AlGaN/GaN超晶格红外/紫外双色光电探测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AlxGa1-xN的禁带宽度可以连续的从3.4eV (GaN)变化到6.2eV (AlN),对应的光波波长范围为200~360nm,它是实现紫外日盲区(200~280nm)光学探测的很好选择。同时GaN和AlN的导带不连续能够达到2eV,使得AlGaN/GaN量子阱结构在实现红外光电探测方面同样具有不可比拟的优势。
     紫外光在近地面空气中衰减较快,有效的探测距离在500m左右,红外光可对目标实行远距离识别和追踪,然而空气中该波段背景辐射强度较大。如果能够在红外波段实现远距离的目标跟踪,距离近时切换为紫外探测模式,就能够提高对目标的识别追踪效果,减小复杂的红外背景辐射的影响。更进一步,通过单个器件实现这种双色探测,两者共用一个光学系统,可以减小设备的成本和体积,扩展其应用范围。
     本课题的目的是在一个GaN基片上同时实现红外和紫外的双色探测,其中紫外探测通过禁带吸收实现,而红外探测则通过AlGaN/GaN超晶格的子带跃迁结构实现。我们将主要精力放在红外探测部分,因为相对于禁带间的跃迁吸收,超晶格对光子的选择吸收需要考虑势垒层厚度和势阱层厚度等因素导致的量子效应的影响,而这一切在考虑到GaN材料自身的极化现象以后将变得更为复杂。
     本文涉及到AlGaN/GaN超晶格光电探测研究和设计的整个体系。包括:超晶格结构的仿真设计,超晶格的MOCVD生长及材料表征,光学特性以及电学特性的测量。取得的主要成果如下:
     1.自定义超晶格的结构,基于SILVACO和NEXTNANO3两个软件中自洽求解薛定谔-泊松方程的功能,计算超晶格各个参数对量子阱中子带位置的影响。变化的参数包含:势阱中的掺杂浓度、势垒层厚度、势阱层厚度、势垒层Al组分、温度以及超晶格底部缓冲层的Al组分等。由于GaN基材料自身的极化现象,这些因素对超晶格能带的影响不同于普通的方形势阱。比如,我们首次提出势阱中必须高掺杂(>1019cm-3),否则各个势阱中的电子会被极化作用耗尽,从而起不到光子探测的功能;又如,势垒层的厚度也会影响严重影响势阱中子带的位置。这些现象在非极化材料中是不可想象的。
     2.根据仿真确定的超晶格结构,使用MOCVD设备在双面抛光蓝宝石衬底上进行外延生长,然后通过AFM,HRXRD,拉曼光谱等手段对外延结构进行表征,确定我们能够生长出高质量的超晶格结构。对HRXRD结果进行拟合发现势阱层或势垒层厚度均可以减小到1.7nm,且通过对生长配方的修改,可以控制其厚度在1nm范围内变化。
     3.测量超晶格的光学吸收特性。独自设计样片加工平台,制备10×5mm2的样片,并将10mm边磨成45°角的光滑斜面。发现由于蓝宝石衬底的吸收,超晶格的红外吸收波段不能大于6.15μm。与中科院上海技术物理研究所合作,测量样片的透射谱,和没有超晶格的样片透射谱相减,得到超晶格的红外吸收峰。结果显示我们成功制备吸收峰值在2.92~4.65μm之间的AlGaN/GaN超晶格材料。同时,光致发光能谱结果显示,紫外吸收峰值在日盲区的探测也可以实现。
     4.为了检测材料中AlGaN/GaN界面的缺陷情况我们提出了一种测定界面缺陷的脉冲测试方法,该方法结合仿真可以定性、定量的确定界面处陷阱的参数。这为我们以后深入分析超晶格结构的电学表现打下了坚实的基础。
The forbidden gap of the AlxGa1-xN material can be adjusted continuously from3.4eV (for GaN) to6.2eV (for AlN). It is a good alternative for optical detection inthe Ultraviolet Solar Blind Area (200-280nm). The conduction band discontinuity ofthe AlN and GaN can reach2eV which endows this system a huge competitiveadvantage in the infrared photodetection. The problem is the intensity of the ultravioletlight decreases quickly in the near-surface atmosphere, and the effective detectionrange is not longer than500m, while the infrared light which can be used to realize theremote probing has a considerable background radiation. If we can use the infrareddetection to realize the remote probing and switch to the ultraviolet mode when thedistance from the target is not longer than500m, the efficiency of the target trackingand identification can be enhanced and the influence of the background radiation canbe weakened. Further more, if the detection of the two different wavelengths can berealized with a single device and just one cooling system, the cost and the volume ofthe detector will be decreased and the application areas will be expanded. The purposeof this subject is exactly what we have discussed above, the detection of the ultravioletlight is achieved by the interband transition of the AlGaN/GaN superlattice while thedetection of the infrared light is realized by intersubband transition of the superlattice.We focus our attention on the infrared detection, because the selective absorption ofthe superlattice structure to the infrared light must consider all kinds of parameters ofthe superlattice, and this process is more complicated when the polarization effect istaken into account.
