Al_xZn_(1-x)O薄膜光电性能的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种被广泛关注的宽禁带半导体,在室温下,其禁带宽度为3.37eV,能量对应于光谱中的近紫外波段,可用来对该波段的辐射进行探测;激子束缚能60meV,可用于制备室温下的短波长激光器件;热稳定性和化学稳定性高且抗辐射能力强,制备的器件适用范围广且寿命长。ZnO在掺入低浓度Al离子时可以形成良好的替位式半导体,制备出高性能的透明导电氧化物薄膜(TCO);在掺入高浓度Al离子时可以形成合金半导体,调控其光学禁带宽度,制备出可对日盲区紫外辐射进行探测的功能薄膜。基于不同的Al离子浓度,ZnO基薄膜材料能在民用与军事方面实现特殊的功能,发挥不同的作用。
     基于此,本论文在ZnO中掺入不同浓度的Al离子,并在优化的工艺条件下,分别实现了电阻率为3.8×10-4Ωcm,可见光区透过率达到90%的ZnO:Al(AZO)透明导电薄膜;以及光学禁带宽度为4.41eV,对应吸收截止波长281nm的Al0.3Zn0.7O日盲紫外光电阴极薄膜的制备。深入分析了材料的结构与性能,对基础理论进行了探讨,并对这两种薄膜材料各自功能的实现机制进行了详细论述。本论文的主要内容如下:
     首先,探索了提高透明导电氧化物薄膜AZO结晶质量的制备方法,得到了优化的掺杂浓度与制备条件。实现了高效Al替位掺杂,降低了了电子迁移过程中的散射几率,从而提高了电子迁移率,实现了AZO薄膜高的电导率和可见光透过率。通过系统的分析表征,得到了其光电性能参数,以及薄膜的内部结构、缺陷状态、薄膜组分等信息。验证了其相对于ZnO薄膜而言高的迁移率(32cm2/Vs);证实了锌空位(VZn)在薄膜中的大量存在。采用不同气氛中的原位退火处理,验证了反位取代缺陷OZn为产生光致发光(PL)谱中绿光发光峰的主要原因。
     其次,基于Burstein-Moss效应的理论基础,提出了实现日盲紫外探测光电阴极薄膜的方法,并成功制备出了该Al0.3Zn0.7O薄膜。利用高浓度Al离子产生的大量电子,并且根据ZnO导带底较窄、有效态密度较小、对数量较多的电子无法完全容纳的特点,迫使电子占据导带底以上的电子态,实现了费米能级进入导带的简并状态。这种状态同时实现了光学带隙的展宽和表面功函数的减小。对Al_(0.3)Zn_(0.7)O阴极薄膜的研究结果表明,该薄膜处于无定型细微结晶的状态,表面平整度很高,且自身具有抑制氧吸附的能力。其光学禁带宽度约为4.41eV,对应的吸收边为281nm,符合日盲紫外探测的波长范围。光电子能谱证实了其价带和导带的展宽量,开尔文探针测试标定了其表面势垒的大小。这些结果表明该薄膜符合作为日盲紫外光电阴极材料的条件。利用上述两种薄膜共同构造了日盲紫外探测器,并采用了特有的Cs激活方式对薄膜进行修饰。该探测器对254nm的紫外辐射有很高的光暗响应比,对波长更长的辐射则没有响应,证实了电子在光辐射作用下直接从价带跃迁到导带的响应过程。在0.5mW/cm~2的辐射功率和80V偏压下,得到的光暗电流比约为10~3。在周期性光暗变换状态下,该探测器的响应特性十分清晰,证明了器件的重复使用性。同时,光谱响应也证实了该探测器的响应波段与日盲紫外相符。Cs激活使薄膜表面吸附一层Cs原子,利用其自身功函数低的特点(~1.8eV),进一步降低薄膜表面处的功函数,使电子发射时需要越过的势垒高度变低,增大量子效率。通过对探测器I-V曲线的理论推导和拟合,得到了电子发射的类型。最后探究了真空度、激活以及外置偏压对表面势垒的影响,为整个体系的进一步研究打下了基础。
ZnO is a wide-band-gap semiconductor that has been widely investigated. At roomtemperature, its band gap is3.37eV which corresponds with the energy of nearultraviolet (UV) band in light spectrum. So it can be used to fabricate detectors for theradiation of this band. The exciton binding energy of ZnO is60meV, which makes itcapable to be used to fabricate laser devices of short-wavelength at room temperature.Moreover, ZnO is stable under thermal and chemical environment, and has goodradiation-resistant ability. Thus, it enables ZnO with much more applicability and longlifetime in applications. ZnO can be used to form a well-grown n-type semiconductorafter being doped into Al ions with low concentration, which is able to preparetransparent conductive oxidation (TCO) thin film. Meanwhile, after being heavilyincorporated with Al ions, ZnO could form an alloy semiconductor. And this processcould modulate the optical band gap of this semiconductor to the suitable value forsolar-blind UV detecting. Based on the different concentration of Al ions, ZnO-basedmaterials can be used in both civil and military area with special functions.
