AlGaN/AlInN日盲紫外DBR的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅲ族氮化物半导体材料中的AlN、GaN、InN以及它们的三元或者四元合金化合物均为直接带隙材料,并且可以通过调节组分使其合金化合物的带隙从红外到紫外波段内连续变化。布拉格反射镜(DBR)是微腔器件重要的组成部分,可见和近紫外区的AlGaN/GaN DBR或AlInN/GaN DBR已得到广泛研究,而应用于紫外区的AlGaN/Al(Ga)N或AlInN/Al(Ga)N DBR,由于高A1组分的AlGaN生长比较困难,再加上为了避免高反射区内的光吸收,DBR结构需同时采用两种高A1组分的AlGaN合金材料,限制了折射率的差值,使其研究较晚且进展不大。本论文基于Brunner等人的经验公式模拟了高Al组分AlGaN折射率的变化规律,并依此设计了高反区在日盲波段的AlGaN/AlInN DBR结构,采用分子束外延方法制备了两种AlGaN/AlInN DBR结构。同时,利用X射线衍射(XRD)、紫外-可见光分光光度计、透射电镜(TEM)、二次离子质谱仪(SIMS)等测试设备表征了DBR的微结构和光学特性,对DBR结构的应变以及光学特性做了深入的分析研究。取得的主要研究结果如下:
     1、利用薄膜光学中的传输矩阵法,计算了构建在LT-AlN缓冲层上的Al0.98In0.02N/AlyGa1-yN DBR结构在中心波长为246nm处的峰值反射率随Al组分的变化规律。在波长246nm处,AlyGa1-yN的折射率随A1组分的增加而降低,从而降低了DBR两种材料的折射率差,进而导致DBR的中心反射率也随着AlyGa1-yN中A1组分的增加而降低。
     2、采用MBE方法制备了不同周期和A1组分的AlxIn1-xN/AlyGa1-yN DBR结构,DBR结构的第一层和最后一层均为高折射率材料(AlGaN)。通过(0002)对称面和(105)非对称面XRD衍射谱以及倒易空间图计算分析得到了不同DBR结构的应变状态,结果显示在AlInN/AlyGa1-yN DBR结构中,AlGaN层的Al组分越高,周期数越多,DBR外延膜所累积的应变越大。此外,基于XRD模拟分析和SIMS测试结果,得到了DBR双层结构中合金的元素组分比。
     3、所制备的Al0.98In0.02N/Al0.8Ga0.2N DBR在高反射区的中心波长在246nm,其峰值反射率为83.9%、高反射区半高宽为18nm。根据实验结果分析得到该结构在246nm处的折射率差为9.25%,相比中心波长在近紫外波段的GaN基DBR,该结构呈现出一个相对较高的折射率差值。基于实验测试的DBR参数,采用传输矩阵法模拟了该结构的反射谱,发现实验所测得的反射谱与模拟结果存在较大偏差,分析认为在DBR的TEM图像中所观察到的AlInN和AlGaN非均匀层厚和不平整的AlInN/AlGaN界面是造成这个偏差的主要原因。
     4、依据实验结果所提取的折射率模拟了中心波长在246nm的日盲紫外Al0.98In0.02N/Al0.8Ga0.2N DBR结构,要使DBR在高反区反射率高于99%所需要的最少周期数为25.5对,模拟得到该结构的高反射区半高宽为19nm。
Ⅲ-nitride materials (AIN, GaN, InN and their ternary or quaternary alloy compounds) are direct-band gap semiconductors. Owing to their advantages of the band gaps from0.7eV to6.2eV by adjusting the component and excellent physical and chemical stabilities, Ⅲ-nitride semiconductors are the most favorite material system for the fabrication optoelectronic devices operable from infrared to ultraviolet spectrum region. Distributed Bragg reflectors (DBRs) based on AlGaN/GaN or AlInN/GaN have been carried out in microcavity devices, which work in visible and near-ultraviolet region. However, the research on DBRs structure used in the ultraviolet region stem from the difficulty for growth good qulity high-A1-content AlGaN and the big strain in the structure caused by the lattice mismatch and thermal mismatch.
     In this dissertation, the regularity of the refraction index of the high-Al content AlGaN and AlInN is simulated by the formula provided by Brunner. And two solar-blind AlGaN/AlInN DBRs structures are designed and fabricated on an AIN template by plasma-assisted molecular-beam epitaxy. The properties of the two DBRs are also investigated by experimental characterizations. The main conclusions we have obtained are listed as follows:
     1. The peak reflectivity variation of Al0.98In0.02N/AlyGa1-yN DBR structure with central wavelength at246nm fabricated on LT-AIN layer is calculated by the transfer matrix method. The refractive index values of AlyGa1-yN at246nm decrease as the Al content increasing, which results in reduction the refractive index difference between two layers in DBRs. And this lead to decrease the peak reflectivity of DBRs with increasing Al component in AlyGa1-yN layer.
