布鲁氏菌强弱毒株感染羊白细胞层SSH cDNA文库建立及CD96分子初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布鲁氏菌病是由布鲁氏菌引起的危害严重的人畜共患病。近年来,我国动物布病的发病率有所回升。当前控制布病的关键问题是布鲁氏菌致病机制和宿主抵抗布鲁氏菌感染机制不完全清楚。但至今,有关羊抵抗布鲁氏菌感染机制的研究报道较少。强毒株感染导致机体患病,弱毒株感染对机体起到保护作用却不引起患病,说明不同毒力株布鲁氏菌感染可引起机体产生不同的应答反应。因此,比较研究不同毒力株感染机体产生的不同应答分子,能够为预防、治疗、检测布鲁氏菌病提供靶标分子。布鲁氏菌可分为6个种。其中,羊种布鲁氏对我国危害较大。在众多布病疫苗中,猪种布鲁氏菌减毒疫苗S2在我国使用较为广泛。因此,选择羊种布鲁氏菌强毒株和猪种布鲁氏菌弱毒株S2进行比较具有一定的代表性,比较结果更加具有现实意义。
     为获得布鲁氏菌强弱毒株感染小尾寒羊差异表达基因,本项研究应用抑制性差减杂交(SSH)技术构建布鲁氏菌强弱毒株感染小尾寒羊SSH cDNA文库。采用鸟枪法对447个文库细菌克隆进行测序。利用荧光定量PCR证实免疫相关备选基因CD96基因在羊种布鲁氏菌(B. melitensis)攻毒小尾寒羊第44天的外周血白细胞层中上调表达。应用RACE技术扩增得到CD96基因全长cDNA序列,并利用生物信息学软件预测CD96-DNAX-1蛋白的抗原表位。通过腹水诱生法获得CD96-D1单克隆抗体。验证了小尾寒羊CD96分子与TNF、IL-10、IFN-γ和IL-4的分泌关系。
     1、布鲁氏菌强弱毒株感染小尾寒羊SSH cDNA文库
     为获得布鲁氏菌强弱毒株感染小尾寒羊差异表达基因,本研究以雄性小尾寒羊为对象,以羊种布鲁氏菌(B. melitensis)为攻毒菌、以猪种布鲁氏菌减毒疫苗株(Brucellosis Vaccine, Live, S2)为接种菌,利用SSH技术首次成功构建布鲁氏菌强弱毒株感染小尾寒羊白细胞层SSH cDNA文库,该文库容量为1.62×106cfu。
     2、克隆获得240个小尾寒羊外周血白细胞层表达基因
     采用鸟枪法对447个文库细菌克隆进行测序,经序列分析和拼接,共得到240个小尾寒羊外周血白细胞层表达基因,其中有4个rRNA基因,234个cDNA序列。在234个cDNA序列中,有32个cDNA翻译的氨基酸序列可以搜索到保守结构域,占总数240个功能基因的比例为13.7%。
     3、确定CD96基因上调表达并获得CD96基因cDNA序列
     为验证CD96基因差异表达的特性,利用荧光定量PCR证实CD96基因在羊种布鲁氏菌(B. melitensis)攻毒小尾寒羊第44天的外周血白细胞层中上调表达,在S2接种后44天的外周血白细胞层中上无显著变化。为获得CD96基因cDNA序列,利用RACE技术扩增得到CD96基因全长cDNA序列。预测氨基酸序列具有PolyA结构和加尾信号序列,所编码蛋白无信号肽,表达于细胞膜表面。
     4、预测CD96-DNAX-1蛋白的抗原表位并获得CD96-D1单克隆抗体
     利用spdbv4.1.0预测CD96-DNAX-1蛋白的三维结构,发现该结构比较松散,与抗体嵌合成为抗原表位的可能性较大。综合Protean工具和BCPREDS工具的对CD96-DNAX-1蛋白的分析结果,预测其抗原表位为SDVNLTCQAQKKGLLVQMQWSKV并命名为CD96-D1。人工合成抗原表位CD96-D1,采用戊二醛法将小分子半抗原CD96-D1分别与卵清蛋白(OVA)、牛血清蛋白(BSA)偶联制备检测抗原和免疫抗原,免疫BALB/c鼠,融合并筛选杂交瘤细胞。获得2株分泌单克隆抗体的杂交瘤细胞。优选1株,采用小鼠腹水诱生法制备腹水单克隆抗体并纯化,纯化后单克隆抗体浓度为1.96mg/mL。为研究CD96分子与细胞因子的分泌关系奠定基础。
     5、验证小尾寒羊CD96分子与TNF、IL-10、IFN-γ和IL-4的分泌关系
     为了解CD96分子的生物学功能,利用CD96-D1单克隆抗体刺激健康羊外周血混合淋巴细胞,发现CD96-D1单克隆抗体能刺激TNF、IL-10分泌的增加,对IFN-γ和IL-4分泌未产生影响。
     综上所述,本文为深入探讨CD96分子抗布鲁氏菌感染免疫机制奠定基础。
Brucellosis is a worldwide zoonotic infectious disease caused by the genus Brucella.In recent years, brucellosis rebounds worldwide, and it is especially serious in China.But, Brucella pathogenesis and host resistance to Brucella infection mechanism arenot completely known. So far, little has been reported about the mechanism of sheepresisting Brucella infection. Virulent strain infection causes the host sick, and weakstrain inoculation plays a protective effect. It implies that the infection of differentvirulent Brucella strains can cause the body to produce different reactions. Acomparative