     This dissertation refers to the entire process of the design of the AlGaN/GaNsuperlattice photodetection, including the simulation of the superlattice structure, theepitaxial growth of the superlattice with MOCVD, the measurement of the optical andelectric characteristics of the superlattice. The major achievements are listed below:
     1. With the use of the software SILVACO and NEXTNANO3, the structures ofthe AlGaN/GaN are defined, and the influence of each parameter on the position of thesubband is analyzed. The analyzed structure parameters include the doping in the wells,the thicknesses of the barriers and wells, the Al component of the barriers, thetemperature, and the Al component in the bottom buffer layers et al. Due to thepolarization effect in GaN-based material, the influence of these parameters on the energy band of the superlattice is different from that of the ordinary quadrate potentialwells. For example, the structure must be high concentration doped, or the electrons inthe wells will be depleted and cannot be used to detect the photons. Also, the barrierthickness will influence the position of the subband in the well which is also beyondimagination in nonpolarized materials.
     2. According to the simulation results, the AlGaN/GaN superlattice is epitaxialgrown on the twin polished sapphire substrates by MOCVD. Then, the epitaxialstructures are characterized by means of AFM, HRXRD and Raman et al. The resultshows the high quality superlattice can be realized in our lab. Through analyze to theHRXRD results, the thicknesses of the barriers and the wells can be determined, thethickness of a single layer can reduce to1.7nm, and can be adjusted in1nm range.
     3. The optical characteristics of the superlattices are measured. To prepare thesamples met the requirements, a polishing platform is self-made. The result indicatesthat the infrared detection wavelength of the superlattice cannot be longer than6.15μm, because of the restriction of the sapphire. The transmission spectrum of thesuperlattice is obtained by the subtract of the transmission spectrums of the sampleswith and without superlattice, the result shows that AlGaN/GaN superlattice whoseinfrared absorption wavelength locates between2.92and4.65μm can be realized inour lab. The photoluminescence spectrum shows that the optical detection in theUltraviolet Solar Blind Area (200-280nm) can also be realized.
     4. For the subsequent examination of the electric characteristics of thesuperlattice, a testing method is proposed in our lab to qualitatively and quantitativelydetect the traps at the interfaces of the AlGaN and GaN.
引文
1. Akasaki, H. Amano, M. Kito et al. Photoluminescence of Mg-doped p-type GaNand electroluminescence of GaN p-n-junction LED. Journal of Luminescence,1991,48(9):666-670.
    2. S. Nakamura, T. Mukai, and M. Senoh. Candela-class high-brightnessInGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett.,1994,64(13):1687-1689.
    3. S. Nakamura, N. Senoh, N. Iwasa et al. High-brightness InGaN blue, green andyellow light-emitting-diodes with quantum-well structures. Jpn. J. Appl. Phys.,1995,35(1B):L74-L76.
    4. S. Nakamura, M. Senoh, S. Nagahama et al. InGaN-basedmulti-quantum-well-structure laser diodes. Jpn. J. Appl. Phys.,1996,35(1B):L74-L76.
    5. E. Munoz, E. Monroy, J. L. Pau et al. III nitrides and UV detection. J. Phys.,2001,13(32):7115-7137.
    6.虞丽生,半导体异质结物理,第二版,北京:科学出版社,2007,271-278。
    7. O. Ambacher, J. Smart, J. R. Shealy et al. Two-dimensional electron gases inducedby spontaneous and piezoelectric polarization charges in N-and Ga-faceAlGaN/GaN heterostructures. J. Appl. Phys.,1999,85(6):3222-3233.
