新结构GaN基p-i-n型紫外探测器及其光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,GaN基p-i-n型紫外探测器以其天然的日盲特性和较快的响应速度受到了学者的广泛关注。GaN基材料具有介电常数小、电子饱和速度高、禁带宽度大等优点,在微波功率器件、光电器件等领域有广泛的应用。p-i-n型探测器具有暗电流低、响应速度快、零偏压条件下可使用等优点,在光电领域里占有举足轻重的地位。本文对GaN基p-i-n型紫外探测器进行了系统地研究,取得的主要研究成果如下:
     1、作为本论文的基础性工作和主要支撑工具,基于半导体经典物理和数值有限差分法,通过编写Matlab程序分别实现了GaN基同质结和异质结能带图及载流子分布的数值计算。对于GaN基同质结,通过载流子统计方程与泊松方程的自洽求解,得到了同质结能带图和载流子分布的数值计算方法。对于AlGaN/GaN异质结,通过数值自洽求解薛定谔-泊松方程,得到了计算异质结能带图和载流子分布的数值计算方法,并深入研究了极化效应对AlGaN/GaN异质结能带图和载流子分布的影响。通过与比较成熟的基于物理模型的Silvaco的仿真结果和他人计算结果的比对,证明了本文所建立数值模型的正确性。本文所建立的数值模型,既包含具体的物理意义,又能完全摆脱现有基于物理模型的仿真软件的限制,可以有效地把作者的思想通过物理模型加入到数值计算中,为深入研究一些新的物理机制提供可靠的数学工具。
     2、基于光生载流子屏蔽效应的物理机制,通过自洽求解泊松方程-载流子连续性方程,建立了光生屏蔽效应和光生寄生电容的数值模型。根据这两个模型分别计算讨论了光照对探测器响应时间和截止频率的影响,得出光生屏蔽效应和光生寄生电容对探测器的响应时间和截止频率有一定微扰作用,微扰作用的大小与耗尽区静电场、载流子寿命以及光照强度的大小有很大关系。计算结果表明,当器件耗尽区电场小于迁移率临界电场时,光生屏蔽电场使器件响应时间增加,截止频率减小,当器件耗尽区电场大于临界电场时,光生屏蔽电场使器件响应时间减小,截止频率增加;载流子寿命越大,光生屏蔽效应对探测器响应时间和截止频率的影响越大。但是随着载流子寿命增加到200ps以后,这种影响逐渐达到饱和;光照强度越大,光生屏蔽效应对探测器响应时间和截止频率的影响越大。但是当光照强度小于1W/cm2时,光生屏蔽效应对探测器响应时间和截止频率的影响非常小。在具体的应用领域,可以通过调节外加偏置电压调节器件耗尽区电场,使得耗尽区电场处于迁移率临界电场附近或者远大于临界电场处,减小光生屏蔽效应对器件响应速度和截止频率的影响;同时给探测器串联一个fF级的微小电容可以加快器件的响应速度,提高器件的截止频率,并且减小光生寄生电容对器件响应速度和截止频率的影响。
     3、基于极化效应对AlGaN/GaN异质结能带图的影响,设计了一种响应波段可调且具有双带响应特性的AlGaN/GaN异质结p-i-n型紫外探测器,采用数值计算方法模拟仿真了AlGaN层中的掺杂浓度、外加偏压以及极化弛豫度对探测器光电响应特性的影响。计算结果表明,在一定掺杂浓度和极化弛豫度条件下,通过调节外加偏压可以使AlGaN/GaN异质结p-i-n型紫外探测器从单带响应转换到双带响应,且AlGaN中的A1组份越大,掺杂浓度越小,极化弛豫度越小,响应特性发生转换时的临界电压越大,并且本文根据器件内部电荷分布得出了临界电压的计算表达式。此外,计算结果表明,为了减小探测器的响应时间,必须缩短AlGaN层的厚度或加大外置电压,尽量避免光生载流子到达电极过程中需要太长距离的扩散复合。该条件下,光生屏蔽效应对AlGaN/GaN异质结p-i-n型紫外探测器响应速度的影响也比较大。
     4、基于极化效应对AlGaN/GaN异质结能带图的影响,设计了一种响应波段可调的具有三带响应特性的AlGaN/AlGaN/GaN双异质结p-p-i-n型紫外探测器,并根据以上数值计算方法,计算讨论了外加偏压、各层AlGaN掺杂浓度以及Al组份对探测器光电响应特性的影响。计算结果表明,在A1组份和掺杂浓度条件下,受极化电荷的影响,通过调节外加偏压可以使AlGaN/AlGaN/GaN双异质结p-p-i-n型紫外探测器实现三带响应,并根据器件内部电荷分布,给出了这种探测器由双带响应转向三带响应的临界电压。在器件设计中,要求顶层AlGaN中的Al组份比底层AlGaN中的A1组份低,且各层中的A1组份越大,要求的掺杂浓度就越大,并且通过调节各层的Al组份,可是实现200-400nm之间的任意三波段响应。
     此外,加入光生屏蔽效应模型之后,计算结果表明,在三带响应条件下,光生屏蔽效应使得探测器的截止频率具有微扰作用,且入射光波长越大,光生屏蔽效应对截止频率的微扰越小。
In recent years, GaN-based p-i-n ultraviolet detectors attract wild attention with its natural solar-blind property and quick response speed. GaN-based material has the advantages of small permittivity, high electron saturation velocity and wide energy band gap, and has been widely applied in the fields of microwave power devices, photo electronic devices. p-i-n structure detectors play an important role in the field of photo electronic devices duo to its advantages of low dark current, quick response speed and working well at the bias of zero voltage. In this paper, GaN-based p-i-n ultraviolet detector is researched systematically, and the author's major contributions are outlined at follows:
     1. Based on the semiconductor classic physics and the limited-difference method, the numerical calculation of energy band diagram and carriers distribution of the GaN-based homostructure and heterostructure is realized by Matlab program. For the GaN-based homostructure, the energy band diagram and carriers distribution are calculated by self-consistent solving of carriers statistics equation and Poisson equation. For the AlGaN/GaN heterostructure, the energy band diagram and carriers distribution are calculated by self-consistent solving of Schrodinger-Poisson equations. Based on that, the influence of polarization effect on the energy band diagram and carriers distribution is researched systematically. Finally, compared with the results simulated by the Silvaco software, which is based on the physical models, and calculated by others, the correctness of numerical calculation built in this paper is confirmed. Therefore, the calculation model in this paper is not only based on the physical model, but also can jump the limitation of the existing simulation software based on the physical model, so as to add the new physical mechanism to the numerical calculation for deep research.
     2. Based on the physical mechanism of photo-generated carriers screening effect, the numerical models of the photo-generated screening effect and the photo-generated parasitical capacitance are presented by self-consistent solving the Poisson equation and carriers'statistic equation. According to the two models, the effect of the photo irradiation on the response time and cut-off frequency of the detector is calculated and discussed. It is concluded that, the photo-generated screening effect and photo-generated parasitical capacitance have some perturbation on the response time and cut-off frequency. The perturbation degree depends on the electric field in depletion region, carriers lifetime and photo irradiation intensity. The detail calculation results show that, when the electric field in depletion region is less than the critical electric field of the mobility model, the photo-generated screening effect makes the response time increase and the cut-off frequency decrease, however, it is just the opposite when the electric field is lager than the critical electric field; the larger the carriers lifetime, the more serious the influence of the photo-generated screening effect on the response time and cut-off frequency, until the carriers lifetime increases to200ps, the influence reaches saturation; the larger the photo irradiation intensity, the more serious the influence of the photo-generated screening effect on the response time and cut-off frequency, however, if the photo irradiation intensity is less than1W/cm2, the influence is very small. Therefore, in application, the influence of the photo-generated screening effect on the response time and cut-off frequency can be reduced by adjusting the bias voltage so as to the electric field in depletion region is near to the critical electric field or large the critical electric field much more. At the same time, a small capacitance at the order of fF degree series to the detector can speed up the response and enhance the cut-off frequency of the detector, and also reduce the influence of the photo-generated parasitical capacitance on the response time and cut-off frequency of the detector.