study of which different virulence strains infect and stimulate the body toproduce molecular responses can provide target molecules for the prevention,treatment and detection of brucellosis. The Brucella genus consists of six classicallyrecognized species, of which B. melitensis causes a highly harmful in our country.Among the brucellosis vaccine, B. suis strain2vaccines is the most widely usedvaccines in our country. Therefore, the choice of B. melitensis virulent strain and B.suis strain2attenuated strain has more representative, and the comparison has morepractical significance.
     To obtain differentially expressed genes of Small Tail Han sheep infected byBrucella virulent and attenuated strains, suppression subtractive hybridization (SSH)was used to build SSH cDNA library of buffy coat and a shot-gun DNA sequencestrategy was employed.447library clones from the SSH cDNA library weresequenced. Real-time RT-PCR confirmed the upregulation of CD96in peripheralblood leukocytes when B. melitensis infect Small Tail Han sheep after44days. Thefull length of CD96cDNA was cloned using rapid amplification of cDNA end (RACE)technology. Bioinformatics software predicted the epitopes of CD96-DNAX-1. CD96-D1monoclonal antibody was obtained by means of ascites method. Therelationship between activity of CD96molecule and secretion of TNF, IL-10, IFN-γand IL-4from Small Tail Han sheep was confirmed.
     1. SSH cDNA library of buffy coat from Brucella virulent and attenuated strainsinfecting Small Tail Han sheep.
     To obtain differentially expressed genes of buffy coat from Brucella virulent andattenuated strains infecting Small Tail Han sheep, in this study Small Tail Han sheepwere used as experimental animals, B. melitensis as attack germs and B. suis strain2as vaccine strain. We use suppression subtractive hybridization (SSH) to build SSHcDNA library of buffy coat from infecting Small Tail Han sheep infected by Brucellavirulent and attenuated strains. The library harvested with1.62×106cfu.
     2.240genes of Small Tail Han sheep were cloned in peripheral bloodleukocytes.
     A shot-gun DNA sequence strategy was employed, in which447library cloneswere sequenced.240genes of Small Tail Han sheep were cloned in peripheral bloodleukocyte, such as5rRNA genes,235cDNA sequences. In the235cDNA sequences,amino acid sequences translated from32cDNAs can be searched for conserveddomains showing ratio of13.6%to the total number of240functional genes.
