紫外光通信系统传输特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光通信具有保密性高、全方位性好、抗干扰能力强等优点,是在要求“无线电静默”条件下进行通信的有效方法,在战术通信中具有重要的应用价值。建立三维的紫外光散射传输信道模型对于研究非视线紫外光通信的传输特性,以及紫外光通信系统的总体设计和分析、性能评估等有重要意义。本论文针对非视线斜程传输、绕障碍传输三维环境下紫外光传输特性问题等进行了研究。主要研究内容如下:
     一、建立了三维紫外光通信传输模型。已有的模型侧重紫外光通信系统接收端与发射端位于同一水平高度,在传输理论分析中不含有高度影响因素分析,且对障碍物通信环境考虑不足。本论文基于多次散射理论,运用蒙特卡洛方法,建立了三维紫外光传输信道模型,有效解决了如何分析复杂环境下紫外光传输特性的困难。
     二、根据建立的三维模型,重点分析了发射端与接收端之间斜程传输、无共同散射体以及绕障碍物传输特性,主要包括紫外光信号的脉冲展宽、能量密度、散射次数、传输损耗以及误码率等特性。紫外光通信系统从共同散射体情况变化到无共同散射体情况,接收光强减小3~5个数量级。脉冲响应宽度、接收光强、平均散射次数与距离成指数关系。斜程传输时应减小发射端和接收端之间的高度差,以利于减小平均散射次数,从而增加接收光强。紫外光绕障碍传输时,障碍物越高,最佳发射仰角和接收仰角增大;发射离障碍物越近,最佳接收距离越远,发射端距障碍物的距离从80m变到30m时,障碍物另一侧接收端的最佳接收距离从1m变到50m(障碍物高度80m)。并搭建了室外实验,验证了模拟结果。
     三、研究了全双工紫外光通信技术和多用户通信网络的连通性与互干扰。基于中心节点圆环面积泊松分布的节点模型,研究了紫外光网络互干扰与连通性。随着节点密度增加(从10/km~2增加到50/km~2),通信用户数增加,使得信噪比降低(从21.2dB降到2.4dB);减小发射功率可以降低干扰(功率从10W减小到1W),从而提高信噪比(从2.4dB提高到15.5dB)。但减小发射功率,增加了每个节点的路由跳数,这会带来网络延时和降低网络连通性。功率分别为10W和4W时,网络1-连通性分别为0.90和0.03。误码率越小(从10-3提高到10-6),连通性越差(1-连通性从0.99降低到0.78)。根据无共同散射体传输损耗结论,分析了空分复用技术实现全双工紫外光通信的可行性。传输距离越远,越小的接收仰角更适合全双工通信,当通信距离为200m,接收仰角小于61°时,可实现全双工通信;而当距离为500m时,接收仰角小于37°。
     本文的研究结论对紫外光通信系统的总体设计和分析、性能评估等有重要的指导意义。
Ultraviolet(UV) communication has the advantanges like high secrecy, gooddirection and strong anti-jamming, it is the efficient method to communicate under thecondition of "wireless silence", and has important application value in tacticalcommunication. It can provide important guidance to set up the three-dimensionalscattering propagation model of UV for the propagation characrteristics ofnon-line-of-sight UV communication, the overall design, analysis and performanceevaluation of UV communication system. This paper studies the propagationcharacteristics of UV under three-dimensional environment like non-line-of-sight slantpropagation and round-obstacle propagation. The main contents of this paper are shownas follows:
     1. The three-dimensional propagation model of UV communication has been set up.The transmitter and the receiver of the UV communication system in the existing modelare in the same altitude, and complex communication environment is not been fullyconsidered. Three-dimensional propagation model of UV communication is set up inthis paper based on multiple-scatter theory and Monte-Carlo method, and this model isappropriate for the study of propagation characteristics under complex environment.
