis of events occurring within teleost macrophages during the respiratory burst. Comp. Biochem. Physiol. 1988, 89B, 539-544.
    Cianci, M., Rizkallah, P. J., Olczak, A., Raftery, J., et al., The molecular basis of the coloration mechanism in lobster shell:β-Crustacyanin at 3.2-? resolution. Proc. Natl. Acad. Sci. U S A. 2002, 99, 9795-9800.
    Clark, J. V., Inhibition of moulting in Penaeus semisulcatus (De Haan) by long-term hypoxia. Aquaculture 1986, 52, 253-254.
    Cominetti,M.R.,Marques,M.R.F.,Lorenzini,D.M.,Lofgren,S.E.,Daffre,S.,Barracco,M.A., Characterization and partial purification of a lectin from the hemolymph of the white shrimp Litopenaeus schmitti. Dev.Comp.Immunol.2002; 26,715-721.
    Cook, R. J., Misono, K. S., Wagner, C., The amino acid sequences of the flavin-peptides of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver mitochondria. J. Biol. Chem. 1985, 260, 12998-13002.
    David, E., Tanguy, A., Pichavant, K., Moraga, D., Response of the Pacific oysterCrassostrea gigas to hypoxia exposure under experimental conditions. FEBS J. 2005, 272, 5635-5652.
    Decker, H.and Tuczek, F., Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. TIBS, 2000, 25: 392-397.
    Decking, U. K. M., Schlieper, G., Kroll, K., Schrader, J., Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ. Res. 1997, 81, 154-164.
    Deng, J., Yie, C., Liu, Y., Shrimp in Bohai Sea and Yellow Seas and its resource management, Ocean Publishing House, Beijing 1990.
    Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E., Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vnnamei (Decapoda) The Journal of Biological Chemistry. 1997, 272(45):28398-406.
    Destoumieux D, Bulet P, Strub JM, Van Dorsselaer A, Bachere E., Recombinat expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur. J. Biochem. 1999, 266, 335-346.
    Destoumieux, D., Saulnier D., Garnier J., Jouffrey C., Bulet, P., and Bachère, E., Crustacean immunity-antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J. Biol. Chem. 2001, 276: 47070-47077.
    Destoumieux D, Munoz M, Bulet P, Bachere E., Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci. 2000, 57(8-9):1260-71.
    Direkbusarakom, S., Danayadol, Y., in: Flegel, T. W. (Ed.), Advances in shrimp biotechnology, National center for Genetic Engineering and Biotechnology, Bangkok 1998, pp. 147-149.
    Dumermuth, E., Sterchi, E. E., The astacin family of metalloendopeptidases. J. Biol. Chem. 1991, 266, 21381-21385.
    Eguchi, R., Naitou, H., Kunimasa, K., Ayuzawa, R., et al., Proteomic analysis of hypoxia-induced tube breakdown of an in vitro capillary model composed ofHUVECs: Potential role of p38-regulated reduction of HSP27. Proteomics 2008, 8, 2897-2906.
    Ellis, E. M., Reactive carbonyls and oxidative stress: Potential for therapeutic intervention. Pharmacol. Ther. 2007, 115, 13-24.
    Finnerty, C. M., Karplus, P. A., Granados, R. R., The insect immune protein scolexin is a novel serine proteinase homolog. Protein Sci. 1999, 8, 242-248.
    Forrest, G. L., Gonzalez, B., Carbonyl reductase. Chem. Biol. Interact. 2000, 129, 21-40.
    Fowler et. al, The amino acid sequence ofβ-galactosidase. J. Biol. Chem. 1970, 245 (19):5032.
    Freedman, R. B., Hirst, T. R., Tuite, M. F., Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 1994, 19, 331-336.
    Fridovich, I., Mitochondria: are they the seat of senescence? Aging Cell 2004, 3, 13-16.
    Gabig, T. G., Babior, B. M., The killing of pathogens by phagocytes. Annu. Rev. Med. 1981, 32, 313-326.