     This dissertation presents the realization of ZnO:Al (AZO) transparent conductivethin film with resistivity about3.8×10~(-4)Ω cm and transmittance about90%in the visibleregion, and Al_(0.3)Zn_(0.7)O thin film whose optical band gap is4.41eV and thecorresponding cutoff wavelength is281nm, based on the different Al concentration andoptimum preparation parameters. After specific study on the structure, characteristics,and theoretical fundament of these two types of functional film, the details are discussedin this thesis, which are as follows:
     Firstly, we investigated the approaches to improve the crystalline quality of AZOtransparent conductive thin film, and summarized the optimum dopant concentrationand deposition conditions. Under the optimized parameters, we obtained AZO thin filmwith efficient Al substitution and less scattering probability. So that films with highconductivity and transmittance were achieved. Specific and systematic characterizationof AZO thin film was performed, and the structure, defect state, and composition of itwere attained. AZO film with relatively high mobility (32cm~2/Vs) comparing with common ZnO thin films was obtained. The non-ignorable existence of Zn vacancy (VZn)has also been verified. The antisite defect OZnwas identified to be responsible for thegreen emission band in photoluminescence (PL) spectrum, after annealing process hadbeen carried out in different ambience.
     Secondly, we prepared the Al_(0.3)Zn_(0.7)O thin film which was fit for the detecting ofsolar-blind UV. Fabricate the solar-blind UV detector using this film as photocathode,based on Burstein-Moss theory. Massive electrons were generated due to highAl-incorporated concentration. Owing to the narrow conduction-band minimum andinsufficient effective state density in conduction band of ZnO, it does not have enoughstates to hold a large number of electrons beneath conduction band, and excess electronswould occupy states in conduction band, which shifted the Fermi level upwards,accordingly. This condition did not only enlarge the optical band gap, but also decreasethe surface work function of film. This Al_(0.3)Zn_(0.7)O thin film was verified to be inamorphous nanoscaled polycrystalline structure, have a smooth surface, and have theability to suppress surface adsorption. The optical band gap of this film is estimated tobe4.41eV and it only absorbs illumination whose wavelength is shorter than281nm.X-ray Photoelectron spectroscopy was used to estimate the enlargement values inconduction band and valence band, respectively. Kelvin probe microscope result labeledthe surface barrier height. These results proved the capability of Al_(0.3)Zn_(0.7)O thin film asphotocathode layer for solar-blind detecting. A photodetector was fabricated based onthis Al_(0.3)Zn_(0.7)O thin film as photocathode layer after being activated by Cs, and variousmeasurements of this photodetector were carried out to verify its solar-blind detectingability. This detector only responded to the illumination of254nm, but the illuminationwith longer wavelength, which revealed the direct transition process of electrons fromvalence band. UV/dark contrast nearly3orders of magnitude has been achieved of thisdetector, under254nm UV illumination of0.5mW/cm~2and80V bias. Current variationunder periodical exposal of254nm illumination indicated repeatability of this detector.Spectral response result proved that the detecting range of this detector fitted well withthe solar-blind band. Cs activation was utilized to decrease surface workfunction owingto its small work function (~1.8eV), which would incease the emission efficiency offilm. Through the deduction and fitting of I-V curve, we found out the essence ofemission and put forward the relationship between surface barrier height with vacuum level and activation process. The results told that the decrease of surface barrier heightbetween10~(-6)Pa and10~(-3)Pa was about0.042eV, and the surface barrier height performeda0.165eV decrease after Cs activation.
引文
[1] U. Ozgur, Y. I. Alivov, C. Liu, et al. A comprehensive review of ZnO materials and devices[J]. J.Appl. Phys.2005,98:041301