     3. The CD96gene was determined with the upregulation pattern and thefull-length cDNA sequence was obtained.
     Real-time PCR confirmed the upregulation of CD96in peripheral bloodleukocytes at44days post B. melitensis infecting Small Tail Han sheep. Therewere no significant differences in gene expression after B. suis strain2infected. Thefull-length CD96cDNA sequence was cloned by rapid amplification of cDNA end(RACE) technology and the predicted amino acid sequence did not show signalpeptides to express and locate on the cell surface.
     4. Analysis of CD96-DNAX-1epitope and preparation of a monoclonal antibodyCD96-D1
     For CD96-DNAX-1protein comprehensive analysis, we predicted antigenic epitope of SDVNLTCQAQKKGLLVQMQWSKV, and it was named as CD96-D1.Synthetic epitope CD96-D1was prepared for antigen immunization and detection.BALB/c mice, were used to immunized with CD96-D1, and hybridoma cells werefused and sreened. Monoclonal antibodies induced from the mouse ascites wereprepared and purified. After purification, the monoclonal antibody concentration was1.96mg/mL. It was the foundation of study on the relationship between CD96molecule and secreted cytokines.
     5. Relationship between the activity of CD96and secretion of TNF, IL-10, IFN-γand IL-4
     To understand the biological function of the molecule CD96, we used CD96-D1monoclonal antibody to stimulate healthy sheep peripheral blood includinglymphocyte. Monoclonal antibody CD96-D1was confirmed to show the activity toincrease TNF, IL-10secretion, and to pose no impact on IFN-γ and IL-4secretion.
     In summary, this paper will lay a foundation of CD96anti-brucellosis infection.
引文
[1] CORBEL M J.Brucellosis:an overview [J].Emerg Infect Dis,1997,3:213-221.
    [2] VERGER J M, GRAYON M, TIBOR A, et al.Differentiation of Brucellamelitensis,B.ovis and B.suis biovar2strains by use of membrane protein orcytoplasmic protein-specific gene probes [J].Res Microbiol,1998,149:509-517.
    [3] LUCERO N,CORAZZA R,ALMUZARA M,et al.Human Brucella canisoutbreak linked to infection in dogs[J].Epidemiology and infection,2010,138(2):280.
    [4] FOSTER G,JAHANS K L,REID R J,et al.Isolation of Brucella species fromcetaceans,seals and an otter [J].Vet Rec,1996,138:583-586.
    [5] ROSS H M,FOSTER G,REID R J,et al.Brucella species infection in sea-mammals [J].Vet Rec,1994,134:359.
    [6] ROSS H M,JAHANS K L,MACMILLAN A P,et al.Brucella species infectionin North Sea seal and cetacean populations [J].Vet Rec,1996,138:647-648.
    [7]张维珍.布鲁氏菌和宿主相互作用机制的研究进展[J].中国畜牧兽医文摘,2013,29(4):31-33.
    [8] GORVEL J P.Brucella:a Mr“Hide”converted into Dr Jekyll [J].MicrobesInfect,2008,10:1010-1013.
    [9] ACHA P N,SZYFRES B.Zoonoses and communicable diseases common toman and animals: vol.1: bacterioses and mycoses. Third Edition
    [M].Washington,DC:Pan American Health Organization,2001.
    [10] PETER M R,LISA A C.Human-Animal Medicine:clinical:approaches tozoonoses,toxicants,and other shared health risks[M].Amsterdam: ElsevierInc,2010.
    [11] MANDELL G E,BENNETT J E,DOLIN R.Principles and practice of infectiousdiseases.6th ed[M].Philadelphia:Churchill Livingstone,2000.
    [12] STEPHANIE B,TROY S B,RICKMAN L S,et al.Brucellosis in San Diegoepidemiology and species-related differences in acute clinical presentations[J].Medicine,2005,84:174.