    8. O. Ambacher. Growth and applications of group III-nitride. J. Phys. D: Appl. Phys,
    1998.31:2653-2710.
    9. E. Sarigiannidou, E. Monroy, N. Gogneau et al. Comparison of the structuralquality in Ga-and N-face polarity GaN/AlN multi-quantum-well structures.Semicond. Sci. Technol.,2006,21(5):612-618.
    10. M. Seelmann-Eggebert, J. L. Weyher, H. Obloh et al. Polarity of001GaNepilayers grown on a001sapphire. Appl. Phys. Lett.,1997,71:2635-2637.
    11. M. Sumiya, T. Ohnishi, M. Tanaka et al. Control of the polarity and surfacemorphology of GaN films deposited on c-plane sapphire. Mrs. Internet J. NitrideSemicond. Res.,1999,6:23.
    12. A. Yoshikawa, and K. Xu. Polarity selection process and polarity manipulation ofGaN in MOVPE and RF-MBE growth. Thin Solid Films,2002,412(1-2):38-43.
    13. C. Pernot, A. Hirano, M. Iwaya et al. Solar-Blind UV Photodetectors Based onGaN/AlGaN p-i-n Photodiodes. Jpn. J. Appl. Phys.2000,39(5A):L387-L389.
    14. S. J. Chang, T. K. Ko, Y. K. Su et al. GaN-Based p-i-n Sensors With ITOContaces. IEEE SENS J.2006,6(2):406-411.
    15. J. P. Long, S. Varadaraajan, J. Matthews et al. UV detectors and focal plane arrayimagers based on AlGaN p-i-n photodiodes.2002, Opto-Electron. Rev.,10(4):251-260.
    16. L. Esaki and R. Tsu. Superlattice and Negative Differential Conductivity inSemiconductors. IBM J. Res. Develop.1970,14:61-65.
    17. A. Rogalski, J. Antoszewski and L. Faraone, Third-generation infraredphotodetector arrays. J. Appl. Phys.,2009,105:091101-(1)-091101-(3).
    18. P. Steinmann, B. Borchert, and B. Stegmuller, Asymmetric Quantum Wells withEnhanced QCSE: Modulaton Behavior and Application for IntegratedLaser/Modulator. IEEE PHOTONIC TECH L,1997,9(2):191-193.
    19. D. T. Neilson, Optimization and Tolerance Analysis of QCSE Modulators andDetectors, IEEE J QUANTUM ELECT,33(7):1094-1103.
    20. S. Yoshida, S. Misawa, and S. Gonda. Improvements on the electrical andluminescent properties of reactive molecular-beam epitaxially grown GaN films byusing AlN-coated sapphire substrate.1983, Appl. Phys. Lett.,42(5):427-429.
    21. H. Amano, M. Kito, K. Hiramastu et al. P-type conduction in Mg-doped GaNtreated with low-energy electron-beam irradiation (LEEBI), Jpn. J. Appl. Phys.,1989,28(12):L12112-L12114.
    22. M. A. Khan, J. N. Kuznia, D. T. Olson et al. High-responsivity photoconductiveultraviolet sensors based on insulating single-crystal GaN epilayers. Appl. Phys.Lett.,1992,60(23):2917-2919.
    23. X. Zhang, P. Kung, D. Walker et al. Photovoltaic effects in GaN structures withp-n junctions. Appl. Phys. Lett.,1995,67(14):2028-2030.
    24. J. M. Van Hove, R. Hickman, J. J. Klaassen et al. Ultraviolet-sensitive,visible-blind GaN photodiodes fabricated by molecular beam epitaxy. Appl. Phys.Lett.,1997,70(17):2282-2284.
    25. J. C. Carrano, P. A. Grudowski, C. J. Eiting et al. Very low dark currentmetal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystalGaN epitaxial layers. Appl. Phys. Lett.,1997,70(15):1992-1994.
    26. M. B. Reine, A. Hairston, P. Lamarre et al. Solar-blind AlGaN256×256p-i-ndetectors and focal plane arrays. Proc. of SPIE,2006,6121:61210R (1-15).
    27. J. D. Heber, C. Gmachl, H. M. Ng et al. Comparative of ultrafast intersubbandelectron scattering times at~1.55μm wavelength in GaN/AlGaN heterostructures.Appl. Phys. Lett.,2002,81(7):1237-1239.