     2. Two solar-blind AlGaN/AlInN DBRs structures with different periods and Al concentration are successfully grown by MBE. The strains in the DBR samples are analyzed by high resolution x-ray diffraction (HRXRD) and reciprocal space mapping (RSM). The results show that the strains in the samples increase with the Al composition and the DBRs period increasing. And the contents of In, Al and Ga in the two DBR structures are measured by SIMS and simulated by HRXRD.
     3. The13.5-pair Al0.98In0.02N/Al0.77Ga0.23N DBR structure exhibited a peak reflectivity of83.9%with central wavelength at246nm and a stopband width of18nm. The average refractive index contrast extracted from experimental data was9.25%for the Al0.98In0.02N/Al0.77Ga0.23N DBR at246nm, which is unexpectedly high. Based on the experimental refractive indices, the reflectivity spectrum of the DBR structure is simulated using the transfer matrix method. The results show that there some discrepancy exists between the simulated and experimental reflectivity spectra. Our investigations indicate that the the discrepancy is ascribed to the nonuniformity of layer thickness and the blurry, rough interface between the AlInN and AlGaN layers.
     4. Simulation results based on the experimental data indicated that a25.5-period Al0.98In0.02N/Al0.8Ga0.2N DBR will exhibit reflectivity higher than99%and a stopband width of19nm centered in the solar-blind UV region.
引文
[1]Hideki Hirayama, Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes, J. Appl. Phys.97(9),091101 (2005).
    [2]S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes, Jpn. J. Appl. Phys.34, L1332-L1335 (1995).
    [3]F. Fichter, Uber Aluminiumnitrid. Zeitschrift fur anorganische Chemie,54,322 (1907).
    [4]H. P. Maruska and J. J. Tietjen, The preparation and properties of vapor-deposited single-crystalline GaN [J]. Appl. Phys. Lett.,15(10):327-329 (1969).
    [5]S. Yoshida, S. Misawa and S. Gonda, Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AIN-coated sapphire substrates, Appl. Phys. Lett.42(5),427-429 (1983).
    [6]H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer, Appl. Phys. Lett.48,353 (1986).
    [7]H. Amano, I. Akasaki, T. Kozawa, K. Hiramatsu, N. Sawaki, K. Ikeda, Y. Ishii, Electron beam effects on blue luminescence of zinc-doped GaN, J. Lumin.40, 121 (1988).
    [8]J. A. V. Vechten, J. D. Zook, R. D. Horning, and B. Goldenberg, Defeating compensation in wide gap semiconductors by growing in H that is removed by low-temperature deionizing radiation, Jpn. J. Appl. Phys.31,1457 (1992).
    [9]S. Nakamura, M. Senoh, and T. Mukai, Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers, Jpn. J. Appl. Phys.30, L1708-L1711 (1990).
    [10]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa. Thermal annealing effects on P-type Mg-doped GaN films, Jpn. J. Appl. Phys.31, L139 (1992).
    [11]M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, and M. Blasingame, High responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers, Appl. Phys. Lett.60,2917 (1992).
    [12]M. Asif Khan, J. N. Kuznia, D. T. Olson, M. Blasingame and A. R. Bhattarai, Schottky barrier photodetector based on Mg-doped p-type GaN films, Appl. Phys. Lett.63(18),2455 (1993).
    [13]S. Nakamura, S. Pearton, GFasol, The blue laser diode:the complete story. Berlin, Springer,2000.
    [14]T. L. Tansley and C. P. Foley, Optical band gap of indium nitride, J. AppL Phys. 59(9),3241 (1986).
    [15]R. McClintock, A. Yasan, K. Mayes, et al. High quantum efficiency AlGaN solar-blind p-i-n photodiodes, Appl. Phys. Lett.84(8),1248 (2004).
    [16]A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. Denbaars, S. Nakamura and U. K. Mishra, Demonstration of Nonpolar m-Plane InGaN/GaN Light-Emitting Diodes on Free-Standing m-Plane GaN Substrates. Jpn. J. Appl. Phys.44(5), L173-L175 (2005).
    [17]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science,287,1019(2000)
    [18]S. Senda, H. Jiang, and T. Egawa, AlInN-based ultraviolet photodiode grown by metal organic chemical vapor deposition, Appl. Phys. Lett.92,203507 (2008).
    [19]B. T. Liou and C. W. Liu, Electronic and structural properties of zinc blende AlxIn1-xN, Optics Communications 274,361-365 (2007).
    [20]H. Tong, J. Zhang, et al., Thermoelectric properties of lattice-matched AIInN alloy grown by metal organic chemical vapor deposition, Appl. Phys. Lett.,97, 112105(2010).