    [13] KAHN CM,LINE S.The Merck veterinary manual.9th ed[M].WhitehouseStation,NJ:Merck,2005.
    [14] COLVILLE J,BERRYHILL D.Handbook of zoonoses:identification andprevention[M].St Louis:Mosby Elsevier,2007.
    [15]曲勍.QS系统VjbR在布鲁氏菌胞内生存中作用的研究[D].吉林:吉林大学,2009.
    [16]任洪林,卢士英,周玉.布鲁氏菌病的研究与防控进展[J].中国畜牧兽医2009,36(9):139-143.
    [17] WANG Y,ZHANG W,KE Y,et al.Human Brucellosis,a Heterogeneouslydistributed,Delayed,and Misdiagnosed Disease in China[J].Clinical InfectiousDiseases,2013,56(5):750-751.
    [18]张士义,朱岱,压森林.中国布鲁氏菌病防治50年回顾[J].中国地方病防治杂志,2003,81(5):275-278.
    [19]卫广森.动物布鲁氏菌病的研究进展[J].现代畜牧兽医,2004(06):37-40.
    [20] GROSS A,TERRAZA A,OUAHRANI-BETTACHE S,et al.In vitro Brucellasuis infection prevents the programmed cell death of human monocytic cells[J].Infect Immun,2000,68:342-351.
    [21] ROOP R M2ND,GAINES J M,ANDERSON E S,et al.Survival of the fittest:how Brucella strains adapt to their intracellular niche in the host[J].MedMicrobiol Immunol,2009,198(4):221-38.
    [22] GODFROID J,CLOECKAERT A,LIAUTARD JP,et al.From the discoveryof the Malta fever’s agent to the discovery of a marine mammal reservoirbrucellosis has continuously been a re-emerging zoonosis[J].Vet Res,2005,36(3):313-26.
    [23]金宁一,胡仲明,冯书章.新编人兽共患病学[M].北京:科学出版社,2007.
    [24]张辉.羊种布鲁氏菌感染胚胎滋养层细胞的分子机制研究[D].新疆:石河子大学,2009.
    [25] BALDWIN C L,JIANG X,FERNANDES D M.Macrophage control of Brucellaabortus:influence of cytokines and iron[J].Trends Microbiol,1993,1:99-104.
    [26] JIANG X,BALDWIN C L.Iron augments macrophage-mediated killing ofBrucella abortus alone and in conjunction with interferon-gamma [J].CellImmunol,1993,148:397-407.
    [27] JIANG X,LEONARD B,BENSON R.Macrophage Control of Brucellaabortus: Role of Reactive Oxygen Intermediates and Nitric Oxide[J].Cellimmunol,1993,151:309-319.
    [28] GAY B,SANCHEZ-TEFF S,CARAVANO R.Ultrastructural localization ofNADPH-oxidase activity in murine peritoneal macrophages duringphagocytosis of Brucella. Correlation with the production of superoxideanions[J].Virchows Arch B,1984,45:147-155.
    [29] YOUNG E J,BORCHERT F L,D M MUSHER.Phagocytosis and killing ofBrucella by human polymorphonuclear leukocytes[J].J Infect Dis,1985,151:682-690.
    [30] RILEY L K,ROBERTSON D C.Ingestion and intracellular survival of Brucellaabortus in human and bovine polymorphonuclear leukocytes [J].Infect Immun,1984,46:224-230.
    [31] SALMERON IM,RODRIGUEZ-ZAPATA O,SALMERON L,et al.Impairedactivity of natural killer cells in patients with acute brucellosis [J].Clin InfectDis,1992,15:764-770.
    [32] ZAITSEVA MH,GOLDINGJ,M ANISCHEWITZ D,et al.Brucello abortusas a potential vaceine candidate:induetion of interleukin-12seeretion andenhanced B7.1and B7.2and intercellular adhesion moleculel surfaceexpression inelutriated human monocytes stimulated heat-inactivatedB.abortus[J].Infect Immun,1996,64:3109-3117.