    28. N. Suzuki and N. Iizuka. Feasibility study on ultrafast nonlinear optical propertiesof1.55-μm intersubband transition in AlGaN/GaN quantum wells.1997, Jpn. J.Appl. Phys.,1997,36(8A):L1006-L1008.
    29. C. Gmachl, H. M. Ng and A. Y. Cho. Intersubband absorption in GaN/AlGaNmultiple quantum wells in the wavelength range of λ~1.75-4.2μm. Appl. Phys.Lett.,2000,77(3):334-336.
    30. C. Gamchl, H. M. Ng, S. N. G. Chu et al. Intersubband absorption atλ~1.55μm inwell-and modulation-doped GaN/AlGaN multiple quantum wells with superlatticebarriers. Appl. Phys. Lett.,2000,77(23):3722-3724.
    31. C. Gmachl, H. M. Ng, and A. Y. Cho. Intersubband absorption in degeneratelydoped GaN/AlGaN coupled double quantum wells. Appl. Phys. Lett.,2001,79(11):1590-1592.
    32. N. Iizuka, K. Kaneko, and N. Suzuki. Near-infrared intersubband absorption inGaN/AlN quantum wells grown by molecular beam epitaxy. Appl. Phys. Lett.,2002,81(10):1803-1805.
    33. K. Kishino, A. Kikuchi, H. Kanazawa et al. Intersubband transition in(GaN)m/(AlN)n superlattices in the wavelength range from1.08to1.61μm. Appl.Phys. Lett.,2002,81(7):1234-1236.
    34. M. Tchernycheva, L. Nevou, L. Doyennette et al. Systematic experimental andtheoretical investigation of intersubband absorption in GaN/AlN quantum wells.Phys. Rev. B,2006,73(12):125347.
    35. N. Iizuka, K. Kaneko, and N. Suzuki. Ultrafast intersubband relaxation (≤150fs)in AlGaN/GaN multiple quantum wells. Appl. Phys. Lett.,2000,75(5):648-650.
    36. J. D. Heberm, C. Gmachl, H. M. Ng et al. Comparative study of ultrafastintersubband electron scattering times at~1.55μm wavelength in GaN/AlGaNheterostructures. Appl. Phys. Lett.,2002,81(7):1237-1239.
    37. A. D. Bykhovski, B. L. Gelmont, and M. S. Shur. Current-voltage characteristicsof strained piezoelectric structures. J. Appl. Phys.,1995,77(4):1616-1620.
    38. M. Hermann, E. Monroy, A. Helman et al. Vertical transport in group III-nitrideheterostructures and application in AlN/GaN resonant tunneling diodes. Phys. Stat.Sol.(c),2004,1(8):2210-2227.
    39. A. Kikuchi, R. Bannai, and K. Kishino. AlN/GaN double-barrier resonanttunneling diodes grown by rf-plasma-assisted molecular-beam epitaxy. Appl. Phys.Lett.,2002,81(9):1729-1731.
    40. S. Golka, C. Pflugl, W. Schrenk et al. Negative differential resistance indislocation-free GaN/AlGaN double-barrier diodes grown on bulk GaN. Appl. Phys.Lett.,2006,88(17):172106.
    41. L. Nevou, M. Tchernycheva, F. H. Julien et al. Short wavelength (λ=2.13μm)intersubband luminescence from GaN/AlN quantum wells at room temperature.Appl. Phys. Lett.,2007,90(12):121106.
    42. L. Doyennette, L. Nevou, M. Tchernycheva et al. GaN-based quantum dotinfrared photodetector operating at1.38μm. Electron. Lett.,2005,41(19):1077-1078.
    43. D. Hofstetter, S.-S. Schad, H. Wu et al. GaN/AlN-based quantum-well infraredphotodetector for1.55μm. Appl. Phys. Lett.,2003,83(3):572-574.
    44. P. R. Norton. Infrared detectors in the next millennium. Proc. SPIE.1999,652:3698.
    45. A. Rogalski, J. Antoszewski, and L. Faraone. Third-generation infraredphotodetector arrays. J. Appl. Phys.,2009,105:091101.
    46. Yuan YongGang, ZHANG YAN, CHU KaiHui et al. Development of solar-blindAlGaN128×128Ultraviolet Focal Plane Arrays. Sci China Ser E-Tech Sci,2008,51(6):820-826.