    [21]M. Gonschorek, J. F. Carlin, et al., Two-dimensional electron gas density in Al1-xInxN/AlN/GaN heterostructures (0.03<=x<=0.23), J. Appl. Phys.,103, 093714(2008).
    [22]H. P. D. Schenk, M. Nemoz, et al., AⅡnN optical confinement layers for edge emitting group Ⅲ-nitride laser structures, Phys. Stat. Sol. (c),6, S897-S901 (2009).
    [23]C. Hemmingsson, M. Boota, et al., Growth and characterization of thick GaN layers grown by halide vapour phase epitaxy on lattice-matched AIInN templates, J. Cryst. Growth,311,292-297 (2009).
    [24]Q.X.Guo, Y. Okazaki, et al., Reactive sputter deposition of AIInN thin films, J. Cryst. Growth,300,151-154 (2007).
    [25]F. Rizzi, K. Bejtka, et al., Selective wet etching of lattice-matched AIInN-GaN heterostructures, J. Cryst. Growth,300,254-258 (2007).
    [26]Z. T. Chen, Y. Sakai, and T. Egawa, Photoluminescence studies of high-quality InAIN layer lattice-matched to GaN grown by metal organic chemical vapor deposition, Appl. Phys. Lett.,96,191911 (2010).
    [27]T. Kehagias, G. P. Dimitrakopulos, et al., Indium migration paths in V-defects of InAIN grown by metal-organic vapor phase epitaxy, Appl. Phys. Lett.,95, 071905 (2009).
    [28]M. J. Lukitsch, Y. V. Danylyuk, et al., Optical and electrical properties of Al1-xInxN films grown by plasma source molecular-beam epitaxy, Appl. Phys. Lett.,79,632-634 (2001).
    [29]T. Matsuoka, H. Okamoto, et al., Optical bandgap energy of wurtzite InN, Appl. Phys. Lett.,81,1246 (2002).
    [30]B. Poti, M. Tagliente, and A. Passaseo, High quality MOCVD GaN film grown on sapphire substrates using HT-A1N buffer layer, J. Non-Crystalline Solids. 352,2332-2334 (2006).
    [31]J. Zhang, H. Cheng, et al., Growth of A1N films on Si (100) and Si (111) substrates by reactive magnetron sputtering, Surface and Coatings Technology.198,68-73 (2005).
    [32]T. Fujimori, H. Imai, et al., Growth and characterization of AlInN on AlN template, J. Cryst. Growth,272,381-385 (2004).
    [33]S.Yamaguchi, M. Kariya, et al., Structural and optical properties of AlInN and AlGalnN on GaN grown by metalorganic vapor phase epitaxy, J. Cryst. Growth, 195,309-313(1998).
    [34]K. Lorenz, N.Franco, et al., Relaxation of compressively strained AlInN on GaN, J. Cryst. Growth,310,4058-4064 (2008).
    [35]J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butte, and N. Grandjean, Progresses in Ⅲ-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials, Phys. Stat. sol. (b) 242,2326 (2005).
    [36]J. F. Carlin and M. Ilegems, High-quality AIInN for high index contrast Bragg mirrors lattice matched to GaN, Appl. Phys. Lett.,83,668 (2003).
    [37]C. Yuan, T. Salagaj, et al., Effect of shroud flow on high quality InxGal-xN deposition in a production scale multi-wafer-rotating-discreactor, J. Electron. Mater.,25,749-753 (1996).
    [38]R. F. Davis, T. Gehrke, et al., Pendeo-epitaxial growth of thin films of gallium nitride and related materials and their characterization, J. Cryst. Growth,225, 134-140 (2001).
    [39]C. G Liang, J. Zhang, GaN-Dawn of 3rd-Generation-Semiconductors. Chin. J. Semicond.,20(2),89-90 (1999)
    [40]Hideki Hirayama,231-261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AIN multilayer buffers grown by NH3 Pulse-flow method on sapphire, Appl.Phys.Lett.,91(7) 071901 (2007)
    [41]T. Seppanen, P. O. A. Persson, et al., Magnetron sputter epitaxy of wurtzite All-xInxN(0.1    [42]K. Jeganathan, M. Shimizu, et al., Lattice-matched InAlN/GaN two-dimensional electron gas with high mobility and sheet carrier density by plasma-assisted molecular beam epitaxy, J. Cryst. Growth,304,342-345 (2007).
    [43]T.S.Yeh, J. M. Wu, and W. H. Lan, Electrical properties and optical bandgaps of AlInN films by reactive sputtering, J. Cryst. Growth,310,5308-5311 (2008).