    George D. Cody, Nabil Z. Boctor, Timothy R. Filley, Robert M. Hazen, James H. Scott, Anurag Sharma, Hatten S. Yoder Jr., Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate. Science, 2000, 289(5483):1337–1340.
    Gibson, R., Barker, P. L., The decapod hepatopancreas. Oceanogr. Mar. Biol. Ann. Rev. 1979, 17, 285-346.
    Gillespie, J. P., Bailey, A. M. Cobb, B. and Vilcinskas, A., Fungi as elicitors of insect immune response. Arch. Insect Biochem. Physiol. 2000, 44, 49-68.
    Gillespie, J. P., Kanost, M. R. and Trenczek, T., Biological mediators of insect immunity. Ann. Rev. Entomol. 1997, 42, 611-643.
    Gomis-Rüth, F. X., Structure and mechanism of metallocarboxypeptidases. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 319-345.
    Gorman, M. J., Paskewitz, S. M., Serine proteases as mediators of mosquito immune responses. Insect Biochem. Mol. Biol. 2001, 31, 257-262.
    Gracey, A. Y., Troll, J. V., Somero, G. N., Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc. Natl. Acad. Sci. U S A. 2001, 98, 1993-1998.
    Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW., Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev Comp Immunol., 2001, 25(7): 565-77.
    Guedes, S. d. M., Vitorino, R., Domingues, R., Tomer, K., et al., Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph. Biochem. Biophys. Res. Commun. 2005, 328, 106-115.
    Gunning, P., Weinberger, R., Jeffrey, P., Actin and tropomyosin isoforms in morphogenesis. Anat. Embryol. (Berl) 1997, 195, 311-315.
    Gygi, S. P., Rochon, Y., Franza, B. R., Aebersold, R., Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 1999, 19, 1720-1730.
    Halliwell, B., Gutteridge, J. M. C., Free Radicals in Biology and Medicine, Oxford University Press, Oxford 1999.
    Hanson, A. D., Gage, D. A., Shachar-Hill, Y., Plant one-carbon metabolism and its engineering. Trends Plant Sci. 2000, 5, 206-213.
    He,N.,Qin,Q.,Xu,X., Differential profile of genes expressed in hemocytes of White Spot Syndrome Virus-resistant shrimp (Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization. Antiviral Res. 2005, 66(1): 39-45.
    Hill, A. D., Taylor, A. C., Strang, R. H. C., Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery. J. Exp. Mar. Biol. Ecol. 1991, 150, 31-50.
    Hillmer, P. and Gottschalk, G.., Solubilization and partial characterisation of particulate dehydrogenases from Clostridium kluyveri. Biochim. Biophys. Acta. 1974, 334:12-23.
    Hochachka, P., Defense strategies against hypoxia and hypothermia. Science 1986,231, 234-241.
    Hochachka, P. W., Buck, L. T., Doll, C. J., Land, S. C., Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Natl. Acad. Sci. U S A. 1996, 93, 9493-9498.
    Hoek, T. L. V., Becker, L. B., Shao, Z., Li, C., Schumacker, P. T., Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J. Biol. Chem. 1998, 273, 18092-18098.
    Hoffmann J.A. and Charles H., Insect defensive: inducible antibacterial peptide. Immunol. Today. 1992, 10, 411-415.
    Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. & Ezekowitz, R.A., Phylogenetic perspectives ininnate immunity. Science, 1999, 284, 1313-1318.
    Hoppel, C., Kerner, J., Turkaly, P., Minkler, P., Tandler, B., Anal. Biochem. 2002, 302: 60-69.
    Hose, J. E., Martin, G. C., Defence functions of granulocytes in the ridgeback prawn Sicyonia ingentis. J. Invertebr. Pathol. 1989, 53, 335-346.
    Hoskins, D., Mackenzie, C., Solubilization and electron transfer flavoprotein requirement of mitochondrial sarcosine dehydrogenase and dimethylglycine dehydrogenase. J. Biol. Chem. 1961, 236, 177-183.
    Hu KJ, Leung PC, Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp Biochem Physiol B Biochem Mol Biol. 2007, 146(1):69-80.