     2. Based on the three-dimensional model, the propagation characterisitics of slantpath, non-common volume and round-obstacle propagation are studied, which includedthe full-width half-maximum(FWHM) of the pulse, energy density, scattering count,propagation loss and bit error rate. If the UV communication system varies fromcommon scattering volume to non-common scattering volume, the detecting lightdensity dimishes about3~5degrees, FWHM, the detecting light density, the averagescattering count are proportional to the range. The difference of the vertical altitudes ofthe transmitter and the receiver shall be as small as possible if slant path is unavoidable.The best transmitting and receiving elevation angles are determined by the height of theobstacle and the FOVs of the system; the best range of the receiver to the obstacle variesfrom1m to50m as long as the range of the transmitter to the obstacle varies from80mto30m (the height of the obstacle is80m): smaller the range of the transmitter to theobstacle, bigger the range of the receiver to the obstacle. The simulation resultsmentioned above are validated by outdoor experiment.
     3. The full-duplex UV communication and the connectivity, mutual interference ofmultiple-user communication network are studied. The possibility of full-duplex UVcommunication based on space-resue is analyzed based on the conclusions ofnone-common scattering propagation. The small elevation angle of the receiver is morefit for full-duplex communication, full-duplex communication can be achieved when therange is200m and the elevation angle of the receiver is smaller than61°(when the range is500m, the elevation angle is37°). The mutual interference and connectivity of UVcommunication network are studied based on the Poisson distribution model of nodes.When density of the nodes increases (from10/km~2to50/km~2), the signal-to-noisedecreases (from21.2dB to2.4dB). When the power of source decreases (from10W to1W), the SIN increases (from2.4dB to15.5dB). But the network delay will increase andthe network connectivity will decrease. The1-connectivity of the UV communicationnetwork will decrease from0.90to0.03as long as the decreasing of the power from10W to4W. The bit error rate varies from10-3to10-6, the1-connectivity decreases from0.99to0.78.
     The conclusions of this paper can provide good guidance of the overall design,analysis and performance evaluation of UV communication system.
引文
[1] Hulburt. Experiments with Sensitive Detectors of Ultra-Violet and Infra-RedRadiations[C].1939. Washington, DC.
    [2] F.Hanson P.Poirier. Intracavity frequency doubling of a2.5-KHz pulsed Ti:Al2O3[J]. Optics Letters,1993.
    [3] Lapatovich. UV source for high data rate secure communication. U. S. Patent.5191460,1994.
    [4] James Hatton. Convert communication system using ultraviolet light. U. S.Patent.856693,1992.
    [5] Geller. Multi-channel Covert Non-line-of-sight UV communication. U. S.Patent.5301051,1994.
    [6] G. A. Shaw,A. M. Siegel, et al. Extending the range and performance ofnon-line-of-sight ultraviolet communication links[M]. Unattended Ground, Sea, andAir Sensor Technologies and Applications VIII, ed. E. M. Carapezza. Vol.6231.2006.
    [7] Sadler Brian M Xu Zhengyuan. Ultraviolet Communications: Potential andState-of-the-Art[J]. IEEE Communications Magazine,2008: p.68-73.
    [8] G. Chen,F. Abou-Galala, et al. Experimental evaluation of LED-based solarblind NLOS communication links[J]. Optics Express,2008.16(19): p.15059-15068.
    [9] G. Chen,Z. Y. Xu, et al. Path loss modeling and performance trade-off study forshort-range non-line-of-sight ultraviolet communications[J]. Optics Express,2009.17(5): p.3929-3940.
    [10] H. P. Ding,G. Chen, et al. Modeling of Non-Line-of-Sight UltravioletScattering Channels for Communication[J]. Ieee Journal on Selected Areas inCommunications,2009.27(9): p.1535-1544.
    [11]刘榴娣,倪国强, et al.紫外线的应用、探测及其新发展[J].光学技术,1998(02).
    [12]蓝天,倪国强.紫外通信的大气传输特性模拟研究[J].北京理工大学学报,2003(04): p.419-423.
    [13]于晓娜,李霁野, et al.新型紫外光通信系统调制解调器的FPGA实现[J].光通信技术,2009(12): p.14-16.