    1. L. Esaki and R. Tsu. Superlattice and Negative Differential Conductivity inSemiconductors. IBM J. Res. Develop.1970,14:61-65.
    2. S. Yoshida, S. Misawa, and S. Gonda. Improvements on the electrical andluminescent properties of reactive molecular-beam epitaxially grown GaN films byusing AlN-coated sapphire substrate.1983, Appl. Phys. Lett.,42(5):427-429.
    3. P. K. Kandaswamy, C. Bougerol, and D. Jalabert et al. Strain relaxation inshort-period polar GaN/AlN superlattices.2009, J. Appl. Phys.,106:031526.
    4. Qiaoying Zhou, Jiayu Chen, and B. Pattada et al. Infrared optical absorption ofintersubband transitions in GaN/AlGaN multiple quantum well structures.2003, J.Appl. Phys.,93(12):10140-10142.
    5. J. D. Heber, C. Gmachl, and H. M. Ng et al. Comparative study of ultrafastintersubband electron scattering times at~1.55μm wavelength in GaN/AlNheterostructures.2002, Appl. Phys. Lett,81(7):1237-1239.
    6. M. Drechsler, D. M. Hofmann, and B. K. Meyer et al. Determination of theConduction Band Electron Effective Mass in Hexagonal GaN.1995, Jpn. J. Appl.Phys.,34:L1178-L1179.
    7. Y. C. Yeo, T. C. Chong, and M. F. Li. Electronic band structures and effective-massparameters of wurtzite GaN and InN.1998, J. Appl. Phys.,83(3):1429-1436.
    8. S. L. Chuang. Effective-mass Hamiltonian for strained wurtize GaN and analyticalsolutions. Appl. Phys. Lett,1996,68(12):1657-1659.
    9. J. D. Heber, C. Gmachl, H. M. Ng et al. Comparative of ultrafast intersubbandelectron scattering times at~1.55μm wavelength in GaN/AlGaN heterostructures.Appl. Phys. Lett.,2002,81(7):1237-1239.
    10. P. T. Fini, K. D. Ness, and S. P. DenBaars et al. Polarization effects, surface states,and the source of electrons in AlGaN/GaN heterostructure field effect transistors.2000, Appl. Phys. Lett,77(2):250-252.
    11. I. P. Smorchkova, C. R. Elsass, and J. P. Ibbetson. Polarization-induced charge andelectron mobility in AlGaN/GaN heterostructures grown by plasma-assistedmolecular-beam epitaxy.1999, J. Appl. Phys.,86(8):4520-4526.
    12. P. Kozodoy, Y. P. Smorchkova, and M. Hansen et al. Polarization-enhanced Mgdoping of AlGaN/GaN superlattice.1999, Appl. Phys. Lett,75(16):2444-2446.
    13.虞丽生,半导体异质结物理,第二版,北京:科学出版社,2007,271-278。
    14. B. A. Polash, M. A. Huque, and S. K. Islam et al. High temperature performancemeasurement and analysis of GaN HEMTs.2008, Proc. of SPIE,6894:68941J.
    15. K. Poochinda, T. C. Chen, and T. Stoebe. Simulation of GaN and InGaN p-i-n andn-i-n phto-devices.2004, J CRYST GROWTH.261:336-340.
    16. Y. Kadoya, H. Kano, and H. Sakaki et al. Electrical properties and dopantincorporation mechanisms of Si doped GaAs and (AlGa)As grown on (111)A GaAssurfaces by MBE.1991, J CRYST GROWTH.111(1-4):280-283.
    17. K. Tonisch, C. Buchheim, and F. Niebelschutz et al. Piezoelectric actuation of(GaN/)AlGaN/GaN heterostructures.2008, J. Appl. Phys.,104:084516.
    18. W. D. Hu, X. S. Chen, and F. Yin et al. Two-dimensional transient simulations ofdrain lag and current collapse in GaN-based high-electron-mobility transistors.2009, J. Appl. Phys.,105:084502.
    19. O. Ambacher, J. Smart, J. R. Shealy et al. Two-dimensional electron gases inducedby spontaneous and piezoelectric polarization charges in N-and Ga-faceAlGaN/GaN heterostructures. J. Appl. Phys.,1999,85(6):3222-3233.
    20. E. Baumann, F. R. Giorgetta, and D. Hofstetter et al. Tunneling effects andintersubband absorption in AlN/GaN superlattices.2005, Appl. Phys. Lett,86:032110.