    Hudáky, P., Kaslik, G., Venekei, I., Gráf, L., The differential specificity of chymotrypsin A and B is determined by amino acid 226. Eur. J. Biochem. 1999, 259, 528-533.
    Iwanaga, S., Lee, B. L., Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 2005, 38, 128-150.
    Jackson, D. C., Living without oxygen: lessons from the freshwater turtle. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2000, 125, 299-315.
    Johansson,M.W.,Holmblad,T.,Thornqvist,P.O.,Cammarata,M.,Parrinello,N., S?derh?ll K., A cell-surface superoxide dismutase is a binding protein forperoxinectin, a cell-adhesive peroxidase in crayfish. J.Cell. Sci.1999; 112, 917-925.
    Johnson,P.T..A review of fixed phagocytic and pinocytotic cells of decapod crustaceans,with remarks on hemocytes. Dev Comp Immunol. 1987, 11, 679-704.
    Johnson, I., Uglow, R. F., The effects of hypoxia on ion regulation and acid-base balance in Carcinus maenas (L.). Comp. Biochem. Physiol. 1987b, 86A, 261-267.
    Kang, C.J., Wang, J.X., Zhao, X.F., Yang, X.M., Shao, H.L., Xiang, J.H., Molecular cloning and expression analysis of Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. 2004; 16(4):513-25.
    Kaufinann R., Kirsch D., Spengler B., Sequencing of peptides in a time of flight massspectrometer: evaluation of postsource decay following matrix-assisted laser desorption ionization (MALDI), Int. J. Mass Spectrom. Ion Process, 1999, 131, 355-385.
    Kelsen, S. G., Duan, X., Ji, R., Perez, O., et al., Cigarette smoke induces an unfolded protein response in the human lung: A proteomic approach. Am. J. Respir. Cell Mol. Biol. 2008, 38, 541-550.
    Kim, H.-J., Lee, D.-Y., Lee, D.-H., Park, Y.-C., et al., Strategic proteome analysis of Candida magnoliae with an unsequenced genome. Proteomics 2004, 4, 3588-3599.
    Kikuchi M., Hatano N., Yokota S., Shimozawa N. et al., J. Biol. Chem. 2004, 279: 421-428.
    Kinnula, V. L., Crapo, J. D., Raivio, K. O., Generation and disposal of reactive oxygen metabolites in the lung. Lab. Invest. 1995, 73, 3-19.
    Kunlaya Somboonwiwat, Premruethai Supungul, Vichien Rimphanitchayakit, Takashi Aoki,Ikuo Hirono and Anchalee Tassanakajon, Differentially Expressed Genes in Hemocytes of Vibrio harveyi-challenged Shrimp Penaeus monodon. Environ Microbiol. 2008, 10(10):2718-27.
    Kuramitsu S, Okuno S, Ogawa T, Ogawa H, Kagamiyama H, Aspartate aminotransferase of Escherichia coli: nucleotide sequence of the aspC gene. J. Biochem. 1985, 97(4):1259-1262.
    Lai, C.-Y., Cheng, W., Kuo, C.-M., Molecular cloning and characterisation of prophenoloxidase from haemocytes of the white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2005, 18, 417-430.
    Leu JH, Chang CC, Wu JL, Hsu CW, Hirono I, Aoki T, Juan HF, Lo CF, Kou GH, Huang HC, Comparative analysis of differentially expressed genes in normal and white spot syndrome virus infected Penaeus monodon. BMC Genomics. 2007, 8, 120.
    Li C.C., Yeh S.T., Chen J.C., The immune response of white shrimp Litopenaeus vannamei following Vibrio alginolyticus injection. Fish Shellfish Immunol. 2008 25(6):853-860.
    Li, D.-C., Review of fungal chitinases. Mycopathologia 2006, 161, 345-360.
    Li, F., Luan, W., Zhang, C., Zhang, J., et al., Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress Chaperones. 2009, 14, 161-172.
    Lindstrom-Dinnetz I, Sun S.C., Faye I., Structure and expression of Hemolin, an insect member of the immunoglobulin gene superfamily. Eur J Biochem. 1995, 230 (3):920-5.