    [2] H. Shingo, T. Nobuo, S. Shu, et al. Room-temperature nanowire ultraviolet lasers: An aqueouspathway for zinc oxide nanowires with low defect density[J]. J Appl. Phys.2005,98:094305
    [3] C. W. Bunn. The lattice-dimensions of zinc oxide[J]. Proc. Phys. Soc. London1935,47:835
    [4] R. B. Heller, J. McGannon, and A. H. Weber. Precision determination of the lattice constants ofZinc oxide[J]. J. Appl. Phys.1952,5:292
    [5] D. C. Reynolds and T. C. Collins. Excited terminal states of a bound exciton-donor complex inZnO[J]. Phys. Rev.1969,185:1099
    [6] W. Y. Liang and A. D. Yoffe. Transmission spectra of ZnO single crystals[J]. Phys. Rev. Lett.1968,20:59
    [7] J. L. Freeouf. Far-Ultraviolet reflectance of II-VI compounds and correlation with thePenn-Phillips gap[J]. Phys. Rev. B1973,7:3810
    [8] T. C. Damen, S. P. S. Porto, and B. Tell. Raman effect in Zinc oxide[J]. Phys. Rev.1966,142:570
    [9] J. M. Calleja and M. Cardona. Resonant raman scattering in ZnO[J]. Phys. Rev. B1977,16:3753
    [10] S. P. S. Porto and R. S. Krishnan. Raman effect of corundum[J]. J. Chem. Phys.1967,47:1009
    [11] G. Galli and J. E. Coker. Epitaxial ZnO on sapphire[J]. Appl. Phys. Lett.1970,16:439
    [12] M. Shiloh and J. Gutman. Growth of ZnO single crystals by chemical vapour transport[J]. J.Cryst. Growth1971,11:105
    [13] D. F. Croxall, R. C. C. Ward, C. A. Wallace, et al. Hydrothermal growth and investigation ofLi-doped zinc oxide crystals of high purity and perfection[J]. J. Cryst. Growth1974,22:117
    [14] P. Yu, Z. K. Tang, G. K. L. Wong, et al. Ultraviolet spontaneous and stimulated emission fromZnO microcrystallite thin films at room temperature[J]. Solid State Commun.1997,103:459
    [15] H. Cao, Y. G. Zhao, H. C. Ong, et al. Ultraviolet lasing in resonators formed by scattering inSemiconductor polycrystalline films[J]. Appl. Phys. Lett.1998,73:3656
    [16] Z. A. Wang, J. B. Chu, H. B. Zhu, et al. Growth of ZnO:Al films by RF sputtering at roomtemperature for solar cell applications[J]. Solid-State Electron.2009,53:1149
    [17] X. Jiang, F. L. Wong, M. K. Fung, et al. Aluminum-doped zinc oxide films as transparentconductive electrode for organic light-emitting devices[J]. Appl. Phys. Lett.2003,83:1875
    [18] T. Minami, T. Miyata, and Y. Ohtani. Optimization of aluminum-doped ZnO thin-filmdeposition by magnetron sputtering for liquid crystal display applications[J]. Phys. Status SolidiA2007,204:3145
    [19] X.–R. Deng, H. Deng, M. Wei, et al. Effect of substrate temperature on the properties oftransparent conductive ZnO:Al thin films prepared by RF sputtering[J]. J. Vac. Sci. Technol. A2011,29:051506
    [20] X.–R. Deng, H. Deng, M. Wei, et al. Preparation of highly transparent conductive Al-dopedZnO thin films and annealing effects on properties[J]. J. Mater. Sci: Mater. Electron.2012,23:413
    [21]曹建明. MgZnO日盲紫外探测器的制备和性能研究[D].长春:长春理工大学,2011,1
    [22] C. H. Bates, W. B. White, and R. Roy. New high-pressure polymorph of zinc oxide[J]. Science1962,137:993
    [23] T. Kogure and Y. Bando. Formation of ZnO nanocrystallites on ZnS surfaces by electron beamirradiation[J]. J. Electron. Microsc.1998,47:135
    [24] A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, et al. Growth and characterization of hypotheticalzinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers[J]. Appl. Phys. Lett.2000,76:550
    [25] S.–K. Kim, S.–Y. Jeong, and C.–R. Cho. Structural reconstruction of hexagonal to cubic ZnOfilms on Pt/Ti/SiO2/Si substrate by annealing[J]. Appl. Phys. Lett.2003,82:562
    [26]韦敏. ZnO基紫外光电探测材料研究[D].成都:电子科技大学,2012,3
    [27] U. Rossler. Energy bands of hexagonal II-VI semiconductors[J]. Phys. Rev.1969,184:733
    [28] D. W. Langer and C. J. Vesely. Electronic core levels of zinc chalcogenides[J].1970,2:4885
    [29] L. Ley, R. A. Pollak, F. R. McFeely, et al. Total valence-band densities of states of III-V andII-VI compounds from x-ray photoemission spectroscopy[J]. Phys. Rev. B1974,9:600
    [30] C. J. Vesely, R. L. Hengehold, and D. W. Langer. UV photoemission measurements of the upperd levels in the IIB-VIA compounds[J]. Phys. Rev. B1972,5:2296