     3. Based on the influence of the polarization effect on the energy band diagram of the AlGaN/GaN heterostructure, AlGaN/GaN heterostructure p-i-n ultraviolet detector with dual band response is designed, and the influence of the doping concentration in AlGaN, bias voltage and the degree of polarization relaxation on the response characteristic of the detector is simulated by the above numerical method. The calculation results show that, in the case of fixed doping concentration and fixed degree of polarization relaxation, the transform from single band response to dual band response for the AlGaN/GaN heterostructure p-i-n ultraviolet detector can be realized by adjusting the bias voltage, furthermore, the threshold voltage corresponding to the response transform will be larger if the Al mole fraction of the AlGaN is large or the doping concentration is shallow or the degree of the polarization relaxation is low. Of course, the analytical expression of the threshold voltage is deduced according to the charge distribution in the depletion region. In order to shorten the response time of the detector, it is shown that by the calculation results, the depth of the AlGaN layer should be shorten or the bias voltage should be enlarged so as to avoid long diffusion length for the photo carriers transporting to electrode.
     4. Based on the influence of the polarization effect on the energy band diagram of the AlGaN/GaN heterostructure, AlGaN/AlGaN/GaN double heterostructure p-p-i-n ultraviolet detector with three band response is designed, and the influence of the doping concentration in AlGaN, bias voltage and the Al mole fraction of the AlGaN on the response characteristic of the detector is simulated by the above numerical method. The calculation results show that, in the case of fixed doping concentration and fixed Al mole fraction of AlGaN, influenced by the polarization charges, the three band response can be realized for the AlGaN/AlGaN/GaN double heterostructure p-p-i-n ultraviolet detector by adjusting the bias voltage. Of course, the analytical expression of the threshold voltage corresponding to the three band response is deduced according to the charge distribution in the depletion region. It is conclude that from the calculation results, at the same time, the Al more fraction of the top AlGaN layer should be larger than that of the bottom AlGaN layer, the doping concentration in AlGaN should be much more heavy with the increasing of the Al mole fraction of the AlGaN layer, and the detector with arbitrary three band response in the range from200nm to400nm can be realized by adjusting the Al mole fraction of each AlGaN layer.
     Besides, when the photo-generated screening effect considered, it is shown from the calculation results, under the condition of three band response, the photo-generated screening effect has a perturbation effect on the cut-off frequency of the detector, and the perturbation effect decreases with the the increasing of the incident wavelength.
引文
[1.1]Jankovec M, Stiebig H, Krause M, et al. Numerical and experimental study of a-Si:H based ultraviolet sensitive detectors. Journal of Non-Crystalline Solids. 2002,299:1229.
    [1.2]Ariyawansa G, Jayaweera P V V, Perera A G U, et al. Normal incidence detection of ultraviolet, visible and mid-infrared radiation in a single GaAs/AlGaAs device. Optics Letters.2009,34(13):2036.
    [1.3]Monhammad S N, Salvador A A, Morkoc H. Emerging Gallium Nitride Based Devices. Proceedings of the IEEE.1995,83(10):1306.
    [1.4]Denbaars S P. Gallium-Nitride-Based materials for blue to ultraviolet optoelectronics devices. Proceedings of the IEEE.1997,85(11):1740.
    [1.5]Mosca M, Reverchon J L, Grandjean N, et al. Multilayer (Al,Ga)N structures for solar-blind detection. IEEE Journal of Selected Topics in Quantum Electronics.2004,10(4):752.
    [1.6]Johnson W C, Parsons J B, Crew M C. Nitrogen compounds of Gallium. J Phys Chem.1932,36:2588.
    [1.7]Maruska H P, TietJen J J. The preparation and properties of vapor-deposited single-crystal-line GaN. Appl Phys Lett.1969,15:327.
    [1.8]Robert F D, Amy M R, Edward A P, et al. Gallium Nitride Materials-Progress, status and Potential Roadblocks. Proceedings of the IEEE.2002,90(6):993.
    [1.9]Robert F D. Ⅲ-Ⅴ Nitrides for Electronic and Optoelectronic Applications. Proceedings of the IEEE.1991,79(5):702.