    Liu, X., Li-Ling, J., Hou, L., Li, Q., Ma, F., Identification and characterization of a chitinase-coding gene from Lamprey (Lampetra japonica) with a role in gonadal development and innate immunity. Dev. Comp. Immunol. 2009, 33, 257-263.
    Livaka, K. J., Schmittgen, T. D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. METHODS 2001, 25, 402-408.
    Lombardi, D., Lacombe, M. L., Paggi, M. G., Nm23: unraveling its biological function in cell differentiation. J. Cell. Physiol. 2000, 182, 144-149.
    López, C., Villalba, A., Bachère, E., Absence of generation of active oxygen radicals coupled with phagocytosis by the hemocytes of the clam Ruditapes decussatus. J. Invertebr. Pathol. 1994, 64, 188-192.
    Lu, S. C., S-adenosylmethionine. Int. J. Biochem. Cell Biol. 2000, 32, 391-395.
    M.N. Bautista, C.R. Lavilla-Pitogo and P.F. Subosa, Aflatoxin B1 contamination of shrimp feeds and its effect on growth and hepatopancreas of pre-adult Penaeus monodon, J. Sci. Food Agric. 1994, 65, 5-11.
    Madenjian, C. M., Rogers, G. L., Fast, A. W., Predicting night-time dissolved oxygen loss in prawn ponds of Hawaii: Part I. Evaluation of traditional methods. Aquac. Eng. 1987, 6, 191-208.
    Mairesse, N., Horman, S., Mosselmans, R., Galand, P., Antisense inhibition of the 27 kDa heat shock protein production affects growth rate and cytoskeletal organization in MCF-7 cells. Cell Biol. Int. 1996, 20, 205-212.
    Manyin T, Rowe CL, Bioenergetic effects of aqueous copper and cadmium on the grass shrimp, Palaemonetes pugio. Comp Biochem Physiol C Toxicol Pharmacol. 2009. (in print).
    Marques, M.R.F., Barracco, M.A., Lectins, as non-self-recognition factors, in crustaceans. Aquaculture 2000, 191, 23-44.
    Martin GG, Kay J, Poole C. In vitro nodule formation in the ridgeback, Sicyonia ingentis, and the American lobster, Homarus amerianus. Invertebr Biol 1998, 117(2):155-156.
    Mayer MP, Bukau B, Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 2005, 62, 670.
    McMahon, B. R., Respiratory and circulatory compensation to hypoxia in crustaceans. Respir. Physiol. 2001, 128, 349-364.
    Mendelsohn, B. A., Malone, J. P., Townsend, R. R., Gitlin, J. D., Proteomic analysis of anoxia tolerance in the developing zebrafish embryo. Comp. Biochem. Physiol. D 2009, 4, 21-31.
    Millar,D.A.and Ratcliffe,N.A..Invertebrates.In:Turner RJ (editor). Immunology, a comparative approach. John Wiley&Sons Ltd, England 1994; pp.29-68.
    MironKatia, T., Vancompernolle, Vandekerckhove, J., Wilchek, M., Geiger, B., A 25-kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J. Cell Biol. 1991, 114, 255-261.
    Mitta G, Vandenbulcke F, Hubert F, Roch P., Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J Cell Sci. 1999, 112, 4233-42.
    Mohamed, S. A., Mohamed, T. M., Fahmy, A. S., El-Badry, M. O., Abdel-Gany, S. S., Fasciola gigantica: Enzymes of the ornithine–proline–glutamate pathway—Characterization ofΔ1-pyrroline-5-carboxylate dehydrogenase. Exp. Parasitol. 2008, 118, 47-53.
    Morris, S., Butler, S. L., Hemolymph respiratory gas, acid-base, and ion status of the amphibious purple shore crab Leptograpsus variegatus (Fabricius) during immersion and environmental hypoxia. J. Crustac. Biol. 1996, 16, 253-266.
    Moullac, G. L., Soyez, C., Saulnier, D., Ansquer, D., et al., Effect of hypoxia stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol. 1998, 8, 621-629.