    [31] I.Ivnov and J. Pollmann. Electronic structure of ideal and relaxed surfaces of ZnO: A prototypeionic wurtzite semiconductor and its surface properties[J]. Phys. Rev. B1981,24:7275
    [32] S.–H. Wei and A. Zunger. Role of metal d states in II-VI semiconductors[J]. Phys. Rev. B1988,37:8958
    [33] Y.–N. Xu and W. Y. Ching. Electronic, optical, and structural properties of some wurtzitecrystals[J]. Phys. Rev. B1993,48:4335
    [34] D. Vogel, P. Kruger, and J. Pollmann. Ab initio electronic-structure calculations for II-VIsemiconductors using self-interaction-corrected pseudopotentials[J]. Phys. Rev. B1995,52:R14316
    [35] J. E. Jaffe, J. A. Snyder, Z. Lin, et al. LDA and GGA calculations for high-pressure phasetransitions in ZnO and MgO[J]. Phys. Rev. B2000,62:1660
    [36] J. D. Albrecht, P. P. Ruden, S. Limpijumnong, et al. High field electron transport properties ofbulk ZnO[J]. J. Appl. Phys.1999,86:6864
    [37] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, et al. High electron mobility of epitaxial ZnOthin films on c-plane sapphire grown by multistep pulsed-laser deposition[J]. Appl. Phys. Lett.2003,82:3901
    [38] H. Kato, M. Sano, K. Miyamoto, et al. Effect of O/Zn flux ratio on crystalline quality of ZnOfilms grown by plasma-assisted molecular beam epitaxy[J]. Jpn. J. Appl. Phys.2003,42:2241
    [39] K. Iwata, P. Fons, S. Niki, et al. Improvement of electrical properties in ZnO thin films grownby radical source (RS)-MBE[J]. Phys. Status. Solidi A2000,180:287
    [40] A. Mang, K. Reimann, and St. Rubenacke. Band gaps, crystal-field splitting, spin-orbit coupling,and exciton binding energies in ZnO under hydrostatic pressure [J]. Solid State Commun.1995,94:251
    [41] C. Boemare, T. Monteiro, M. J. Soares, et al. Photoluminescence studies in ZnO samples[J].Physica B2001,308-310:985
    [42] J. F. Muth, R. M. Kolbas, A. K. Sharma, et al. Excitonic structure and absorption coefficientmeasurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition[J]. J.Appl. Phys.1999,85:7884
    [43] A. Teke, U. Ozgur, S. Dogan, et al. Excitonic fine structure and recombination dynamics insingle-crystalline ZnO[J]. Phys. Rev. B2004,70:195207
    [44] S. F. Chichibu, T. Sota, G. Cantwell, et al. Polarized photoreflectance spectra of excitonicpolaritons in a ZnO single crystal[J]. J. Appl. Phys.2003,93:756
    [45] D. C. Reynolds, D. C. Look, B. Jogai, et al. Neutral-donor-bound-exciton complexes in ZnOcrystals[J]. Phys. Rev. B1998,57:12151
    [46] D. C. Reynolds, D. C. Look, B. Jogai, et al. Polariton and free-exciton-like photoluminescencein ZnO[J]. Appl. Phys. Lett.2001,79:3794
    [47] X. L. Wu, G. G. Siu, C. L. Fu, et al. Photoluminescence and cathodoluminescence studies ofstoichiometric and oxygen-deficient ZnO films[J]. Appl. Phys. Lett.2001,78:2285
    [48] Y. S. Park and J. R. Schneider. Index of refraction of ZnO[J]. J. Appl. Phys.1968,39:3049
    [49] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, et al. Infrared dielectric functions and phononmodes of high-quality ZnO films[J]. J. Appl. Phys.2003,93:126
    [50] H. Yoshikawa and S. Adachi. Optical constants of ZnO[J]. Jpn. J. Appl. Phys.1997,36:6237
    [51] A. F. Kohan, G. Ceder, D. Morgan, et al. First-principles study of native point defects in ZnO[J].Phys. Rev. B2000,61:15019
    [52] C. G. Van de Walle. Defect analysis and engineering in ZnO[J]. Physica B2001,308-310:899
    [53] B. M. Kimpel and H.-J. Schulz. Infrared luminescence of ZnO:Cu2+(d9)[J]. Phys. Rev. B1991,43:9938
    [54] P. Dahan, V. Fleurov, P. Thurian, et al. Isotope shift in semiconductors with transition-metalimpurities: Experiment and theory applied to ZnO:Cu[J]. Phys, Rev. B1998,57:9690
    [55] S. A. Studenikin, N. Golego, and M. Cocivera. Fabrication of green and orangephotoluminescent, undoped ZnO films using spray pyrolysis[J]. J. Appl. Phys.1998,84:2287
    [56] F. Leiter, H. Alves, D. Pfisterer, et al. Oxygen vacancies in ZnO[J]. Physica B2003,340-342:201
    [57] B. Guo, Z. R. Qiu, and K. S. Wong. Intensity dependence and transient dynamics ofdonor-acceptor pair recombination in ZnO thin films grown on (001) silicon[J]. Appl. Phys.Lett.2003,82:2290