    [44]M. Hiroki, H. Yokoyama, et al., High-quality InAlN/GaN heterostructures grown by metal-organic vapor phase epitaxy, Superlattices and Microstructures,40, 214-218 (2006).
    [45]C. Hums, J. Blasing, et al., Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range, Appl. Phys. Lett.,90,022105 (2007).
    [46]W. Walukiewicz, S. X. Li, et al., Optical properties and electronic structure of InN and In-rich group Ⅲ-nitride alloys, J. Cryst. Growth,269,119-127 (2004).
    [47]M. Ferhat and F. Bechstedt, First-principles calculations of gap bowing in InxGal-xN and InxAll-xN alloys:Relation to structural and thermodynamic properties, Phys. Rev. B,65,075213 (2002).
    [48]芦伟,徐明等人,AIInN光电薄膜的研究进展,材料导报.24,132-137(2010).
    [49]M. Razeghi and A. Rogaiski, Semiconductor ultraviolet detectors, J. Appl. Phys., 79,7433 (1996)
    [50]E. Munoz, E. Monroy, J. L. Pau, F. Calle, E. Calleja, F. Omnes, and P. Gibart, (Al,Ga)N Ultraviolet Photodetectors and Applications, Phys. Stat. sol. (a),180, 293(2000)
    [51]X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi, Photovoltalic effects in GaN stractures with p-n junction, Appl. Phys. Lett.,76,2028 (1995).
    [52]Wei Yang, Thomas Nohova, Subash Krishnankutty, Robert Torreano, Scott McPherson, and Holly Marsh, Back-illuminated GaN/AlGaN heterojunction photodiodes with high quantum efficiency and low noise, Appl. Phys. Lett.,73, 1086, (1998).
    [53]E. J. Tarsa, P. Kozodoy, J. Ibbetson, B. P. Keller, G. Parish, and U. Mishra, solar blind AlGaN-based inverted heterostructure photodiodes, Appl. Phys. Lett.,77, 316(2000).
    [54]D. J. H. Lambert, M. M. Wong, U. Chowdhury, C. Collins, T. Li, H. K. Kwon, B. S. Shelton, T. G. Zhu, J. C. Campbell, and R. D. Dupuis, Back illuminated AlGaN solar blind photodetectors, Appl. Phys. Lett.,77,1900 (2000).
    [55]J. D. Brown, Jizhong Li, P. Srinivasan, J. Matthews, and J. F. Schetzina, solar blind AlGaN heterostructure photodiodes, MRS Internet J. Nitride Semicond. Res.,5,9 (2000).
    [56]A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G J. Zydzik, Controlled Atomic Spontaneous Emission from Er3+ in a Transparent Si/SiO2 Microcavity, Phys. Rev. Lett.,71,517 (1993).
    [57]N. E. J. Hunt, E. F. Schubert, R. F. Kopf, D. L. Sivco, A. Y. Cho, and G J. Zydzik, Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at A=940 nm, Appl. Phys. Lett.,63,2600 (1993).
    [58]Danae Delbeke, Ronny Bockstaele, Peter Bienstman, Roel Baets, and Henri Benisty, High-Efficiency Semiconductor Resonant-Cavity Light-Emitting Diodes:A Review, IEEE J. Sel. Topics in Quantum Electron.,8(2),189 (2002).
    [59]Mihail M. Dumitrescu, Mika J. Saarinen, Mircea D. Guina, and Markus V. Pessa, High-Speed Resonant Cavity Light-Emitting Diodes at 650 nm, IEEE J. Sel. Topics in Quantum Electron.,8(2),219 (2002).
    [60]C. Fabry and A. Perot, On the Application of Interference Phenomena to the Solution of Various Problems of Spectroscopy and Metrology, Astrophys. J.,9, 87-115(1899).
    [61]J. J. Goedbloed and J. Joosten, Responsivity of avalanche photodiodes in the presence of multiple reflections, Electron Lett.,12(14),363-364 (1976)
    [62]T. Li, J. C. Carrano, C. J. Eiting, P. A. Grudowski, D. J. H. Lambert, H. K. Kwon, R. D. Dupuis, J. C. Campbell, R. T. Tober. Design of a resonant-cavity-enhanced p-i-n GaN/AlxGal-xN photodetector, Fiber and Integrated Optics,20,125 (2001).
    [63]Mihail M. Dumitrescu, Mika J. Saarinen, Mircea D. Guina, and Markus V. Pessa, High-Speed Resonant Cavity Light-Emitting Diodes at 650 nm, IEEE J. Sel. Topics in Quantum Electron.,8 (2),219 (2002).
    [64]J. F.Carlin, J. Dorsaz, E. Feltin, R. Butte, N. Grandjean, M. Ⅱegems, M. Laugt, Crack-free fully epitaxial nitride microcavity using highly reflective AlInN/GaN Bragg mirrors, Appl. Phys. Lett.86,031107 (2005).