    [14]罗畅,李霁野, et al.无线紫外通信信道分析[J].激光与光电子学进展,2011(04): p.31-36.
    [15]李霁野,邱柯妮.紫外光通信在军事通信系统中的应用[J].光学与光电技术,2005(04): p.19-21.
    [16]李霁野,邱柯妮, et al.自由大气紫外光通信中几类光源的比较和研究[J].光通信技术,2006(09): p.56-57.
    [17]庞华伟,刘天山.紫外光通信及其军事应用[J].云南大学学报(自然科学版),2005(S2): p.194-196.
    [18]曹付允,徐军, et al.紫外激光通信中PPM与Turbo联合编码调制研究[J].应用光学,2007(02): p.201-204.
    [19]田培根,王平, et al.紫外光散射通信接收技术研究[J].光通信技术,2006(09): p.62-64.
    [20]刘新勇,鞠明.紫外光通信及其对抗措施初探[J].光电技术应用,2005(05):p.7-9.
    [21]王普才,吴北婴.紫外辐射传输模式计算与实际测量的比较[J].大气科学,1999.23(3): p.359-365.
    [22]冯涛,陈刚, et al.非视线光散射通信的大气传输模型[J].中国激光,2006(11): p.1522-1526.
    [23]冯涛,陈刚, et al. Multipath dispersion of pulse signals in a non-line-of-sightoptical scattering channel[J]. Chinese Optics Letters,2006(11): p.633-635.
    [24]刘宇,肖沙里, et al.紫外光通讯调制解调系统[J].光电子技术,2006(04): p.264-266+271.
    [25]肖沙里,徐东镪, et al.基于AMBE-2000~(TM)的日盲紫外光语音系统的设计[J].光电子技术,2007(01): p.55-58.
    [26]苟加志,肖沙里.紫外光技术及其在自由空间光通信中的应用[J].重庆工商大学学报(自然科学版),2008(06): p.603-606+623.
    [27]汪科,肖沙里, et al.紫外光通信系统关键技术研究[J].计算机测量与控制,2005(12): p.1412-1415.
    [28]雷小明.日盲紫外自由空间通信调制系统的研究[D].重庆大学,2008.
    [29]于晓冬,赵太飞, et al.基于单LED的无线紫外光通信系统设计与实现[J].电子设计工程,2011(11): p.23-25+28.
    [30]柯熙政,何华, et al.一种新的紫外光自组织通信网络MAC层避退算法[J].光电子.激光,2010(07): p.1002-1006.
    [31]赵太飞,柯熙政, et al.大气日盲紫外无线光组网技术研究[J].光通信技术,2010(07): p.50-53.
    [32]赵太飞,冯艳玲, et al.“日盲”紫外光通信网络中节点覆盖范围研究[J].光学学报,2010(08): p.2229-2235.
    [33]方靖岳,张海良, et al.非视线散射大气光通信的光学天线[J].应用光学,2008.29(2): p.198-202.
    [34]方靖岳,常胜利, et al.基于复合抛物面聚光器的光通信接收天线[J].光电工程,2009.36(9): p.87-91.
    [35]贾红辉,尹红伟, et al.低压汞灯辐射禁锢效应的实验研究[J].大学物理实验,2008.21(3).
    [36]尹红伟.热阴极低压汞灯紫外光源调制技术研究[D].长沙:国防科学技术大学,2005.
    [37]徐素芝,常胜利, et al.大气光散射通信紫外滤光片技术研究[J].光通信技术,2007(08): p.58-60.
    [38] Zhang Hailiang,Jia HongHui, et al. The Optimization of Solar Blind UV HighReflectance Coatings[C]. SPIE.2007.
    [39]冯治,贾红辉, et al.强噪声中的光散射通信信号检测[J].光学技术,2010.36(4): p.607-612.
    [40]张海良,贾红辉, et al.空分复用技术在非视线紫外光通信组网中的应用
    [C].全国先进光学制造技术与战略新兴产业发展论坛暨学术会议.2011.成都.