    [58] N. O. Korsunska, L. V. Borkovska, B. M. Bulakh, et al. The influence of defect drift in externalelectric field on green luminescence of ZnO single crystals[J]. J. Lumin.2003,102-103:733
    [59] B. Lin, Z. Fu, and Y. Jia. Green luminescent center in undoped zinc oxide films deposited onsilicon substrates[J]. Appl. Phys. Lett.2001,79:943
    [60] J. Duan, X. Huang, and E. Wang. PEG-assisted synthesis of ZnO nanotubes[J]. Mater. Lett.2006,60:1918
    [61] Y. Li, G. S. Cheng, and L. D. Zhang. Fabrication of highly ordered ZnO nanowire arrays inanodic alumina membranes[J]. J. Mater. Res.2000,15:2305
    [62] T. Minami, H. Sato, H. Nanto, et al. Group III impurity doped zinc oxide thin films prepared byRF magnetron sputtering[J]. Jpn. J. Appl. Phys.1985,24:L781
    [63] S. F. Cox, E. A. Davis, S. P. Cottrell, et al. Experimental confirmation of the predicted shallowdonor hydrogen state in zinc oxide[J]. Phys. Rev. Lett.2001,86:1601
    [64] Y. M. Strzhemechny, H. L. Mosbacker, D. C. Look, et al. Remote hydrogen plasma doping ofsingle crystal ZnO[J]. Appl. Phys. Lett.2004,84:2545
    [65] H. Kato, M. Sano, K. Miyamoto, et al. Growth and characterization of Ga-doped ZnO layers ona-plane sapphire substrates grown by molecular beam epitaxy[J]. J. Cryst. Growth2002,237-239:538
    [66] S. Y. Myong, S. J. Baik, C. H. Lee, et al. Extremely transparent conductive ZnO:Al thin filmsprepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) usingAlCl3(6H2O) as new doping material[J]. Jpn. J. Appl. Phys.1997,36:L1078
    [67] V. Assuncao, E. Fortunato, A. Marques, et al. Influence of the deposition pressure on theproperties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at roomtemperature[J]. Thin Solid Films2003,427:401
    [68] T. Minami, H. Nanto, and S. Takata. Highly conductive and transparent aluminum doped zincoxide thin films prepared by RF magnetron sputtering[J]. Jpn. J. Appl. Phys.1984,23:L280
    [69] W. Walukiewicz. Defect formation and diffusion in heavily doped semiconductors[J]. Phys. Rev.B1994,50:2551
    [70] C. G. Van de Walle, D. B. Laks, G. F. Neumark, et al. First-principle calculations of solubilitiesand doping limits: Li, Na, and N in ZnSe[J]. Phys. Rev. B1993,47:9425
    [71] C. H. Park, S. B. Zhang, and S.–H. Wei. Origin of p-type doping difficulty in ZnO: Theimpurity perspective[J]. Phys. Rev. B2002,66:073202
    [72] D. C. Look, R. L. Jones, J. R. Sizelove, et al. The path to ZnO devices: donor and acceptordynamics[J]. Phys. Status Solidi A2003,195:171
    [73] A. Kobayashi, O. F. Sankey, and J. D. Dow. Deep energy levels of defects in the wurtzitesemiconductors AlN, CdS, CdSe, ZnS, and ZnO[J]. Phys. Rev. B1983,28:946
    [74] K. Iwata, P. Fons, A. Yamada, et al. Nitrogen-induced defects in ZnO:N grown on sapphiresubstrate by gas source MBE[J]. J. Cryst. Growth2000,209:526
    [75] J. Lu, Y. Zhang, Z. Ye, et al. p-type ZnO films deposited by DC reactive magnetron sputtering atdifferent ammonia concentrations[J] Mater. Lett.2003,57:3311
    [76] X. Li, Y. A. Gessert, C. L. Perkins, et al. Chemical vapor deposition-formed p-type ZnO thinfilms[J]. J. Vac. Sci. Technol. A2003,21:1342
    [77] T. Yamamoto. Codoping for the fabrication of p-type ZnO[J]. Thin Solid Films2002,420-421:100
    [78] K. Nakahara, H. Takasu, P. Fons, et al. Growth of N-doped and Ga+N-codoped ZnO films byradical source molecular beam epitaxy[J]. J. Cryst. Growth2002,237-239:503
    [79] Y. I. Alivov, D. C. Look, B. M. Ataev, et al. Fabrication of ZnO-basedmetal-insulator-semiconductor diodes by ion implantation[J]. Solid-State Electron.2004,48:2343
    [80] M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey. Nitrogen is a deep acceptor in ZnO[J]. AIPAdv.2011,1:022105
    [81] A. Ohtomo, M. Kawasaki, T. Koida, et al. MgxZn1-xO as a II-VI widegap semiconductor alloy[J].Appl. Phys. Lett.1998,72:2466
    [82] S. Choopun, R. D. Vispute, W. Yang, et al. Realization of band gap above5.0eV in metastablecubic-phase MgxZn1-xO alloy films[J]. Appl. Phys. Lett.2002,80:1529