    [1.10]Sugiura L, Itaya K, Nishio J, et al. Effects of thermal treatment of low-temperature GaN vuffer layers on the quality of subsequent GaN layers. J. Appl. Phys.1997,82(10):4877.
    [1.11]Wuu D S, Horng R H, Tseng W H, et al. Influences of temperature ramping rate on GaN buffer layers and subsequent GaN overlayers grown by metalorganic chemical vapor deposition. Journal of Crystal Growth.2000,220(3):235.
    [1.12]Eitiog C J, Grudowski P A, Dupuis R D. Growth of low resistivity p-type GaN by metal organic chemical vapour deposition. Electronics Letters.1997,33(23): 1987
    [1.13]Smorchkova I P, Haus E, Heying B, et al. Mg doping of GaNlayers grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett.2000,76(6):718.
    [1.14]Bayram C, Pau J L, Mcclintock R, et al. Delta-doping optimization for high quality p-type GaN. J. Appl. Phys.2008,104(8):083512.
    [1.15]Narayan J, Pant P, Chugh A, et al. Characteristics of nucleation layer and epitaxy in GaN/Sapphire Heterostructures. J. Appl. Phys.2006,99(5):054313.
    [1.16]Okumura H, Misawa S, yoshida S. Epitaxial growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy. Appl. Phys. Lett.1991, 59(9):1058.
    [1.17]Mishra U K, Parikh P Wu Y F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proceedings of the IEEE.2002,90(6):1022.
    [1.18]Matlock D M, Zvanut M E, Wang H Y, et al. The effects of Oxygen, Nitrogen, and Hydrogen annealing on Mg acceptors in GaN as monitored by electron paramagnetic resonance spectroscopy. Journal of Electronic Materials.2006, 34(1):34.
    [1.19]Bhapkar U V, Shur M S. Monte carlo calculation of velocity-field characteristics of wurtzite GaN. J. Appl. Phys.1997,82(4):1649.
    [1.20]Hsu L, Walukiewicz W. Effect of polarization fields on transport properties in AlGaN/GaN heterostructures. J. Appl. Phys.2001,89(3):1783.
    [1.21]Wang X L, Hu G X, Ma Z Y, et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD. Journal of Crystal Growth.2007,298:835.
    [1.22]Parish G, Keller S, Kozodoy P, et al. High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN. Appl. Phys. Lett.1999,75(2):247.
    [1.23]Morkoc H. Wurtzite GaN-based heterostructures by molecular beam epitaxy. IEEE Journal of Selected Topics in Quantum Electronics.1998,4(3):537.
    [1.24]Tuomisto F, Paskova T, Kroger R, et al. Defect distribution in a-phane GaN on Al2O3. Appl Phys Lett.2007,90:121915
    [1.25]Lin J C, Su Y K, Chang S J, et al. GaN p-i-n photodetectors with an LT-GaN inter layer. IET Optoelectron,2008,2(2):59
    [1.26]Dongjin Byun,Yong Suk Cho, Jaekyun Kim, etc. Improved crystalline quality of GaN by substrate ion beam pre-treatment. Microprocesses and Nanotechnology conference.2001 p:222.
    [1.27]Oh S A, Hashim M T, Ng S S, et al. Optical properties of GaN on sapphire sbustrates grown by plasma-assisted MOCVD.2004 IEEE International Conference on Semiconductor Electronics (ICSE 2004). p5.
    [1.28]Eisenbach A, Pavlidis D, Philippe A, et al. Impact of GaN buffer growth conditions on photoluminescence and X-ray diffraction characteristics of MOVPE grown bulk GaN. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors.1998, p:219-222.
    [1.29]Eddy C R, Holm R T, Henry R L, et al.Investigation of three-step epilayer growth approach of GaN thin films to minimize compensation. International Symposium on Compound Semiconductors.2007, p:33-34.
    [1.30]Paskova T, Valcheva E, Birch J, et al. Defect and stress relaxation in HVPE-GaN films using high temperature reactively sputtered AlN buffer. Journal of Crystal Growth.2001,230(3-4):381.