    [41] Mark R. Luettgen,Jeffrey H. Shapiro, et al. Non-line-of-sight single-scatterpropagation model[J]. Journal of the Optical Society of America,1991.8(12): p.1964-1972.
    [42] David M Reilly,Cardinal Warde. Temporal characteristics of single-scatterradiation[J]. Journal of the Optical Society of America,1979.69(3): p.464-470.
    [43] G. A. Shaw,M. Nischan, et al. NLOS UV communication for distributedsensor systems,2000. p.83-96.
    [44] G. A. Shaw,M. Nischan. Short-range NLOS ultraviolet communication testbed and measurements,2001. p.31-40.
    [45]冯涛,陈刚, et al.非视线光散射通信的大气传输模型[J].中国激光,2006.33(11): p.1522-1526.
    [46]冯涛,陈刚, et al.非视线紫外光散射通信的信道特性[J].红外与激光工程,2006.35(z2): p.226-230.
    [47]汪俊良,罗挺, et al.紫外光非视距通信大气信道模拟与分析[J].计算机工程与科学,2009(06): p.156-158.
    [48]姚丽,李霁野.大气紫外光近距离通信的研究[J].大气与环境光学学报,2006(05): p.135-139.
    [49]刘润彬,李霁野.新型紫外光非视距通信系统信道估计的研究[J].光通信研究,2011(01): p.31-33.
    [50]徐智勇,沈连丰, et al.无线光通信中紫外散射传播特性的研究[J].光通信技术,2009(11): p.56-59.
    [51]徐智勇,沈连丰, et al.紫外散射通信实验系统及其性能分析[J].东南大学学报(自然科学版),2009(06): p.1087-1092.
    [52]陈君洪,杨小丽.非视线“日盲”紫外通信的大气因素研究[J].激光杂志,2008(04): p.38-39.
    [53]丁莹,佟首峰, et al.大气信道对垂直发收模式紫外光散射通信性能影响的仿真[J].光子学报,2010(10): p.1851-1856.
    [54]何华,柯熙政, et al.紫外光非视距单次散射链路模型的研究[J].光学学报,2010(11): p.3148-3152.
    [55] H. W. Yin,H. H. Jia, et al. Vectorized polarization-sensitive model ofnon-line-of-sight multiple-scatter propagation[J]. Journal of the Optical Society ofAmerica a-Optics Image Science and Vision,2011.28(10): p.2082-2085.
    [56] L. J. Wang,Z. Y. Xu, et al. Non-line-of-sight ultraviolet link loss innoncoplanar geometry[J]. Optics Letters,2010.35(8): p.1263-1265.
    [57] L. Wang,Z. Xu, et al. An approximate closed-form link loss model fornon-line-of-sight ultraviolet communication in noncoplanar geometry[J]. Optics Letters,2011.36(7): p.1224-1226.
    [58] Mohamed A. Elshimy,Steve Hranilovic. Non-line-of-sight single-scatterpropagation model for noncoplanar geometries[J]. Journal of the Optical Society ofAmerica a-Optics Image Science and Vision,2011.28(3): p.420-428.
    [59] Z. Y. Xu,H. P. Ding, et al. Analytical performance study of solar blindnon-line-of-sight ultraviolet short-range communication links[J]. Optics Letters,2008.33(16): p.1860-1862.
    [60] H. W. Yin,S. L. Chang, et al. Analytical model of non-line-of-sightsingle-scatter propagation[J]. Journal of the Optical Society of America a-Optics ImageScience and Vision,2010.27(7): p.1505-1509.
    [61]倪国强,钟生东, et al.自由大气紫外光学通信的研究[J].光学技术,2000(04): p.297-303.
    [62]张建勇,钟生东.紫外线技术在军事工程技术中的应用[J].光学技术,2000(04): p.308-312.
    [63]吴北婴.大气辐射传输实用算法[M].1989,北京:气象出版社.