    [83] F. P. Koffyberg. Thermoreflectance spectra of CdO: Band gaps and band-population effects[J].Phys. Rev. B1976,13:4476
    [84] P. Zu, Z. K. Tang, G. K. L. Wong, et al. Ultraviolet spontaneous and stimulated emissions fromZnO microcrystallite thin films at room temperature[J]. Solid State Commun.1997,103:459
    [85] K. W. Liu, D. Z. Shen, C. X. Shan, et al. The growth of MgZnO alloy films for deep ultravioletdetection[J]. J Phys. D2008,41:125104
    [86]刘恩科,朱秉生,罗晋生.半导体物理学[M].北京:电子工业出版社,2005,72-73,333-343,375-382,445
    [87]孙恒慧,包宗明.半导体物理实验[M].北京:高等教育出版社,1985,52
    [88]常铁军,祁欣.材料近代分析测试方法[M].哈尔滨:哈尔滨工业大学出版社,2003,77-78,110-112,128-129,228
    [89]杨序纲,杨潇.原子力显微术及其应用[M].北京:化学工业出版社,2012,20
    [90]郭明. CeO2基复合氧化物氧缺位的Raman光谱研究[D].金华:浙江师范大学,2010,14
    [91]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,2001,23-68
    [92]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2002,322
    [93]王明月.基于PL谱对GaN材料高密度激子发光机理的研究[D].南京:南京大学,2012,15
    [94]杜宇.钴胺配合物为模板的金属氟化物与金属磷酸盐的合成,结构及性质研究[D].长春:吉林大学,2007,73
    [95]周强.多相合金薄膜的扫描开尔文显微镜研究[D].长沙:湖南大学,2006,11
    [96]金丹.有机-无机半导体界面的结构和电子态的研究[D].杭州:浙江大学,2011,22
    [97]成立顺,孙本双,钟景明等. ITO透明导电薄膜的研究进展[J].稀有金属快报,2008,27:10
    [98] M. H. Freeman and C. C. Hull. Optics[M]. Singapore: Elsevier Pte Ltd,2004,384
    [99]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1993,60
    [100] H. P. Klug and L. E. Alexander. X-Ray Diffraction Procedures for Polycrystalline andAmorphous Materials,2nd edition[M]. New York: J. Wiley&Sons,1974,656
    [101]聂攀登,薛涛,张煜等.铝掺杂氧化锌的合成及结构分析[J].中国科学B辑:化学2008,38:584
    [102] H. Kim, B. D. Ahn, C. H. Lee, et al. Effect of rapid thermal annealing on electrical and opticalproperties of Ga doped ZnO thin films prepared at room temperature[J]. J. Appl. Phys.2006,100:113515
    [103] X. Liu, W. Bi, and Z. Liu. Influence of post-annealing on the properties of Sc-doped ZnOtransparent conductive films deposited by radio-frequency sputtering[J]. Appl. Surf. Sci.2009,255:7942
    [104] E. Munoz, E. Monroy, J. A. Garrido, et al. Photoconductor gain mechanisms in GaNultraviolet detectors[J]. Appl. Phys. Lett.1997,71:870
    [105] L. Qin, C. Shing, S. Swayer. Low-pass and bandpass alternative ultraviolet photoconductorbased on zinc oxide nanoparticles on intrinsic gallium nitride-based substrate[J]. IEEEPhotonic Tech. L.2011,23:414
    [106] Q. Chen, J. W. Wang, A. Osinsky, et al. Schottky barrier detectors on GaN for visible-blindultraviolet detection[J]. Appl. Phys. Lett.1997,70:2277
    [107] E. Monroy, F. Calle, E. Munoz, et al. AlxGa1-xN:Si schottky barrier photodiodes with fastresponse and high detectivity[J]. Appl. Phys. Lett.1998,73:2146
    [108] M. C. Chen, J. K. Sheu, M. L. Lee, et al. Planar GaN p-i-n photodiodes with n+-conductivechannel formed by Si implantation[J]. Appl. Phys. Lett.2006,88:203508
    [109] D. Walker, A. Saxler, P. Kung, et al. Visible blind GaN p-i-n photodiodes[J]. Appl. Phys. Lett.1998,72:3303
    [110] F.-R. Juang, Y.-K. Fang, Y.-T. Chiang, et al. The poly-SiC MSM photodiode on ceramic SiCsubstrate for low-cost ultraviolet light sensing applications[J].IEEE Sens. J.2011,11:3446
    [111] J. Li, Y. Xu, T. Y. Hsiang, et al. Picosecond response of gallium-nitridemetal-semiconductor-metal photodetectors[J]. Appl. Phys. Lett.2004,84:2091
    [112] R. McClintock, A. Yasan, K. Mayes, et al. High quantum efficiency AlGaN solar-blind p-i-nphotodiodes[J]. Appl. Phys. Lett.2004,84:1248
    [113] Y. Li, T. Tokizono, M. Liao, et al. Efficient assembly of bridged β–Ga2O3nanowires forsolar-blind photodetection[J]. Adv. Funct. Mater.2010,20:3972
    [114] M. D. Whitfield, S. P. Lansley, O. Gaudin, et al. Diamond photodetectors for the nextgeneration157-nm deep-UV photolithography tools[J]. Diamond Relat. Mater.2001,10:693
    [115] T. Takagi, H. Tanaka, S. Fujita, et al. Molecular Beam Epitaxy of High Magnesium ContentSingle-Phase Wurzite MgxZn1-xO Alloys (x=0.5) and Their Application to Solar-BlindRegion Photodetectors[J]. Jpn. J. Appl. Phys.2003,42: L401
    [116] K. W. Liu, D. Z. Shen, C. X. Shan, et al. Zn0.76Mg0.24O homojunction photodiode forultraviolet detection[J]. Appl. Phys. Lett.2007,91:201106