    [35]J. F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G Christmann, E. Feltin, R. Butte, and N. Grandjean, Progresses in Ⅲ-nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials, Phys. Stat. Sol. (b),242,2326 (2005).
    [65]K. Klausing, F. Fedler, J. Danhardt, R. Jaurich, A. Kariazine, S. Gunster, D. Mistele, and J. Graul, Electron Beam Pumped Nitride Vertical Cavity Surface Emitting Structures with AlGaN/AIN DBR mirrors, Phys. Stat. Sol. (a),194,428 (2002).
    [66]Takao Someya, Ralph Werner, Alfred Forchel, Massimo Catalano, Roberto Cingolani, and Yasuhiko Arakawal, Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities, Science,285,1906 (1999).
    [67]Y. K, Song, M. Diagne, H. Zhou, A. V. Nurmikko, R. P. Schneider. Jr. and T. Takeuchi, Resonant-cavity InGaN quantum-well blue light-emitting diodes, Appl. Phys. Lett.,77,1744 (2000).
    [68]Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider. Jr. C. P. Kuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser, Appl. Phys. Lett.,76,1662 (2000).
    [69]M. Diagne, Y. He, H. Zhou, E. Makarona, A. V. Nurmikko, J. Han, K. E. Waldrip, J. J. Figiel, T. Takeuchi and M. Krames, Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction, Appl. Phys. Lett.,79,3720 (2001)
    [70]S. Kako, T. Someya, and Y. Arakawa, Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser, Appl. Phys. Lett.,80,722 (2002).
    [58]Danae Delbeke, Ronny Bockstaele, Peter Bienstman, Roel Baets, and Henri Benisty, High-Efficiency Semiconductor Resonant-Cavity Light-Emitting Diodes:A Review, IEEE J. Sel. Topics in Quantum Electron.,8 (2),189 (2002).
    [71]H. Ishikawa, K. Asano, B. Zhang, T. Egawa, and T. Jimbo, Improved characteristics of GaN-based light-emitting diodes by distributed Bragg reflector grown on Si, Phys. Stat. Sol. (a),201 (12),2653 (2004).
    [72]H. P. D. Schenk, R. Czernecki, K. Krowicki, G Targowski, S. Grzanka, M. Krysko, P. Prystawko, P. Wisniewski, M. Leszczynski, H. Teisseyre, G. Franssen, J. Muszalski, T. Suski, and P. Perlin, Group Ⅲ-nitride distributed Bragg reflectors and resonant cavities grown on bulk GaN crystals by metalorganic vapour phase epitaxy, Phys. Stat. Sol. (c),1,1537 (2004).
    [73]R. Butte, G. Christmann, E. Feltin, J. F. Carlin, M.Mosca, M. Ⅱegems, and N. Grandjean, Room-temperature polariton luminescence from a bulk GaN microcavity, Phys. Rev. B,73,033315 (2006).
    [74]K. Kishino, M. Yonemaru, A. Kikuchi, and Y. Toyoura. Resonant-cavity enhanced UV metal-semiconductor-metal (MSM) photodetectors based on AlGaN system, Phys. Stat. Sol. (a),188,321 (2001).
    [75]M. Yonemaru, A. Kikuchi, and K. Kishino, Improved responsivity of AlGaN-based resonant cavity-enhanced UV photodetectors grown on sapphire by RF-MBE, Phys. Stat. Sol. (a),192,292 (2002).
    [76]Necmi Biyikli, Tolga Kartaloglu, Orhan Aytur, Ibrahim Kimukin and Ekmel Ozbay, High-speed visible-blind resonant cavity enhanced AlGaN Schottky photodiodes, MRS Internet J. Nitride Semicond. Res.,8,8 (2003).
    [77]Necmi Biyikli, Ibrahim Kimukin, Bayram Butun, Orhan Aytur, and Ekmel Ozbay, ITO-Schottky photodiodes for high-performance detection in UV-IR spectrum, IEEE J. Sel. Topics in Quantum Electron.,10,759 (2004).
    [78]Katsumi Kishino, M. Selim Unlii, Jen-Inn Chyi, J. Reed, L. Arsenault, and Hadis Morkoc. Resonant cavity-enhanced (RCE) photodetectors, IEEE J. Quantum Electron.,27,2025 (1991).
    [79]M. Selim Unlu, and Samuel Strite, Resonant cavity enhanced photonic devices, J. Appl. Phys.,78,607 (1995).