    Mounier, N., Arrigo, A.-P., Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones. 2002, 7, 167-176.
    Neil D. Rawlings and Alan J. Barrett, Structure of membrane glutamate carboxypeptidase. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1997, 1339(2): 247-252.
    Nishihira J., Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res. 2000, 20(9):751-762.
    O'Farrell P.H., High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007-4021.
    Pan, D., He, N., Yang, Z., Liu, H., Xu, X., Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev. Comp. Immunol. 2005, 29, 103-112.
    Pandey, A., Mann, M., Proteomics to study genes and genomes. Nature 2000, 405,837-846.
    Parsell DA, Lindquist S. The Function of Heat-Shock Proteins in Stress Tolerance: Degradation and Reactivation of Damaged Proteins. Annual Reviews in Genetics 1993, 27, 437.
    Penning, T. M., Drurya, J. E., Human aldo–keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 2007, 464, 241-250.
    Peters JM, Franke WW, Kleinschmidt JA, Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 1994, 269(10):7709-7718.
    Pierron F, Baudrimont M, Boudou A, Massabuau JC, Effects of salinity and hypoxia on cadmium bioaccumulation in the shrimp Palaemon longirostris. Environ Toxicol Chem. 2007, 26(5):1010-1017
    Porubleva, L., Velden, K. V., Kothari, S., Oliver, D. J., Chitnis, P. R., The proteome of maize leaves: Use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 2001, 22, 1724-1738.
    Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A., Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish Shellfish Immunol. 2008, 25(5):485-93.
    Postel, E. H., Multiple biochemical activities of NM23/NDP kinase in gene regulation. J. Bioenerg. Biomembr. 2003, 35, 31-40.
    Rameshthangam P, Ramasamy P., Protein expression in white spot syndrome virus infected Penaeus monodon fabricius. Virus Res. 2005, 110(1-2):133-41.
    Rajaraman, G., Wang, G. Q., Yan, J., Jiang, P., et al., Role of cytosolic liver fatty acid binding protein in hepatocellular oxidative stress: effect of dexamethasone and clofibrate treatment. Mol. Cell. Biochem. 2007, 295, 27-34.
    Rak A , Fedorov R , Alexandrov K , Albert S , Goody RS , Gallwitz D , Scheidig AJ, Crystal structure of the GAP domain of Gyp1p: first insights into interactionwith Ypt/Rab proteins. EMBO J. 2000, 19, 5105-5113.
    Rattanarojpong, T., Wang, H.-C., Lo, C.-F., Flegel, T. W., Analysis of differently expressed proteins and transcripts in gills of Penaeus vannamei after yellow head virus infection. Proteomics 2007, 7, 3809-3814.
    Ravanel, S., Job, D., Douce, R., Purification and properties of cystathionineβ-lyase from Arabidopsis thaliana overexpressed in Escherichia coli. Biochem. J. 1996, 320, 383-392.
    Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519-529.
    Samuel SJ, Tzung SP, Cohen SA, Hrp12, a novel heat-responsive, tissue-specific, phosphorylated protein isolated from mouse liver. Hepatology. 1997, 2554:1213-1222.
    Schirmer E. C., Florens L., Guan T., Yates J. R., Gerace L., Science, 2003, 301: 1380-1382.
    Schmidt O, Faye I, Lindstrom-Dinnetz I, Sun SC., Specific immune recognition of insect hemolin. Dev Comp Immunol. 1993, 17(3):195-200.
    Schnieszko, S. F., The effects of environmental stress on outbreaks of infectious diseases of fishes. Journal of Fish Biology. 1974, 6, 197-208.
    Seidman, E. R., Lawrence, A. L., Growth, feed digestibility, and proximate body composition of juvenile Penaeus vannamei and Penaeus monodon grown at different dissolved oxygen levels. J. World Maric. Soc. 1985, 16, 333-346.
    Shen H., Cheng G., Fan H., Zhang J., Yang P., et al., Expressed proteome analysis of human hepatocellular carcinoma in nude mice (LCI-D20) with high metastasis potential, Proteomics, 2006, 6, 528-537.