    [117] M. P. Ulmer. A review of UV detectors for astrophysics: past, present, and future[J]. Proc.SPIE2009,7222:722210
    [118]张永林,狄红卫.光电子技术[M].北京:高等教育出版社,2005,17
    [119] Y. Liu, C. R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grownby MOCVD[J]. J. Electron. Mater.2000,29:69
    [120] D. Basak, G. Amin, B. Mallik, et al. Photoconductive UV detectors on sol-gel synthesizedZnO films[J]. J. Cryst. Growth2003,256:773
    [121] X. G. Zheng, Q. Sh. Li, J. P. Zhao, et al. Photoconductive ultraviolet detectors based on ZnOfilms[J]. Appl. Surf. Sci.2006,253:2264
    [122]叶志镇,张银珠,陈汉鸿等. ZnO光电导紫外探测器的制备和特性研究[J].电子学报2003,31:1605
    [123] A. Y. Polyskov, N. B. Smirnov, E. A. Kozhukhova, et al. Electrical characteristics of Au andAg Schottky contacts on n-ZnO[J]. Appl. Phys. Lett.2003,83:1575
    [124] H. Fabricius, T. Skettrup, and P. Bisgaard. Ultraviolet detectors in thin sputtered ZnO films[J].Appl. Optics1986,25:2764
    [125]高晖,邓宏,李燕. ZnO肖特基势垒紫外探测器[J].发光学报2005,26:135
    [126] J. Zhou, Y, Gu, Y. Hu, et al. Gigantic enhancement in response and reset time of ZnO UVnanosensor by utilizing Schottky contact and surface functionalization[J]. Appl. Phys. Lett.2009,94:191103
    [127] I. S. Jeong, J. H. Kim, and L. M. Seongil. Ultraviolet-enhanced photodiode employingn-ZnO/p-Si structure[J]. Appl. Phys. Lett.2003,83:2946
    [128] Y. I. Alivov, U. Ozgur, S. Dogan, et al. Photoresponse of n-ZnO/p-SiC heterojunction diodesgrown by plasma-assisted molecular-beam epitaxy[J]. Appl. Phys. Lett.2005,86:241108
    [129] T. H. Moon, M. C. Jeong, W. Lee, et al. The fabrication and characterization of ZnO UVdetector[J]. Appl. Surf. Sci.2005,240:280
    [130]孙腾达,谢家纯,梁锦等. ZnO欧姆电极制备与n-ZnO/p-Si异质结紫外光电特性[J].中国科学技术大学学报2006,36:328
    [131] W. Yang, R. D. Vispute, S. Choopun, et al. Ultraviolet photoconductive detector based onepitaxial Mg0.34Zn0.66O thin films[J]. Appl. Phys. Lett.2001,78:2787
    [132] I. Tekeuchi, W. Yang, K. S. Chang, et al. Monilithic multichannel ultraviolet detector arraysand continuous phase evolution in MgxZn1-xO composition spreads[J]. J. Appl. Phys.2003,94:7336
    [133] W. Yang, S. S. Hullavarad, B. Nagaraj, et al. Compositionally-tuned epitaxial cubic MgZnO onSi(100) for deep ultraviolet photodetectors[J]. Appl. Phys. Lett.2003,82:3424
    [134] K. Koike, K. Hama, I. Nakashima, et al. Molecular beam epitaxial growth of wide bandgapZnMgO Alloy films on(111)-oriented Si substrate toward UV-detector applications[J]. J. Cryst.Growth2005,278:288
    [135] E. Burstein. Anomalous optical absorption limit in InSb[J]. Phys. Rev.1954,93:632
    [136] B. M. Ataer, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, R. A. Rabadanov. Highlyconductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD[J]. Thin SolidFilms1995,260:19
    [137] C.–Y. Ren, S.–H. Chiou, C.–S. Hsue. Ga-doping effects on electronic and structuralproperties of wurtzite ZnO[J]. Physica B2004,349:136
    [138]张德恒.透明导电膜中光吸收边的移动[J].半导体杂志19983,23:34
    [139] P. A. Wolff. Theory of the band structure of very degenerate semiconductors[J]. Phys. Rev.1962,126:405
    [140]杜晓晴,田健,周强富.利用紫外透射光谱研究透射式GaN光电阴极的材料结构及光学特性[J].光谱学与光谱分析2011,31:1606
    [141] J.-J. Chen, X.–R. Deng, and H. Deng. Progress in the growth and characterization ofnonpolar ZnO films[J]. J. Mater. Sci.2013,48:532
    [142] A. Kaschner, U. Haboeck, M. Strassburg, et al. Nitrogen-related local vibrational modes inZnO:N[J]. Appl. Phys. Lett.2002,80:1909
    [143] N. Tripathi, K. Vijayarangamuthu, S. Rath. A Raman spectroscopic study of structuralevolution of electrochemically deposited ZnO films with deposition time[J]. Mater. Chem.Phys.2011,126:568
    [144] B. Yang, A. Kumar, P. Feng, et al. Structural degradation and optical property ofnanocrystalline ZnO films grown on Si (100)[J]. Appl. Phys. Lett.2008,92:233112
    [145] R. P. Wang, G. Xu, P. Jin. Size dependence of electron-phonon coupling in ZnO nanowires[J].Phys. Rev. B2004,69:113303
    [146] M. Rajalakshmi, A. K. Arora, B. S. Bendre, et al. Optical phonon confinement in zinc oxidenanoparticles[J]. J. Appl. Phys.2005,87:2445