    [80]M. K. Emsley, O. Dosunmu, and M. S. Unlii, IEEE Photon. Technol Lett.,14, 519(2002)
    [81]Ekmel Ozbay, Ibrahim Kimukin, Necmi Biyikli, Orhan Aytiir, Mutlu Gokkavas, Gokhan Ulu, M. Selim Unlu, Richard P. Mirin, Kris A. Bertness, and David H. Christensen. High-speed>90% quantum-efficiency p-i-n photodiodes with a resonance wavelength adjustabe in the 795-835 nm range. Appl. Phys. Lett.,74, 1072 (1999).
    [82]T. Knodl, H. K. H. Choy, J. L. Pan, R. King, T. Jager, G Lullo, J. F. Ahadian, R. J. Ram, C. G Fonstad, Jr., and K. J. Ebeling. RCE Photodetectors based on VCSEL structures. IEEE Photon. Technol. Lett.,11,1289 (1999).
    [83]M. Gokkavas, O. Dosunmu, M. S. Unlu, G Ulu, R. P. Mirin, D. H. Christensen, and E. Ozbay. High-speed high-efficiency large-area resonant cavity enhanced p-i-n for multimode fiber communications. IEEE Photon. Technol. Lett.,13, 1349 (2001).
    [78]Katsumi Kishino, M. Selim Unlu, Jen-Inn Chyi, J. Reed, L. Arsenault, and Hadis Morkoc, Resonant Cavity-Enhanced (RCE) Photodetectors, IEEE J. Quantum Electron.,27,2025 (1991).
    [79]M. Selim Unlu and Samuel Strite, Resonant cavity enhanced photonic devices, J. Appl. Phys.,78 (2),607 (1995).
    [84]A. G Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, High quantum efficiency long-wavelength InP/InGaAs microcavity photodiode, Electron. Lett., 27(23),2125-2127 (1991).
    [85]M. Asif Khan, J. N. Kuznia, J. M. Van Hove and D.T. Olson, Reflective filters based on single-crystal GaN/AlxGal-xN multilayers deposited using low-pressure metalorganic chemical vapor deposition, Appl. Phys. Lett.,59, 1449 (1991).
    [86]E. Feltin, J. F. Carlin, J. Dorsaz, G Christmann, R. Butte, M. Laugt, M. Ilegems and N. Grandjean, Crack-free highly reflective AlInN/AlGaN Bragg mirrors for UV applications, Appl. Phys. Lett.,88,051108 (2006).
    [87]G. Kipshidze, V. Kuryatkov, K. Choi, Iu. Gherasoiu, B. Borisov, S. Nikishin, M. Holtz, D. Tsvetkov, V. Dmitriev, and H. Temkin, AIN/AlGaN Bragg Reflectors Grown by Gas Source Molecular Beam Epitaxy, Phys. Stat. Sol. (a),188,881 (2001).
    [88]F. Semond, N. Antoine-Vincent, N. Schnell, G Malpuech, M. Leroux, J. Massies, P. Disseix, J. Leymarie, and A. Vasson, Growth by Molecular Beam Epitaxy and Optical Properties of a Ten-Period AlGaN/AlN Distributed Bragg Reflector on (111)Si, Phys. Stat. Sol. (a),183,163 (2001).
    [89]F. Fedler, H. Klausing, R. J. Hauenstein A. Ponce, S. I. Molina, O. Semchinova, J. Aderhold, and J. Graul, High Reflectivity AlGaN/AlN DBR Mirrors Grown by PA-MBE, Phys. Stat. Sol. (c),0,258 (2002).
    [90]T. Wang, R. J. Lynch, P. J. Parbrook, R. Butte, A. Alyamani, D. Sanvitto, D. M. Whittaker and M. S. Skolnick, High-reflectivity AlxGal-xN/AlyGal-yN distributed Bragg reflectors with peak wavelength around 350 nm, Appl. Phys. Lett.,85,43 (2004).
    [91]O. Mitrofanov, S. Schmult, M. J. Manfra, T. Siegrist, N. G Weimann, A. M. Sergent, and R. J. Molnar, High-reflectivity ultraviolet AlGaN/AlGaN distributed Bragg reflectors, Appl. Phys. Lett.,88,171101 (2006).