    Shevchenko A., Jensen O.N., Podtelejnikov A.V., Sagliocco F., Wilm M., Vorm O., Mortensen P., Shevchenko A., Boucherie H. and Mann M., Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two-dimensional gels, Proc. Natl. Acad. Sci. USA, 1996a, 93: 14440-14445.
    Shevchenko A., Wilm M., Vorm O., et al.,Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal Chem. 1996b, 68: 850-858.
    Shi, X.-Z., Zhao, X.-F., Wang, J.-X., Molecular cloning and expression analysis of chymotrypsin-like serine protease from the Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. 2008, 25, 589-597.
    Shimizu, M., Fujii, T., Masuo, S., Fujita, K., Takaya, N., Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions. Proteomics 2009, 9, 7-19.
    Shu, S., Mahadeo, D. C., Liu, X., Liu, W., et al., S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration. Proc. Natl. Acad. Sci. U S A. 2006, 103, 19788-19793.
    Siriporn Pongsomboon, Ratree Wongpanya, Sureerat Tang, Arthit Chalorsrikul, Anchalee Tassanakajon, Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish & Shellfish Immunology 2008, 25, 485-493.
    S?derh?ll, K., Cerenius, L., Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 1998, 10, 23-28.
    S?derh?ll,K.,Aspan,A.,Duvic,B., The proPO-system and associated proteins;role in cellular communication in arthropods. Res Immunol.1990, 141(9):896-907. S?derh?ll,K.,Cerenius,L., Crustacean immunity. Annual Review of Fish Diseases 1992, 2, 3-23.
    S?derh?ll K, Smith VJ, Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol. 1983, 7(2):229-39.
    S?derh?ll K, Cerenius L and Johansson MW. The prophenoloxidase activating system in invertebrates. In: S?derh?ll K, Iwanaga S and Vasta GR (editors). New Directions in Invertebrate Immunology, SOS Publications, Fair Haven, 1996; pp. 229-253.
    Song, E. J., Kim, Y. S., Chung, J. Y., Kim, E., et al., Oxidative modification ofnucleoside diphosphate kinase and its identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biochemistry 2000, 39, 10090-10097.
    Sritunyalucksana,K..Characterisation of some immune genes in the black tiger shrimp, Penaeus monodon. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology 2001; pp45.
    Stevens, R. L., Adachi, R., Protease-proteoglycan complexes of mouse and human mast cells and importance of theirβ-tryptase-heparin complexes in inflammation and innate immunity. Immunol. Rev. 2007, 217, 155-167.
    Sun SC, Lindstrom I, Boman HG, Faye I, Schmidt O. Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science. 1990, 21, 250(4988):1729-32.
    Thomas-Guyon, H., Gagnaire, B., Bado-Nilles, A., Bouilly, K., et al., Detection of phenoloxidase activity in early stages of the Pacific oyster Crassostrea gigas (Thunberg). Dev. Comp. Immunol. 2009, 33, 653-659.
    Tsing, A., Arcier, J. M., Bréhélin, M., Haemocytes of penaeids and palaemonid shrimps: morphology, cytochemistry and hemograms. J. Invertebr. Pathol. 1989, 53, 64-77.
    Tu, B. P., Weissman, J. S., Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 2004, 164, 341-346.
    Turner, N. J., Applications of transketolases in organic synthesis. Curr. Opin. Biotechnol. 2000, 11, 527-531.
    Van de Braak CB, Botterblom MH, Taverne N, van Muiswinkel WB, Rombout JH, van der Knaap WP., The roles of haemocytes and the lymphoid organ in the clearance of injected Vibrio bacteria in Penaeus monodon shrimp. Fish Shellfish Immunol. 2002, 13, 293-309.
    Vargas-Albores,F.,Jimeénez-Vega,F.,S?derh?ll,K., A plasma protein isolated from brown shrimp(Penaeus californieneis), which enhances the activation of prophenoloxidase system by 1,3-glucan protein. Dev Comp Immunol. 1996, 20, 299-306.