    [64] C. Lavigne,A. Roblin, et al. Experimental and theoretical studies of theaureole about a point source that is due to atmospheric scattering in the middleultraviolet[J]. Applied Optics,2005.44(7): p.1250-1262.
    [65]贾红辉,常胜利, et al.大气光通讯中基于蒙特卡罗方法非视线光传输模型[J].光电子·激光,2007.18(6): p.690-694.
    [66]徐志军,王平.基于蒙特卡罗方法的多散射修正模型[J].海军工程大学学报,2010(01): p.50-55+61.
    [67]邵铮铮,常胜利, et al.非视线紫外光信号传输时间特性的数值模拟[J].光学与光电技术,2006.4(6): p.18-20.
    [68]朱孟真.基于离散坐标方法的紫外光大气传输特性研究[D].2007.
    [69]何新,杨俊才, et al.天气对光散射传输影响的仿真分析[J].光学技术,2009(01): p.56-59.
    [70]何新,贾红辉, et al.多次散射情况下非视线光传输的模拟[J].光学精密工程,2009(02): p.246-250.
    [71]叶瑞泉,常胜利, et al.紫外光非视线大气传输的实验研究[J].仪器仪表学报,2006(S2): p.1307-1308.
    [72]岳衢,贾红辉, et al.非视线紫外光大气传输模型的建立及验证[J].光学技术,2009.35(6): p.890-894.
    [73]贾红辉,常胜利, et al.单次散射近似研究非视线光传输中的误差[J].光学精密工程,2007(01): p.40-44.
    [74]盛裴轩,毛节泰等.大气物理学[M].2003,北京:北京大学出版社.
    [75]邱金桓,陈洪滨.大气物理与大气探测学[M].2005:气象出版社.
    [76]石广玉.大气辐射学[M].2007,北京:科学出版社.
    [77] E. J.麦卡特尼.大气光学分子和粒子散射[M].1988,北京:科学出版社.
    [78] Max Born,Emil Wolf. Principles of optics: electromagnetic theory ofpropagation, interference and diffraction of light[M].7th expanded ed.1999,Cambridge; New York: Cambridge University Press. xxxiii,952p.
    [79] H. C. van de Hulst. Light scattering by small particles[M].1981, New York:Dover Publications.470p.
    [80] J. S. Lee R. R. Meier, and D. E. Anderson. Atmospheric scattering of middleUV radiation from an internal source[J]. Appl. Opt.,1978.17: p.10.
    [81] Dominique Toublanc. Henyey-Greenstein and Mie phase functions in MonteCarlo radiative transfer computations[J]. APPLIED OPTICS,1996.17(20): p.3270-3274.
    [82] Joseph G. Shanks William M. Cornette. Physically reasonable analyticexpression for the single-scattering phase function[J]. APPLIED OPTICS,1992.31(16):p.3152-3160.
    [83] C. Lavigne,G. Durand, et al. Ultraviolet light propagation under low visibilityatmospheric conditions and its application to aircraft landing aid[J]. Applied Optics,2006.45(36): p.9140-9150.
    [84]谈和平,夏新林, et al.红外辐射特性与传输的数值计算——计算热辐射学
    [M].2006,哈尔滨:哈尔滨工业大学出版社.
    [85]彭惠民.等离子体中辐射输运和辐射流体力学[M].2008,北京:国防工业出版社.
    [86]黄洽祖,丁鄂江.输运理论[M].2007,北京:科学出版社.
    [87] Leonble J. Radiative Transfer in Scattering and Absorbing Atmospheres:Standard Computational Procedures[M].1985, Hampton, Virginia: A. DeeparkPublishing.
    [88] Knut Stamnes,S-Chee Tsay, et al. Numerically stable algorithm fordiscrete-ordinate-method radiative transfer in multiple scattering and emitting layeredmedia[J]. APPLIED OPTICS,1988.27(12): p.2502-2509.