    [33] SALMERóN I,RODRíGUEZ-ZAPATA M,SALMERóN O,et al.Lack ofa Role for Natural Killer Cells in Early Control of Brucella abortus2308Infections in Mice [J].Clin Infect Dis,1992,15(5):764-70.
    [34]金山,乌尼,哈斯木伦.布鲁氏菌生物学特性研究进展[J].内蒙古畜牧科学,2000,(08):32-34.
    [35] CORBEIL L B,K BLAU T J,INZANA K H,et al.Killing of Brucella abortusby bovine serum [J].Infect Immun,1988,56:3251-3261.
    [36] HOFFMANN E M,HOULE J J.Failure of Brucella abortus lipopoly-saccharide(LPS) to activate the alternative pathway of complement[J].VetImmunol Immunopathol,1983,5:65-76.
    [37] FERNANDEZ-PRADA C M,M NIKOLICH R,VEMULAPALLI N,etal.Deletion of wboA enhances activation of the lectin pathway of complement inBrucella abortus and Brucella melitensis [J].Infect Immun,2001,69:4407-4416.
    [38] ARAYA L N,ELZER P H,ROWE G E,et al.Temporal development ofprotective cell-mediated and humoral immunity in BALB/c mice infectedwith Brucella abortus [J].J Immunol,1989,143:3330-3337.
    [39] OLIVEIRA S C,SPLITTER G A.CD8+type1CD44hiCD45RBlo Tlymphocytes control intracellular Brucella abortus infection as demonstrated inmajor histocompatibility complex class I and class II-deficient mice [J].Eur JImmunol,1995,25:2551-2557.
    [40] Forestier C. Brueella abortus lipopolysaecharide in murine peritonealmacrophages aets as a down-regulator of T cell activation.J Immunol,2000,165:5202-5210.
    [41] ARAYA L N,ELZER P H,ROWE G E,et al.Temporal development ofprotective cell-mediated and humoral immunity in BALB/c mice infectedwith Brucella abortus [J].J Immunol,1989,143:3330-3337.
    [42] WINTER A J,DUNCAN J R,SANTISTEBAN C G,et al.Capacity of passivelyadministered antibody to prevent establishment of Brucella abortus infection inmice [J].Infect Immun,1989,57:3438-3444.
    [43] Montaraz J A,Winter A J.Comparison of living and nonliving vaccines forBrucella abortus in BALB/c mice [J].Infect Immun,1986,53:245-251.
    [44] MICHAUX-CHARACHON S, BOURG G, JUMAS-BILAK E, etal.Genome structure and phylogeny in the genus Brucella [J].J Bacteriol,1997,179:3244-3249.
    [45]MONTARAZ J A,WINTER A J,HUNTER D M,et al.Protection againstBrucella abortus in mice with O-polysaccharide-specific monoclonalantibodies[J].Infect Immun,1986,51:961-963.
    [46] SCHURIG G G,ROOP R M,BAGCHI J T,et al.Biological properties of RB51a stable rough strain of Brucella abortus [J].Vet Microbiol,1991,28:171-188.
    [47]HOFFMANN E M,HOULE J J.Contradictory roles for antibody andcomplement in the interaction of Brucella abortus with its host[J].Crit RevMicrobiol,1995,21:153-163.
    [48]曾政.布鲁氏菌新型疫苗的构建及其免疫原性研究[D].陕西:西北农林科技大学,2004.
    [49] CIRL C,WIESER A,YADAV M,et al.Subversion of Toll-like receptorsignaling by a unique family of bacterial Toll/interleukin-1receptor domaincontaining proteins [J].Nat Med,2008,14(4):399-406.
    [50]李先波.布鲁氏菌诊断抗原的筛选与prpA基因标记疫苗株的构建及保护性评价[D].四川:四川农业大学,2012.