    Vargas-Albores,F., Jimeénez-Vega, F., Yepiz-Plascencia, G.M., Purification and comparison ofβ-1,3-glucan binding protein from white shrimp (Penaeus vannamei). Comp Biochem Physiol B 1997, 116, 453-458.
    Vargas-Albores,F.,Yepiz-Plascencia,G.M., Beta glucan binding protein and its role in shrimp immune response. Aquaculture 2000, 191, 13-21.
    Vega, E. d. l., Degnan, B. M., Hall, M. R., Wilson, K. J., Differential expression of immune-related genes and transposable elements in black tiger shrimp (Penaeus monodon) exposed to a range of environmental stressors. Fish Shellfish Immunol. 2007, 23, 1072-1088.
    Yao, C.-L., Wua, C.-G., Xiang, J.-H., Dong, B., Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. 2005, 19, 317-329.
    Yoshida H, Kinoshita K, Ashida M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 1996, 271(23): 13854-13860.
    Wang B, Li F, Luan W, Xie Y, Zhang C, Luo Z, Gui L, Yan H, Xiang J.Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and Vibrio. Mar Biotechnol (NY). 2008, 10(6):664-75.
    Wang, H.-C., Wang, H.-C., Leu, J.-H., Kou, G.-H., et al., Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev. Comp. Immunol. 2007, 31, 672-686.
    Wang Y, Willott E, Kanost MR., Organization and expression of the hemolin gene, a member of the immunoglobulin superfamily in an insect, Manduca Sexta. Insect Mol Biol. 1995, 4(2):113-23.
    Watanabe, T., Kono, M., Aida, K., Nagasawa, H., Purification and molecular cloning of a chitinase expressed in the hepatopancreas of the penaeid prawn Penaeus japonicus. Biochim. Biophys. Acta. 1998, 1382, 181-185.
    Webste, N. L., Crowe, S. M., Matrix metalloproteinases, their production by monocytes and macrophages and their potential role in HIV-related diseases. J. Leukoc. Biol. 2006, 80, 1052-1066.
    Wildgruber R., Harder A., Obemater C., Towards high resolution: two-dimensional electrophoresis of saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 2000, 21, 2610-2616.
    Willment, J. A., Brown, G. D., C-type lectin receptors in antifungal immunity. Trends Microbiol. 2007, 16, 27-32.
    Willmore, W. G., Storey, K. B., Antioxidant systems and anoxia tolerance in a freshwater turtle Trachemys scripta elegans. Mol. Cell. Biochem. 1997, 170, 177-185.
    Wilkins M.R., Sanchez J.C., Gooley A.A. et al., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology 1995, 13, 19-50.
    Wormhoudt, A. V., Sellos, D., Cloning and sequencing analysis of three amylase cDNAs in the shrimp Penaeus vannamei (Crustacea decapoda): evolutionary aspects. J. Mol. Evol. 1996, 42, 543-551.
    Wu Jinlu, Lin Qingsong, Lim Teck Kwang, Liu Tiefei, and Hew Choy-Leong, White Spot Syndrome Virus Proteins and Differentially Expressed Host Proteins Identified in Shrimp Epithelium by Shotgun Proteomics and Cleavable Isotope-Coded Affinity Tag. Journal of virology 2007, 81(21): 11681–11689.
    Wu J.P., Chen H.C., Huang D.J., Histopathological and biochemical evidence of hepatopancreatic toxicity caused by cadmium and zinc in the white shrimp, Litopenaeus vannamei. Chemosphere 2008, 73(7):1019-1026.
    Wu JP, Chen HC, Huang DJ, Histopathological alterations in gills of white shrimp, Litopenaeus vannamei (Boone) after acute exposure to cadmium and zinc. Bull Environ Contam Toxicol. 2009, 82(1):90-95.
    Wulff, T., Jessen, F., Roepstorff, P., Hoffmann, E. K., Long term anoxia in rainbow trout investigated by 2-DE and MS/MS. Proteomics 2008a, 8, 1009-1018.
    Wulff, T., Hoffmann, E. K., Roepstorff, P., Jessen, F., Comparison of two anoxia models in rainbow trout cells by a 2-DE and MS/MS-based proteome approach. Proteomics 2008b, 8, 2035-2044.