    [1.31]Ng S S, Hassan Z, Hashim M R, et al. Infrared Characterization of GaN/Si grown at Different Tempertures by MOCVD. IEEE International Conference on Semiconductor Electronics (ICSE 2002).2002, p209-212.
    [1.32]Park Y S, Lee H S, Na J H, et al. Polarity determination for GaN/AlGaN/GaN heterostructures grown on (0001) sapphire by molecular beam epitaxy. J. Appl. Phys.2003,94(1):800-2.
    [1.33]Tevernier P R, Etzkorn E V, Wang Y, et al. Two-step growth of high-qulality GaN by hydride vapor-phase epitaxy. Appl. Phys. Lett.2000,77(12):1804
    [1.34]Sugiura L, Itaya K, NishioJ, et al. Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers. J. Appl. Phys.1997,82(10):4877
    [1.35]Sumiya M, Ogusu N, Yotsuda Y, et al. Systematic analysis and control of low-temperature GaN buffer layers on sapphire substrates. J. Appl. Phys.2003, 93(2):1311
    [1.36]Joanna P, Adam S, Jaroslaw S. Impact of the initial stage of deposition conditions on the properties of subsequent GaN layer.2007 International Students and Young Scientists Workshop "Photonics and Microsystems".2008, p61-65.
    [1.37]Han J, Biefeld R M, Zolper J C. In-Situ reflectance monitoring and characterization of GaN grown by MOCVD. IEEE LEOS Summer Topical Meeting 1997,p50-51.
    [1.38]Eisenbach A, Pavlidis D, Philippe A, et al. Impact of GaN buffer Growth Conditions on Photoluminescence and X-ray Diffraction Characteristics of MOVPE Grown Bulk GaN. Compound Semiconductors 1997. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors.1998, p219-22.
    [1.39]Venugopal R, Liaw H M, Wan J, et al. Influence of the AlN buffer layer growth on AlGaN/GaN films deposited on (111)Si subtrates. IEEE International Symposium on Compound Semiconductors.2000, p:461-466.
    [1.40]Boney C, Carreno A, Bensaoula A, et al. Reduction of Defects in RF-MBE Grown GaN on Spphire by Optimization of Nitridation Temperature and Intermediate Layer Parameters. International Conference on Molecular Beam Epitaxy._ 2002, p205-206.
    [1.41]Sanchez-Gacia MA, Calleia E, Monroy E et al. MRS Nitride Semiconductor Research. MU-NSR.1998, p:33.
    [1.42]Davis R F, Nam O H, Bremser M D, et al. Lateral Epitaxial Overgrown of and Defect Reduction in GaN Thin Films. IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS 1998).1998, p360-361.
    [1.43]Jang H W, Lee J L. Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN. Appl. Phys. Lett.2004,85(24):5920.
    [1.44]Nikishin S, Chary I, Borisov B, et al. Mechanism of carrier injection in (Ni/Au)/p-AlGaN:Mg(0    [1.45]Lee H J, Yu S J, Asahi H, et al. Very low resistance ohmic contacts to n-GaN. Journal of Electronic Materials.1998,27(7):829.
    [1.46]Boudart B, Trassaert S, Wallart X, et al. aComparisonbetween TiAl And TiAlNiAu ohmic contacts to n-type GaN. Journal of Electronics Materials. 2000,29(5):608.
    [1.47]Qin Z X, Chen Z Z, Tong Y Z, et al. Study of Ti/Au, Ti/Al/Au, and TI/Al/Ni/Au ohmic contacts to n-GaN. Appl. Phys. A.2004,78:729.
    [1.48]Gong R M, Wang J Y, Liu S H, et al. Analysis of surface roughness in Ti/Al/Ni/Au ohmic contact to AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett.2010,97(6):062115.
    [1.49]Qiao D, Yu L S, Lau S S, et al. A study of the Au/Ni ohmic contact on p-GaN. J. Appl. Phys.2000,88(7):4196.
    [1.50]Arai T, Sueyoshi H, Koide Y, et al. Development of Pt-based ohmic contact materials for p-type GaN. J. Appl. Phys.2001,89(5):2826.