    [51] KO J,GENDRON-FITZPATRICK A,SPLITTER G A.Susceptibility ofinterferon regulatory factor (IRF-1) and interferon consensus sequencebinding protein (ICSBP) deficient mice to brucellosis[J].J Immunol,2002,168:2433-2440.
    [52] ZHAN Y,KELSO A,CHEERS C.Cytokine production in the murine responseto Brucella infection or immunization with antigenic extracts [J].Immunology,1993,80:458-464.
    [53] ZHAN Y,CHEERS C.Endogenous gamma interferon mediates resistance toBrucella abortus infection [J].Infect Immun,1993,61:4899-4901.
    [54] ZHAN Y,Z LIU,CHEERS C.Tumor necrosis factor alpha and interleukin-12contribute to resistance to the intracellular bacterium Brucella abortus bydifferent mechanisms[J].Infect Immun,1996,64:2782-2786.
    [55] SCHURIG G G,ROOP R M,BAGCHI T,et al.Biological properities of RB51:a stable rough strain of Brucella abortus[J].Vet Microbiol,1991,28:171-188.
    [56] SEHURIG G,SRIRANGANATHAN N,CORBEL M.Brueellosis vaccines:past,present and future[J].Vet Mierobiol,2002,90:479-496.
    [57] BLASEO J M.A review of the use of B.melitensis Rev1vaccine in adult sheep and goats[J].Prev Vet Med,1997,31:275-283.
    [58] SHANG D,XIAO D,YIN J.Epidemiology and control of brucellosis in China[J].Vet Mierobiol,2002,90:165-182.
    [59] LORD VR,CHERWONOGRODZKY JW,SEHURIG GG,et al.Venezuelanfield trials of vaccines against brueellosis in swine[J].Am J Vet Res,1998,59:546-551.
    [60] EDMONDS M D,SAMARTINO L E,HOYT P G,et al.Oral vaccination ofsexually mature pigs with Brucella abortus vaccine strain RB5l[J].Am J VetRes,2001,62:1328-1331.
    [61] MORIYONⅠ,GRILLO M,MONREAL D,et al.Rough vaccines in animalbrueellosis:structural and genetic basis and present status[J].Vet Res,2004,35:l-38.
    [62] DEL V G,KAPATRAL V,REDKAR R J,et al.The genome sequence of thefacultative intracellular pathogen Brucella melitensis[J].Proe Natl Aead Sci,2002,99:443-448.
    [63] SANCHEZ D O,ZANDOMENI R O,CRAVERO S,et al.Gene diseoverythrough genomic sequencing of Brucella abortus[J].Infect Immun,2001,69:865-868.
    [64] FANGKUN W,SEN H,YUZHE G,et al.Complete genome sequences ofBrucella melitensis strains M28and M5-90, with different virulencebackgrounds[J].J Bacteriol,2011,193(11):2904-2905.
    [65] PAULSEN I T,SESHADRI R,NELSON K E,et al.The Brucella suis genomereveals fundamental similarities between animal and plant pathogens andsymbionts[J].Proc Natl Acad Sei,2002,99:13148-13153.
    [66] RAJASHEKARA G,GLASNER J D,GLOVER D A,et al.Comparative whole-genome hybridization reveals genomic islands in Brucella species [J].JBaeteriol,2004,186:5040-5051.
    [67] Tsolis R M. Comparative genome analysis of the alphaproteobacteria:relationships between plant and animal pathogens and host speeifieity[J].ProeNatl Aead Sei,2002,99:12503-12505.
    [68] PORTE F,NAROENI A,OUAHRANI-BETTACHE S,et al.Role of theBrucella suis lipopolysaccharide O antigen in phagosomal genesis and ininhibition of phagosome-lysosome fusion in murine macrophages [J].InfectImmun,2003,71:1481-1490.
    [69] BOSCHIROLI M L,OUAHRANI-BETTACHE S,FOULONGNE V,etal.Type IV secretion and Brucella virulence [J].Vet Microbiol,2002,90:341-348.