    [92]X. L. Ji, R. L. Jiang, B. Liu, Z. L. Xie, J. J. Zhou, L. Li, P. Han, R. Zhang, Y. D. Zheng, J.G Zheng, Phys. Stat. Sol (a),205,1572 (2008)
    [93]X. L. Ji, R. L. Jiang, Z. L. Xie, B. Liu, J. J. Zhou, L. Li, P. Han, R. Zhang, Y. D. Zheng, H.M. Gong, Chin. Phys, Lett.,24,1735 (2007)
    [94]B. Liu, R. Zhang, J. G Zheng, X. L. Ji, D. Y. Fu, Z. L. Xie, D. J. Chen, P. Chen, R. L.Jiang, Y. D. Zheng, Appl. Phys. Lett.,98,261916 (2011)
    [1]C. G Liang, J. Zhang, GaN Dawn of 3rd Generation Semiconductors. Chin. J Semicond,20(2) 89-90 (1999)
    [2]R. Dwilinski, R. Doradzi ski, J. Garczy ski, L. Sierzputowski, J. M. Baranowski, M. Kamiska, Mater. Sci. Eng. B,50,46 (1997)
    [3]李瑶,高Al组分AlGaN薄膜的分子束外延生长及其表征,重庆师范大学硕士学位论文,2012
    [4]尚景智,AlInGaN薄膜及GaN基DBR的生长和特性研究,厦门大学硕士学位论文,2009
    [5]许振嘉,半导体检测与分析[M].北京,科学出版社,2007
    [6]H.Y. Joo, H. J. Kim, S. J. Kim, et al. Spectrophotometric analysis of aluminum nitride thin films. J. Vac. Sci. Technol. A,17(3),862-870 (1999)
    [7]D. J. Jones, R. H. Frech, H. Mullejans, et al. Optical properties of AlN determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry data. J. Mater. Res.,14(11),4337-4344 (1999)
    [8]A. Majid, A. Ali, J. Zhu. Temperature dependence of absorption edge in MOCVD grown GaN. J. Mater. Sci.:Mater. Electron,18,1229-1233 (2007)
    [9]赵墨田,曹永明,陈刚,无机质谱概论,化学工业出版社,2006
    [1]H. A. Macleod, Thin Film Optical Filters, Macmillan, New York, ed.2 (1986).
    [2]R. M. A. Azzam, and N. M. Bashara,Ellipsometry and polarized light, North Holland Publ. Co., Amsterdam (1977)
    [3]姬小利,AlGaN基共振腔增强型紫外光电探测器的研究,南京大学博士论文,p15(2007)
    [4]D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Ho'pler, R. Dimitrov, O. Ambacher,and M. Stutzmann, J. Appl. Phys.,82(10),5090 (1997)
    [5]M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford,1984), Chap2.
    [6]T. Aschenbrenner, H. Dartsch, C. Kruse, M. Anastasescu, M. Stoica, M. Gartner, J. Appl. Phys.108,063533 (2010)
    [7]L. F. Jiang, W. Z. Shen, and Q. X. Guo, J. Appl. Phys.,106,013515 (2009)
    [8]唐晋发,郑权,应用薄膜光学(第一版).上海:上海科学与技术出版社,1984.49-51.
    [1]罗江财,Ⅲ-Ⅴ族三元半导体异质外延层组分的X射线测定,半导体光电,1(94),9-12(1984).
    [2]L. Tapfer, and K. Ploog. X-ray interference in ultrathin epitaxial layer:A versatile method for thestructural analysis of single quantum wells and heterointerfaces. Phys. Rev. B,40(14),9802-9810 (1989).
    [3]杜晓松等,外延薄膜X射线表征方法的新进展,功能材料,1(36),1-5(2005).
    [4]A. Minj, D. Cavalcoli, and A. Cavallin, Appl. Phys. Lett.97,132114 (2010).
    [5]姜力,吴苍生,王玉田等,MBE [(AlxGa1-xAs)l(GaAs)m]n/GaAs (100)超晶格参数的X参数双晶衍射测量研究.半导体学报,10(2),86-92(1989).
    [6]王向武,程契祥,短周期AlGaAs/GaAs超晶格的MOCVD生长及X射线衍射研究,固体电子学研究和进展,20(2),212-215(2000).
    [7]Y. Takeda and M. Tabuchi. X-ray characterization of epitaxial layers. Advances in Crystal Growth Research,320-336 (2001).
    [8]H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. H□pler, T. Metzger, E. Born, G Dollinger, A. Bergmaier, S. Karsch, and H.-J. K□rner, Appl. Phys. Lett.,71,1504 (1997).
    [9]L.Vegard, Zeit.f. Physik,5,17 (1921).
    [10]T. Sasaki and S. Zembutsu, J. Appl. Phys.,61,2533 (1987).
    [11]P. F. Fewster and C. J. Curling. Composition and lattice-mismatch measurement of thinsemiconductor layers by x-ray diffraction. J. Appl. Phys.,62(10), 4154-4158(1987).
    [12]N. Darowski, U. Pietsch, K. H. Wang, et al. X-ray diffraction analysis of strain relaxation instanding and buried GaAs/GalnAs/GaAS SQW lateral structures, Thin Solid Films,236,271-276 (1998).
    [13]M. Quillec. L. Goldstein. G Le Roux, et al. Growth conditions and characterization of InGaAs/GaAs strained layers superlattices, J. Appl. Phys., 55(8) 2904-2909 (1984).