    [1.51]Cho H K, Hossain T, Bae J W, et al. Characterization of Pd/Ni/Au ohmic contacts on p-GaN. Solod-State Electronics.2005,49:774.
    [1.52]Yoon Y S, Kim H K. Structural and electrical properties of low resistance Pt/Pd/Au contact on p-GaN. J. Electroceram.2006,17:277.
    [1.53]Byrum L E, Ariyawansa G, Jayasinghe R C, et al. Negative capacitance in GaN/ALGaN heterojunction dual-band detectors. J. Appl. Phys.2009,106(5): 053701.
    [1.54]Korona K P, Drabinska A, Caban P, et al. Tunable GaN/AlGaN ultraviolet detectors with built-in electric field. J. Appl. Phys.2009,180(8):083712.
    [1.55]Chang Y C. Effects of illumination on the excess carrier dynamics and variations of the surface state in an AlGaN/GaN heterostructures. J. Appl. Phys. 2010,107(3):033706.
    [1.56]Smith G M, Boutros K S, Phanse V M. Visible-blind GaN photodiodes. IEEE Lasers and Electro-Optics Society Annual Meeting.1998,1:366.
    [1.57]Chang P C, Yu C L, Chang S J, et al. Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer. IEEE Sensors Journal.2007,7(9):1270.
    [1.58]Chen C H, Chang S J, Su Y K, et al. GaN metal-semiconductor-metal UV photodetectors with transparent Indium-Tin-Oxide schottky contacts. IEEE Photonics Technology Letters.2001,13(8):848.
    [1.59]Li J L, Donaldson E R, Hsiang T Y. Very fast metal-semiconductor-metal UV photodetectors on GaN with submicron finger width. IEEE Photonics Technology Letters.2003,15(8):1141.
    [1.60]Flannery L B, Harrison I, Lacklison D E, et al. Fabrication and characterization of p-type GaN metal-semiconductor-metal ultraviolet photoconductors grown by MBE. Materials Science and Engineering B.1997,50(1):307.
    [1.61]Sandvik P, Walker D, Kung P, et al. Solar-blind AlGaN p-i-n photodetectors grown on LEO and Non-LEO GaN. Proceedings of the SPIE-The International Society for Optical Engineering.2000,3948:265.
    [1.62]席冬娟,江若琏,陈鹏,等.Si基GaN紫外光探测器.高技术通讯.2000,11:16.
    [1.63]Amano H, Kito M, Hiramutsu K, et al. p-type conduction inMg-doped GaN treated with low energy electron beam irradiation(LEEB). Jpn. J. Appl. Phys. 1989,28:2112.
    [1.64]Nakamura S, Iwasa N, Senoh M, et al. Hole compensation mechanism of p-type GaN films. Jpn. J. Appl. Phys.1992,32:1258.
    [1.65]Parish G, Keller S, Kozodoy P, et al. High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN. Appl. Phys. Lett.1999,75(2):247.
    [1.66]Chowdhury U, Wong M M, Collins C J, et al. High quantum efficiency AlGaN/GaN solar-blind photodetectors grown by metalorganic chemical vapor deposition. Materials Research Society Symposium-Proceedings.2002,693: 817-822.
    [1.67]Teke A, Dogan S, He L, et al. p-GaN-i-GaN/AlGaN multiple-quantum well n-AlGaN back-illuminated ultraviolet detectors. Journal of Electronic Materials. 2003,32(5):307
    [1.68]Asgari A, Ahmadi E, Kalafi M. AlGaN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures. Microelectronics Journal.2009,40: 104.
    [1.69]Sudradjat F, Zhang W, Driscoll K, et al. Sequential tunneling transport characteristics of GaN/AlGaN coupled-quantum-well structures. J. Appl. Phys. 2010,108:103704.
    [1.70]Byrum L E, Ariyawansa G, Jayasinghe R C, et al. Negative capacitance in GaN/AlGaN heterojunction dual-band detectors. J. Appl. Phys.2009,106: 053701.
    [2.1]Nakamura S, Mukai T, Sench M. In-situ monitoring and hall measurements of GaN grown with GaN buffer layers. J. Appl. Phys.1992,71:5543.