    [70] O'CALLAGHAN D,CAZEVIEILLE C,ALLARDET-SERVENT A,et al.Ahomologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptltype IV secretion systems is essential for intracellular survival of Brucella suis[J].Mol Microbiol,1999,33:1210-1220.
    [71] TSOGTBAATAR G,TACHIBANA M,WATANABE K,et al.Enzyme-linkeimmunosorbent assay for sereening of canine brueellosis using recombinant Cu-Zn superoxide dismutase[J].Vet Med Sci,2008,70(12):1387-1359.
    [72] SELEEM M N,BOYLE S M,SRIRANGANATHAN N.Brucella:a pathogenwithout classic virulence genes[J].Vet Microbiol,2008,129:1-14.
    [73] VIZCAINO N,KITTELBERGER R,CLOECKAERT A,et al.Minor nucleotidesubstitutions in the Omp31gene of Brucella ovis result in antigenic differencesin the major outer membrane protein that it encodes compared to those of theother Brucella species[J].Infect Immun,2001,69(11):7020-7028.
    [74] GONZáLEZ M,ANDREWS E,FOLCH H,et al.Cloning,expression andimmunogenicity of the translation initiation fact or3homologue of Brucellaabortus [J].Immunobiology,2009,214(2):113-120.
    [75] HE Y,REICHOW S,RAMAMOORTHY S,et al.Brucella melitensis triggerstime-dependent modulation of apoptosis and down-regulation ofmitochondrion-associated gene expression in mouse macrophages[J].Inf ectImmun,2006,74(9):5035-5046.
    [76] ESKRA L,MATHISON A,SPLITTER G.Microarray analysis of mRNAlevels from RAW264.7macrophages infected with Brucella abortus [J].InfectImmun,2003,71(3):1125-1133.
    [77] GALINDO R C,MU OZ P M,DE MIGUEL M J,et al.Differential expressionof inflammatory and immune response genes in rams experimentally infectedwith a rough virulent strain of Brucella ovis[J].Vet Immunol Immunopathol,2009,127:295-303.
    [78] WANG PL,O'FARRELL S,CLAYBERGER C,et al.Identification andmolecular cloning of tactile.A novel human T cell activation antigen that is amember of the Ig gene superfamily[J].J Immunol,1992,148(8):2600-2608.
    [79] GRAMATZKI M,LUDWING W D,BURGER R,et al.Antibodies TC-12(unique) and TH-111(CD96) characterize T-cell acute lymphoblasticleukemia and a subgroup of acute myeloid leukemia[J].Exp Hematol,1998,26(13):1209-14.
    [80]朱参胜.人CD96分子表达和功能的研究[M].陕西:第四军医大学,2007.
    [81] FUCHS A,CELLA M,GIURISATO E,et al.Cutting edge: CD96(tactile)promotes NK cell-target cell adhesion by interacting with the poliovirusreceptor(CD155)[J].J Immunol,2004,172(7):3994-3998.
    [82]张芳毓,钱爱东.布鲁氏菌诊断学研究进展吉林畜牧兽医[J].2011,32(01):10-14.
    [83]解新霞,刘日宏,刘志国.酶联免疫吸附试验在布鲁杆菌病检测中的研究进展[J].中国地方病防治杂志,2013,28(3):181-183.
    [84] FENSTERBANK R,PARDON P,MARLY J.Comparison between subcutaneousand conjunctival route of vaccination with Rev-1strain against Brucellamelitensis infection in ewes[J].Ann Rec Vet,1982,13:295-301.
    [85] VERGER J M, GRAYON M, ZUNDEL E,et al.Comparison of the efficacyof Brucella suis strain2and Brucella melitensis Rev-1live vaccines against aBrucella melitensis experimental infection in pregnant ewes[J].Vaccine,1995,13:191-196.