    [89] Travis L D Hansen J E. Light Scattering in plancetaryatmospheres[J]. SpaceScience Reviews,1974.16: p.527~610.
    [90] Jun S. Liu. Monte Carlo strategies in scientific computing[M]. Springer seriesin statistics.2001, New York: Springer. xvi,343p.
    [91] Malvin H. Kalos,Paula A. Whitlock. Monte Carlo methods[M].2008, NewYork: WILEY-VCH. v.<1-> Edition Second Revised and Enlarged Edition.
    [92] Christiane Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling[M].2009,New York: Springer.
    [93] H. W. Yin,S. L. Chang, et al. Non-line-of-sight multiscatter propagationmodel[J]. Journal of the Optical Society of America a-Optics Image Science and Vision,2009.26(11): p.2466-2469.
    [94] Hai liang Zhang,Hong wei Yin, et al. The characterization of non-line-of-sightultraviolet communication in non-common-scattering volume[J]. OpticsCommunications,2012.285: p.1771-1776.
    [95] R. M. Gagliardi and S. Karp. Optical Communications[M].1995, New York:John Wiley&Sons.
    [96] Hai liang Zhang,Hong wei Yin, et al. Study of effects of obstacle onnon-line-of-sight ultraviolet communication links[J]. OPTICS EXPRESS,2011.19(22216-21226).
    [97] A. S. Zachor. Aureole radiance field about a source in a scattering absorbingmedium[J]. APPLIED OPTICS,1978.17: p.1911-1922.
    [98] G. Chen,Z. Y. Xu, et al. Experimental demonstration of ultraviolet pulsebroadening in short-range non-line-of-sight communication channels[J]. Optics Express,2010.18(10): p.10500-10509.
    [99] D.M. Reilly,D.T. Moriarty, et al. Unique properties of solar blind ultravioletcommunication systems for unattended ground sensor networks[C].2004.
    [100]柯熙政.紫外光自组织网络理论[M].2011:科学出版社.
    [101] Yiyang Li,Jianxi Ning, et al. UVOC-MAC: A MAC Protocol for OutdoorUltraviolet Networks[J].2011.
    [102] J. Kurose S. Vasudevan, and D. Towsley. On neighbor discovery inwireless networks with directional antennas[C]. IEEE INFOCOM.2005. Miami,USA.
    [103] M. Albuquerque G. Pei, J. Kim, D. Nast, and P. Norris. A neighbordiscoveryprotocol for directional antenna networks[C]. MILCOM.2005. Atlantic city, USA.
    [104] L. Wang Y. Li, Z. Xu, and S. V. Krishnamurthy. Neighbor discovery forultraviolet communication in non-coplanar geometry[J]. IEEE Journal on SelectedAreas in Communications,2011.
    [105] D. Kedar. Multiaccess interference in a non-line-of-sight ultraviolet opticalwireless sensor network[J]. Applied Optics,2007.46(23): p.5895-5901.
    [106]刘永振.无线自组织网络干扰模型和控制的研究[D].安徽:中国科学技术大学,2009.
    [107]李玉军.无线网络连通性及路由关键技术研究[D].成都:电子科技大学,2010.
    [108] B. Liu D. Goeckel, D. Towsley, L. Wang, C. Westphal. Asymptoticconnectivity properties of cooperative wireless ad hoe networks[J]. IEEE J. Sel. A.Commun.,2009.27: p.1226-1237.
    [109] C. Bettstetter, ed. On the minimum node degree and connectivity of awireless multihop network..2002, IEEE Computer Society: Switzerland.80-91.
    [110]周恩惠.无线Ad Hoc网络的连通性研究[D].西安:西安电子科技大学,2008.
    [111] Leijie Wang,Yiyang Li, et al. On connectivity of wireless ultravioletnetworks[J]. Journal of the Optical Society of America a-Optics Image Science andVision,2011.28(10): p.1970-1978.
    [112] M. D. Penrose. On k-connecfivity for a gcometrie random graph[J]. RandomStructures and Algorithms,1999.15: p.145-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700