    [2.2]刘恩科,朱秉升,罗晋生.《半导体物理学》(第4版).北京:国防工业出版社,1997.p53.
    [2.3]刘恩科,朱秉升,罗晋生.《半导体物理学》(第4版).北京:国防工业出版社,1997.p62.
    [2.4]Blakemore J S. Approximation for Fermi-dirac integrals, especially the function F1/2(η) used to dectribe electron density in a semiconductor. Solid State Electronics.1982,25(11):1067.
    [2.5]Trellakis A, Galick A T, Pacelli A, et al. Iteration scheme for the solution of the two-dimensional Schrodinger-Poisson equations in quantum structures. J Appl. Phys.1997,81:7880.
    [2.6]Denbaars S P. Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices. Proceedings of the IEEE.1997,85(11):1740.
    [2.7]Silvaco international, Atlas user's manual.2007, p5-35.
    [2.8]Lin M E, Strite S, Morkoc H. The physical properties of AlN, GaN and InN. The encyclopedia of Advanced Materials. New York:Pergamon.1994, p79-86.
    [2.9]Joachim P. Semiconductor optoelectronic devices:Introduction to physics and simulation. New York:Academic press of Elsevier Science,2001. p 187-211.
    [2.10]Craig G M, Meredith L R, Gregory A G, et al. Current-induced degradation of high performance deep ultraviolet light emitting diodes. Appl. Phys. Lett.2010, 95:213512.
    [2.11]Zhang J, Zhao H P. Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid-and deep-ultraviolet spectral regimes. Appl. Phys. Lett. 2011,98(17):1111.
    [2.12]Mosca M, Reverchon J L, Grandjean N, et al. Multilayer (Al,Ga)N structures for solar-blind detection. IEEE. J. Selected topics in quantum electronics.2004, 10(4):752.
    [2.13]Wang X L, Hu G X, Ma Z Y, et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD. Journal of Crystal Growth.2007,298:835.
    [2.14]Chang P C, Yu C L, Chang S J, et al. Low-noise and high-detectivity GaN UV photodiodes with a low-temperature ALN Cap Layer. IEEE. Sensors Journal. 2007,7(9):1289.
    [2.15]Hadis M, Roberto C, Bernard G. Polarization effects in Nitride semiconductors and device structures. Mat. Res. Innovat.1999,3:97.
    [2.16]Ambacher O, Smart J, Shealy J R, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys.85(6):3222.
    [2.17]Criado G M, Cros A, Cantarero A, et al. Residual strain effects on the two-dimensional electron gas concentration of AlGaN/GaN heterostructures. J. Appl. Phys.90(9):4735.
    [2.18]Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys.87(1):334.
    [2.19]Ambacher O, Eickhoff M, Link A, et al. Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures, Part A:Polarization and Pyroelectronics. Phys. Stat. sol. (c).2003,0(6):1878.
    [2.20]Jeganathan K, Ide T, Shimizu M, et al. Two-dimensional electron gases induced by polarization charges in AIN/GaN Heterostructure grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys.2003,94(5):3260.
    [2.21]Sten H, Stacia K, Yuan W, et al. Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures. J. Appl. Phys.2003,93(12):10114.
    [2.22]Hamaguchi C. Basic semiconductors Physics.2nd Edition. Berlin:Springer Science,2010. p333-454.
    [2.23]张金凤.GaN基异质结及搞电子迁移率晶体管的关键机理研究.西安电子科技大学博士学位论文.2006,p22.
    [2.24]Cole E A B. Mathematical and numerical modeling of heterostructure semiconductor devices:From theory to programming. London:Springer Science,2009. p22.
    [2.25]宋国乡,冯有前,王世儒,等.《数值分析》.西安:西安电子科技大学,2002.p139-143.
    [2.26]Mark S L, Robert J S. Numerical analysis of heterostructure semiconductor devices. IEEE. Transaction on electron devices.1983,30(9):1151.
    [2.27]Sun H F, Andreas R A, Hansruedi B, et al.100-nm-gate (Al,In)N/GaN HEMTs grown on SiC with FT=144GHz. IEEE. Electron device Letters.2010,31(4): 203.