    [86] DURáN-FERRER M,LéON L,NIELSEN K,et al.Antibody response andantigen-specific gamma-interferon profiles of vaccinated and unvaccinatedpregnant sheep experimentally infected with Brucella melitensis[J]. VetMicrobiol,2004,100:219-231.
    [87]高洪霞.不同血清学方法检测牛羊布鲁氏菌疫苗免疫抗体消长规律的比较研究[D].黑龙江:东北农业大学,2010.
    [88] WINTER A J,DUNCAN J R,SANTISTEBAN C G,et al.Capacity of passivelyadministered antibody to prevent establishment of Brucella abortus infection inmice.Infect Immun[J].1989,57:3438-3444.
    [89] MONTARAZ J A,WINTER A J.Comparison of living and nonliving vaccinesfor Brucella abortus in BALB/c mice[J].Infect Immun,1986,53:245-251.
    [90] ARAYA L N,ELZER P H,ROWE G E,et al.Temporal development ofprotective cell-mediated and humoral immunity in BALB/c mice infected withBrucella abortus[J].J Immunol,1989,143:3330-3337.
    [91] WILFINGER W W,MACKEY K,CHOMCZYNSKI P.Effect of pH and ionicstrength on the spectrophotometric assessment of nucleic acid purity[J].Biotechniques,1997,22:474-476,478-481.
    [92]撤姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆实验指南(第二版)[M].北京:科学出版社,2002.
    [93] BOSCHIROLI M L,FOULONGNEV,OCALLAGHAN D,Brucellosis: aworldwide zoonosis[J].Curr Opin Microbiol,2001,4:58-64.
    [94] DIOS S,POISA-BEIRO L,FIGUERAS A,et al.Suppression subtraetionhybridization(SSH) and macroarray techniques reveal differential geneexpression profiles in brain of sea bream infected with nodavirus[J].molImmunol,2007,44(9):2195-2204.
    [95] ROBICH R,RINEHART J P,KITEHEN L J,et al.Diapause-specific geneexpression in the northern house mosquito,Gulex PiPiens L.,identified bysuppressive subtraetive hybridization[J].J Insect Physiol,2007,53(3):235-245.
    [96]章辉.日本血吸虫复合B细胞表位抗原的研究[D].江苏:省血吸虫病防治研究所,2006.
    [97]魏刚刚.血吸虫蛋白抗原表位的预测及其在诊断抗原筛选方面的应用[D].上海:华东理工大学,2010.
    [98] JANIN J.Surface and inside volumes in globular proteins[J].Nature,1997,277(5696):491-492.
    [99] CONNOLLY M L.Solvent-accessible surfaces of proteins and nucleicacids[J].Science,1983,221(4612):709-713.
    [100] HOPPT P,WOODS K R.Prediction of protein antigenic determinants fromaminoacid sequences[J].Proc Natl Acad Sci USA,1981,78(6):3824-3828.
    [101] MICHAEL O,JEAN-LUC P.BEPITOPE:predicting the location ofcontinuous epitopes and patterns in proteins[J]. Journal of molecularrecognition,2003,16:20-22.
    [102] CHEN J. Prediction of linear B-cell epitopes using amino acid pairantigenicity scale[J].Amino Acids,2007,33:423-428.
    [103]黄艳新,鲍永利,李玉新.抗原表位预测的免疫信息学方法研究进展[J].中国免疫学杂志,2008,24:857-861.
    [104]李岩松.玉米中伏马菌素免疫学快速筛检方法研究.李岩松[D].吉林:吉林大学,2011.
    [105] BAIER W,LOLEIT M,FISCHER B,et al.Generation of antibodies directedagainst the low-immunogenic peptide-toxins microcystin-LR/RR andnodularin[J].International Journal of Immunopharmacology,2000,22(5):339-353.
    [106] MORAN E,O'KEEFF M,O'CONNOR R,et al.Methods for generation ofmonoclonal antibodies to the very small drug hapten,5-benzimidazolecar-boxylic acid[J].Journal of Imunological Methods,2002,271(1-2):65-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700