    [147] G. J. Exarhos, A. Rose, C. F. Windisch. Spectroscopic characterization of processing-inducedproperty changes in doped ZnO films[J]. Thin Solid Films1997,308-309:56
    [148] M. S. Samuel, J. Koshy, A. Chandran, et al. Optical properties of Al doped ZnO nanorods[J].AIP Conf. Proc.2011,1391:555
    [149] T. Pandiyarajan, R. Vdayabhaskar, B. Karthikeyan. Role of Fe doping on structural andvibrational properties of ZnO nanostructures[J]. Appl. Phys. A2012,107:411
    [150] S. M. Kumaran, R. Gopalakrishnan. Structural, optical and photoluminescence properties ofZn1-xCexO (x=0,0.05and0.1) nanoparticles by sol-gel method annealed under Aratmosphere[J]. J. Sol-Gel. Sci. Technol.2012,62:193
    [151] K. R. Murali, and P. Thirumoorthy. Characteristics of sol-gel deposited alumina films[J]. J.Alloys Compd.2010,500:93
    [152] T.–T. A. Li, S. Ruffell, M. Tucci, et al. Influence of oxygen on the sputtering of aluminumoxide for the surface passivation of crystalline silicon[J]. Sol. Energy Mater. Sol. Cells2011,95:69
    [153] P. Padmaja, K. G. K. Warrier, M. Padmanabhan, et al. Structural aspects and porosity featuresof nano-size high surface area alumina-silica mixed oxide catalyst generated through hybridsol-gel route[J]. Mater. Chem. Phys.2006,95:56
    [154] I. Miron, C. Enache, M. Vasile, et al. Optical properties of ZnAl2O4nanomaterials obtainedby the hydrothermal method[J]. Phys. Scr.2012, T149:014064
    [155] N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin. Structural, elastic, thermalphysical anddielectric properties of Zinc aluminate [J]. J. Eur. Ceram. Soc.2004,24:2417
    [156] H.-K. Kim, T.-Y. Seong, K.-K. Kim, et al. Mechanism of nonalloyed Al ohmic contacts ton-type ZnO:Al epitaxial layer[J]. Jpn. J. Appl. Phys.2004,43:976
    [157] G. V. Samsonov. The oxide handbook,2nd ed.[M]. New York: IFI Plenum,1981,137
    [158] B. V. Crist. Handbook of monochromatic XPS spectra[M]. Kawasaki: XPS International Inc.,1999,78
    [159] C. Lennon, R. Kodama, Y. Chang, et al. Effects of annealing in N2on sputtered Al-doped ZnOthin films[J]. J. Vac. Sci. Technol. B2009,27:1641
    [160] L. J. Li, H. Deng, L. P. Dai, et al. Properties of Al heavy-doped ZnO thin films by RFmagnetron sputtering[J]. Mater. Res. Bull.2008,43:1456
    [161] H. T. Cao, Z. L. Pei, J. Gong, et al. Preparation and characterization of Al and Mn dopedZnO(ZnO:(Al, Mn)) transparent conducting oxide films[J]. J. Solid State Chem.2004,177:1480
    [162] M. Chen, Z. L. Pei, C. Sun, et al. Formation of Al-doped ZnO films by dc magnetron reactivesputtering[J]. Mater. Lett.2001,48:194
    [163] Z. Bi, X. Yang, J. Zhang, et al. A back-illuminated vertical-structure ultraviolet photodetectorbased on RF-sputtered ZnO film[J]. J. Electron. Mater.2009,38:609
    [164] R.J. Nemanich, M.C. Benjamin, S.P. Bozeman, et al.(Negative) Electron affinity of AlN andAlGaN alloys[J]. Mater. Res. Soc. proc.1995,395:777
    [165] B.B. Pate. The diamond surface: atomic and electronic structure[J]. Surf. Sci.1986,165:83
    [166] A. Umar, B. Karunagaran, E.-K. Suh, et al. Structural and optical properties ofsingle-crystalline ZnO nanorods grown on silicon by thermal evaporation[J]. Nanotechnology2006,17:4072
    [167] Y. Fang, X.Wen, S. Yang, et al. Hydrothermal synthesis and optical properties of ZnOnanostructured films directly grown from/on zinc substrates[J] J. Sol-Gel Sci. Technol.2005,36:227
    [168] S. B. Zhang, S. H. Wei, and A. Zunger. Intrinsic n-type versus p-type doping asymmetry andthe defect physics of ZnO[J]. Phys. Rev. B2001,63:075205
    [169] H.S. Kang, J.S. Kang, J.W. Kim, et al. Annealing effect on the property of ultraviolet andgreen emissions of ZnO thin films[J]. J. Appl. Phys.2004,95:1246
    [170] R. J. Mendelsberg, S. H. N. Lim, Y. K. Zhu, et al. Achieving high mobility ZnO: Al at veryhigh growth rates by dc filtered cathodic arc deposition[J]. J. Phys. D: Appl. Phys.2011,44:232003
    [171] E. C. Benck, J. E. Lawler, and J. T. Dakin. Lifetimes, branching ratios, and absolute transitionprobabilities in Hg I[J]. J. Opt. Soc. Am. B1989,6:11
    [172]郭培源,梁丽.光电子技术基础教程[M].北京航空航天大学出版社,2005,160-176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700