    21. J. D. Heber, C. Gmachl, and H. M. Ng et al. Comparative study of ultrafastintersubband electron scattering times at~1.55μm wavelength in GaN/AlGaNheterostructures.2002, Appl. Phys. Lett,81(7):1237-1239.
    22. D. Hofstetter, E. Baumann, and F. R. Giorgetta et al. High-qualityAlN/GaN-superlattice structures for the fabrication of narrow-band1.4μmphotovoltaic intersubband detectors.2006, Appl. Phys. Lett,88:121112.
    23. D. Hofstetter and S-S Schad. GaN/AlN-based quantum-well infrared photodetectorfor1.55μm.2003, Appl. Phys. Lett,83(3):572-574.
    24. Y. Kawakami, X. Q. Shen, and G. Piao et al. Improvements of surface morphologyand sheet resistance of AlGaN/GaN HEMT structures using quasi AlGaN barrierlayers.2007, J CRYST GROWTH.300:168-171.
    25. Y. Kawakami, A. Nakajima, and X. Q. Shen et al. Improved electrical properties inAlGaN/GaN heterostructures using AlN/GaN superlattice as a quasi-AlGaN barrier.2007, Appl. Phys. Lett,90:242112.
    26. S. Yagi, X. Q. Shen, and Y. Kawakami et al. Demonstration of Quasi-AlGaN/GaNHFET Using Ultrathin GaN/AlN Superlattices as a Barrier Layer.2010, IEEEElectron Device Lett.,31(9):945-947.
    27. H. Machhadani, P. Kandaswamy, and S. Sakr et al. GaN/AlGaN intersubbandoptoelectronic devices.2009, New J. Phys,11:125023.
    28. F. Capasso, K. Mohammed, and A. Y. Cho. Sequential resonant tunneling through amultiquantum well superlattice.1986,48(7):478-80.
    29. J. A. White, J. C. Inkson, and J. W. Wilkins et al. Many-Body Effects in LayeredSystems [and Discussion].1991, Phil. Trans. R. Soc. Lond,334(1635):491-500.
    30. P. K. Kandaswamy, H. Machhadani, and Y. Kotsar et al. Effect of doping on themid-infrared intersubband absorption in GaN/AlGaN superlattices grown on Si(111)templates.2010, Appl. Phys. Lett,96:141903.
    1. R. Dwilinski, R. DoradziSki, and J. GarczySki et al. Exciton photo-luminescence ofGaN bulk crystals grown by the AMMONO method. Master. Sci. Eng. B,1997,50(1-3):46-49.
    2. S. Porowski, Bulk and homoepitaxial GaN-growth and characterization. J. Cryst.Growth,1998,153:189-190.
    3. J. Karpinski, J. Jun, and S. Porowski. Equilibrium pressure of N2over GaN and highpressure solution growth of GaN. J. Cryst. Growth,2002,66(1):1-10
    4. S. Porowski. High pressure growth of GaN–new prospects for blue lasers. J. Cryst.Growth,1996,166(1-4):583-589.
    5.张进城,西安电子科技大学博士学位论文,2003.
    6. F. C. Frank and J. H. Van der Merwe. One-Dimensional Dislocations. I. StaticTheory. Proc. R. Soc. Lond. A,1949,198(1053):205-216.
    7. M. Volmer and A. Weber. Nucleus formation in supersaturated systems.1926, Z.Phys. Chem,116:277.
    8. M. Miyamura, K. Tachibana, and T. Someya et al. Stranski-Krastanow growth ofGaN quantum dots by metalorganic chemical vapor deposition. J. Cryst. Growth,2002,237-239:1316-1319.
    9. B. Daudin, F. Widmann, and G. Feuillet et al. Stranski-krastanov growth modeduring the molecular beam epitaxy of highly strained GaN. Phys. Rev. B,1997,56(12):R7069-R7072.
    10. S. D. Wolter, J. M. DeLucca, and S. E. Mohney et al. An investigation into theearly stages of oxide growth on gallium nitride. THIN SOLID FILMS,2000,371(1-2):153-160.
    11. H. S. Craft, R. Collazo and M. D. Losego et al. Band offsets and growth mode ofmolecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectronspectroscopy. J. Appl. Phys.,2007,102:074104.