    [14]王玉川,李成基,任庆余,MBE InxGa1-xAs/GaAs(001)系统晶格失配的研究,半导体学报,10(8),637-639(1989).
    [1]G Kipshidze, V. Kuryatkov, K. Choi, L. Gherasoiu, B. Borisov, S. Nikishin, M. Holtz, D. Tsvetkov, V. Dmitriev, H. Temkin, Phys. Stat. Sol.188,881 (2001).
    [2]F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, B. Damilanob, High-Al-content crack-free AlGaN/GaN Bragg mirrors grown by molecular-beam epitaxy, Appl. Phys. Lett.82(4),499 (2003).
    [3]J. Ristic, E. Calleja, Fernandez Garrido S, A. Trampert, U. Jahn, K. H. Ploog, M. Povoloskyi, A. Di Carlo, GaN/AlGaN nanocavities with AIN/GaN Bragg reflectors grown in AlGaN nanocolumns by plasma assisted MBE, Phys. Stat. Sol. (a),202,367-371 (2005).
    [4]赵红东,宋殿友,孙静,孙梅,温幸饶,武一,张智峰,物理学报,53,118(2004).
    [5]冯倩,王峰祥,郝跃,物理学报,53,62(2004).
    [6]郑泽伟,沈波,桂永胜,仇志军,唐宁,蒋春萍,张荣,施毅,郑有炓,郭少令,褚君浩,物理学报,53,272(2004).
    [7]E. Feltin, J.F. Carlin, J. Dorsaz, G. Christmann, R. Butte, M. Laugt, M.Ilegems, and N. Grandjean, Appl. Phys. Lett.,88,051108 (2006).
    [8]Z. T. Chen, S. X. Tan, Y. Sakai, and T. Egawa, Appl. Phys. Lett.,94,213504 (2009).
    [9]H. H. Yao, C. F. Lin, H. C. Kuo and S. C. Wang, J. Crystal Growth,151-156,262 (2004).
    [10]A. Bhattacharyya, S. Iyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, and T. D. Moustakas, J. Vac. Sci. Technol. B,20,1229 (2002).
    [11]J. Kuzmik, IEEE Electron Device Lett.22,510 (2001).
    [12]R. Butte, J. F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H. J. Buehlmann, S. Christopoulos, G Baldassarri Hoger von Hogersthal, A. J. D. Grundy, M. Mosca, C. Pinquier, M. A. Py, F. Demangeot, J. Frandon, P. G Lagoudakis, J. J. Baumberg, and N. Grandjean, J. Phys. D:Appl. Phys.40,6328 (2007).
    [13]Fewster Paul F. Semicond Sci. Technol,8,1915(1993).
    [14]J. M. Gaines, P. M. Petroff, H. Kroemer et al, J Vac Sci Technol B,6(4),1378 (1988).
    [15]Tung-Sheng Yeh, Jenn-Ming Wu, Wen-How Lan. The effect of A1N buffer layer on properties of AlxIn1-xN films on glass substrates. Thin Solid Films,517,3204 (2009).
    [16]M. J. Lukitsch, Y. V. Danylyuk, V. M. Naik, et al. Optical and electrical properties of Al1-xInxN films grown by plasma source molecular-beam epitaxy. Appl. Phys. Lett.,79,632 (2001).
    [17]T. Seppanen; P. O. A. Persson, L. Hultman, J. Birch, G. Z. Radnoczi, Magnetron sputter epitaxy of wurtzite Al1-xInxN(0.1    [18]Q. X. Guo, Y. Okazaki, Y. Kume, et al. Reactive sputter deposition of AlInN thin films. J. Cryst. Growth,300(1),151-154 (2007).
    [19]Tung-Sheng Yeh, Jenn-Ming Wu, Wen-How Lan. Electrical properties and optical bandgaps of AlInN films by reactive sputtering. J. Cryst. Growth,310, 5308 (2008).
    [20]Takao Fujimori, Hitoshi Imai, Akihiro Wakahara, et al. Growth and characterization of AlInN on AlN template. J. Cryst. Growth,272,381 (2004).
    [21]Amano C, Tateno K, Takenouchi H et al. J. Cryst. Growth,193,460 (1998).
    [22]P. F. Fewster, J. Phys. D:Appl. Phys.,26,14 (1993).
    [23]J.-F. Carlin and M. Ilegems, Appl. Phys. Lett.,83,668 (2003).
    [24]E. Feltin, D. Simeonov, J.F. Carlin, R. Butte, and N. Grandjea, Appl. Phys. Lett., 90,021905 (2007).
    [25]B. Neubauer, A. Rosenauer, D. Gerthsen, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett.,73,930 (1998).
    [26]A. Minj, D. Cavalcoli, and A. Cavallin, Appl. Phys. Lett.,97,132114 (2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700