    Yang C, Zhang J, Li F, Ma H, Zhang Q, Jose Priya TA, Zhang X, Xiang J. A Tollreceptor from Chinese shrimp Fenneropenaeus chinensis is responsive to Vibrio anguillarum infection. Fish Shellfish Immunol. 2008, 24(5):564-74.
    Yoshida, A., Rahetsky, A., Hsu, L. C., Chang, C., Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 1998, 251, 549-557.
    Zenteno-Savín, T., Saldierna, R., Ahuejote-Sandoval, M., Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comp. Biochem. Physiol. C 2006, 142, 301-308.
    Zhang, J., Li, F., Wang, Z., Zhang, X., et al., Cloning, expression and identification of ferritin from Chinese shrimp, Fenneropenaeus chinensis. J. Biotechnol. 2006, 125, 173-184.
    Zhang, Q., Li, F., Wang, B., Zhang, J., et al., The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: Cloning, distribution and expression. Dev. Comp. Immunol. 2007, 31, 429-440.
    Zhao, Z.-Y., Yin, Z.-X., Weng, S.-P., Guan, H.-J., et al., Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish Shellfish Immunol. 2007, 22, 520-534.
    Zhou Q, Wu C, Dong B, Liu F, Xiang J., The encysted dormant embryo proteome of Artemia sinica. Mar Biotechnol (NY). 2008, 10(4):438-46.
    Zong R, Wu W, Xu J, Zhang X, Regulation of phagocytosis against bacterium by Rab GTPase in shrimp Marsupenaeus japonicus. Fish Shellfish Immunol. 2008, 25(3):258-263.
    Zufelato, M. S., Bitondi, M. M. G., Sim?es, Z. L. P., Hartfelder, K., The juvenile hormone analog pyriproxyfen affects ecdysteroid-dependent cuticle melanization and shifts the pupal ecdysteroid peak in the honey bee (Apis mellifera). Arthropod Struct. Dev. 2000, 29, 111-119.
    郭振宇.中国对虾免疫相关分子抗菌肽和热休克蛋白的研究.中国科学院海洋研究所博士毕业论文. 2002, 41-68.
    刘瑞玉.“对虾”中国大百科全书生物卷(1). 1990, 205-206.
    罗田,徐洵.斑节对虾肝胰腺全长cDNA表达文库的构建.海洋学报. 2003, 25(增刊2):116-121.
    康翠洁,王来城,王金星,相建海.对虾抗菌肽研究进展.海水养殖生物病害发生与控制(相建海主编),海洋出版社. 2001, 111-117.
    牟海津,江晓路,刘树青,管华诗.日本对虾溶血素的活性测定及性能研究.海洋与湖沼. 1999, 4, 362-367.
    秦兆宇,刘师莲,杨银荣,刘芙君,李建远,宋春华.白斑综合征中国对虾肝胰腺蛋白质组学研究的技术探索.山东大学学报(理学版). 2007a, 42(7): 5-8.
    秦兆宇,刘师莲,宋春华,张旭华.中国对虾肝胰腺蛋白质组学双向电泳技术体系的建立.生物医学工程研究. 2007b,26(1): 80-83.
    王雷.虾类免疫系统.海水养殖生物病害发生与控制(相建海主编),海洋出版社. 2001,78-84.
    王雷,李光友.甲壳动物的休液免疫研究进展.海洋科学. 1992, 3, 18-19.
    王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼. 1995, 26(2):179-185.
    吴天利,李广丽,师尚丽,吴灶和,朱春华.镉胁迫对凡纳滨对虾血清中一氧化氮合成酶和超氧化物歧化酶活性的影响.热带海洋学报. 2008, 27(6):62-65.
    相建海.海洋动物细胞和种群生化遗传学.山东科学技术出版社. 2000.
    相建海.海水养殖生物病害发生与控制.海洋出版社. 2001, 104-133.
    徐晓津,王军.对虾暴发性白斑病毒病综述.中国水产. 2001, (3): 54-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700