    12. S. Tanaka, S. Iwai and Y. Aoyagi. Reduction of the defect density in GaN filmsusing ultra-thin AlN buffer layers on6H-SiC. J. Cryst. Growth,1997,170(1-4):329-334.
    13. E. A. Albanesi, W. R. L. Lambrecht, and B. Segall. Theoretical study of the bandoffsets at GaN/AlN interfaces. JVST B,1994,12(4):2470-2474.
    14. W. G. Perry, T. Zheleva, and M. D. Bremser. Correlation of biaxial strains, boundexciton energies, and defect microstructures in gan films grown on AlN/6H-SiC(0001) substrates. J ELECTRON MATER,1997,26(3):224-231.
    15. T. Sasaki, T. Matsuoka. Substratepolarity dependence of metalorganic vapor-phaseepitaxy-grown GaN on SiC. J. Appl. Phys.,1988,64(9):4531-4535.
    16. M. E. Lin, B. Sverdlov, and H. Morkoc. A comparative study of GaN epilayersgrown on sapphire and SiC substrates by plasma-assisted molecular-beam epitaxy.Appl. Phys. Lett,1993,62(26):3479-3481.
    17. H. Amano, N. Sawaki, and I. Akasaki et al. Metalorganic vapor phase epitaxialgrowth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett.,48(5):353-355.
    18. S. Kim, J. Oh, and J. Kang et al. Two-step growth of high quality GaN using V/IIIratio variation in the initial growth stage. J. Cryst. Growth.2004,262(1-4):7-13.
    19. T. Yang, K. Uchida, and T. Mishima et al. Control of Initial Nucleation byReducing the V/III Ratio during the Early Stages of GaN Growth. PHYS STATUSSOLIDI.2000,180(1):45-50.
    20. M. A. Moram and M. E. Vickers. X-ray diffraction of III-nitrides. Rep. Prog. Phys,2009,72:036502.
    21.徐振嘉,半导体的检测与分析,第二版,北京:科学出版社,2007,71-73。
    22.许晟瑞,西安电子科技大学博士学位论文,2010.
    23. B. Heying, E. J. Tarsa, and C. R. Elsass et al. Dislocation mediated surfacemorphology of GaN. Appl. Phys. Lett.,1999,85(9):6470-6472.
    24.林志宇,张进成,徐晟瑞等。斜切蓝宝石衬底MOCVD生长GaN薄膜的投射电镜研究。Acta Phys. Sin.,2012,61(18):186103.
    1. I. Dharssi, and P. N. Butcher. Interface roughness scattering in a superlattice. J.Phys.: Condens. Matter,1990,2:4629-4635.
    2. J. Derezinski, and R. Fruboes. Fermi Golden Rule and Open Quantum systems.Lecture Notes in Mathematics,2006,1882/2006:67-116.
    3. E. Rosencher, and B. Vinter. Optoelectronique. Masson,1998.
    4. C. Sirtori, F. Capasso, and J. Faist. Nonparabolicity and a sum-rule associated withbound-to-bound and bound-to-continuum intersubband transitions inquantum-wells. Phys. Rev. B,1994,50(12):8663-8674.
    5. M. Helm. The basic physics of intersubband transitions, Semiconductors andsemimetals. Academic press, London, UK,2000.
    6.范伟,王毅,饶瑞中。根据大气辐射特征进行目标探测的波段选择。Infraredand Laser Engineering.2005,34(2):177-182.
    7. P. K. Kandaswamy, H. Machhadani, and Y. Kostar. Effect of dopign on themid-infrared intersubband absorption in GaN/AlGaN superlattice grown on Si(111)templates. Appl. Phys. Lett.2010,96:141903.
    8.徐振嘉,半导体的检测与分析,第二版,北京:科学出版社,2007,71-73。
    9.夏建白,朱邦芬。半导体超晶格物理,上海:上海科学技术出版社,1995。
    10.许晟瑞,西安电子科技大学博士学位论文,2010。
    1. H. Xing, Y. Dora and A. chini et al. High breakdown voltage AlGaN-GaN HEMTsachieved by multiple field plates, IEEE Electron Device Lett.,2004,25(4):161-163.
    2. R. Vetury, N. Q. Zhang, and S. Keller et al. The impact of surfaces states on the DCand RF characteristics of AlGaN/GaN HFETs, IEEE Trans. Electron Devices,2001,48(3):560-566.
    3. J. M. Tirado, J. L. Scanchez-Rojas, and J. I. Izpura. Trapping effects in the transientresponse of AlGaN/GaN HEMT devices, IEEE Trans, Electron Devices,2007,54(3):410-417.
    4. K. Joshin, T. Kikkawa, and H. Hayashi et al. A174W high-efficiency GaN HEMTpower amplifier for W-CDMA base applications,2001, IEDM Tech. Dig., pp.
    12.6.1-12.6.3.
    5. J. Kuzmik, G. Pozzovivo, and S. Abermann et al. Technology and performance ofInAlN/AlN/GaN HEMTs with gate insulation and current collapse suppressionusing ZrO2or HfO2. IEEE Trans. Electron Devices,2008,55(3):937-941.
    6. G. Meneghesso, G. Verzellesi, and E. Zanoni et al. Surface-related drain currentdispersion effects in AlGaN/GaN HEMTs, IEEE Trans. Electron Devices,2004,51(10):1554-1561.
    7. M. Faqir, G. Verzellesi, and A. Chini et al. Mechanisms of RF Current Collapse inAlGaN-GaN High Electron Mobility Transistors,” IEEE Trans. Electron Devices,2008,8(2):240-247.
    8. G. Verzellsi, A. Mazzanti, and A. F. Basile et al. Experimental and NumericalAssessment of Gate-Lag Phenomena in AlGaAs-GaAs HeterostructureField-Effect Transistors (FETs), IEEE Trans. Electron Devices,2003,50(8):1773-1740.
    9. O. Ambacher, J. Smart, and J. R. Shealy et al. Two-dimensional electron gasesinduced by spontaneous and piezoelectric polarization charges in N-and G-faceAlGaN/GaN heterostructures, J. Appl. Phys.,1999,85(6):3222-3233.
    10. M. Faqir, G. Verzellesi and G. Meneghesso et al. Investigation ofHigh-Electron-Field Degradation Effects in AlGaN/GaN HEMTs, IEEE ElectronDevices,2003,55(7):1592-1602.
    11. A. Chini, F. Fantini, and V. D. Lecce et al. Correlation between DC and rfdegradation due to deep levels in AlGaN/GaN HEMTs, IEDM, Tech, Dig.,2009,pp.7.7.1-7.7.4.
    12. A. Chini, V. D. Lecce, and M. Esposto et al. Evaluation and NumbericalSimulations of GaN HEMTs Electrical Degradation, IEEE Electron Device Lett.,2009,30(10):1021-1023.
    13. W. Gotz, M. Johnson, and H. Amano et al. Deep level defects in n-type GaN, Appl.Phys. Lett,1994,65(4):463-465.
    14. J. G. Simmons, and G. W. Taylor. Nonequilibrium steady-State StatisticsAssociated Effects for Insulators and Semiconductors Containing an ArbitraryDistribution of Traps, Phys. Rev. B,1971,4(2):502-511.
    15. M. Faqir, G. Verzallesi, and F. Fantini et al. Characterization and analysis of traprelated effects in AlGaN-GaN HEMTs, MICROELECTR J,2007,47:1639-1642.
    16. Q. Wei, Z. Wu, and K. Sun et al. Evidence of Two-Dimensional Hole Gas inp-Type AlGaN/AlN/GaN Heterostructures. Appl. Phys. Express,2009,2:121001.
    1. J. D. Heber, C. Gmachl, and H. M. Ng et al. Comparative study of ultrafastintersubband electron scattering times at~1.55μm wavelength in GaN/AlGaNheterostructures. Appl. Phys. Lett,2002,81(7):1237-1239.
    2. D. Hofstetter, E. Baumann, and F. R. Giorgetta et al. High-qualityAlN/GaN-superlattice structures for the fabrication of narrow-band1.4μmphotovoltaic intersubband detectors. Appl. Phys. Lett,2006,88:121112.
    3. F. R. Giorgetta, E. Baumann, and F. Guillot et al. High frequency (f=2.37GHz)room temperature operation of1.55μm AaN/GaN-based intersubband detector.ELECTRONICS LETTER.2007,43(3):185-186.
    4. H. M. Ng, C. Gmachl, and S. N. G. Chu et al. Molecular beam epitaxy ofGaN/AlxGa1-xN superlattices for1.52-4.2μm intersubband transitions. J CRYSTGROWTH,2000,220(4):432-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700