    [2.28]张金凤.GaN基异质结及高电子迁移率晶体管的关键机理研究.西安电子科技大学博士学位论文.2006,p21.
    [2.29]Guo B Z, GongN, Yu F Q. Calculations of two dimensional electron gas distributions in AlGaN/GaN material system. Chin. Phys. B.2008,17(1):290.
    [2.30]Zhang J F, Mao W, Zhang J C, et al. The low-temperature mobility of two-dimensional electron gas in AlGaN/GaN heterostructures. Chin. Phys. B. 2008,17(7):2689.
    [3.1]Smith G M, Boutros K S, Phanse V M. Visible-blind GaN photodiodes. IEEE Lasers and Electro-Optics Society Annual Meeting,1998,1:366-.
    [3.2]Chang P C, Yu C L, Chang S J, et al. Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer. IEEE Sensors Journal,2007,7(9):1270.
    [3.3]Chen C H, Chang S J, Su Y K, et al. GaN metal-semiconductor-metal UV photodetectors with transparent Indium-Tin-Oxide schottky contacts. IEEE Photonics Technology Letters,2001,13(8):848.
    [3.4]Li J L, Donaldson E R, Hsiang T Y. Very fast metal-semiconductor-metal UV photodetectors on GaN with submicron finger width. IEEE Photonics Technology Letters,2003,15(8):1141.
    [3.5]Carrano J C, Li T, Brown D L, et al. Low dark current pin UV photodetectors fabricated on GaN grown by metal organic chemical vapour deposition. Electronics Letters,1998,34(7):692.
    [3.6]Lech Dobrzanski, Wlodek Strupinski. On charge transport and low-frequency noise in the GaN p-i-n diode. IEEE Journal of Quantum Electronics,2007, 43(2):188.
    [3.7]Chang P C, Yu C L, Chang S J. Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer. IEEE Sensors Journal,2007,7(9):1270.
    [3.8]Shen S C, Zhang Y, Dongwon Y, et al. Performance of deep UV GaN avalanche photodiodes grown by MOCVD. IEEE Photonics Technology Letters,2007, 19(21):1744.
    [3.9]Zhou M, Zhao D G Effect of p-GaN layer thickness on the performance of p-i-n sructure GaN UV photodetectors. Acta Phys Sin,2008,57(7):4570.
    [3.10]Carrano J C, Li T, Eiting C J, et al. Very high-speed ultraviolet photodetectors fabricated on GaN. Journal of Electronic Materials.1999,28(3):325.
    [3.11]Farahmand M, Garetto C, Bellotti E, et al. Monte carlo simulation of electron transport in the Ⅲ-Nitride wurtzite phase materials system:Binaries and Ternaries. IEEE. Transactions on Electron Devices.2001,48(3):535.
    [3.12]ISE TCAD Release10.0 Dessis. Zurich, Switzerland,2004. p15.195.
    [3.13]Silvaco international, Atlas user's manual,2007. p5-35.
    [3.14]Francesco B, Michele M, Enrico B. Theory of high field carrier transport and impact ionization in wurtziteGaN. Part Ⅰ:A full band Monte Carlo model. J. Appl. Phys.2009,106:063718.
    [3.15]Silvaco international, Atlas user's manual,2007. p5-36.
    [3.16]Djurisic A B, Li E H. Optical constants of AlGaN:Modeling over a wide spectral range. Phys. Stat. Sol. (b).1999,216:199.
    [3.17]Djurisic A B, Li E H. Modeling the optical constants of hexagonal GaN, InN, and AlN. J. Appl. Phys.1999,85(5):2848.
    [3.18]Djurisic A B, Chan Y, Li E H. Novel model for the optical function of GaN. Appl.Phys. A.2002,74:669.
    [3.19]Takeuchi K, Adachi S, Ohtsuka K. Optical properties of AlGaN alloy. J. Appl. Phys.2010,107:023306.
    [3.20]Tuomisto F, Paskova T, Kroger R, et al. Defect distribution in a-phane GaN on Al2O3. Appl Phys Lett,2007,90:121915.
    [3.21]Lin J C, Su Y K, Chang S J, et al. GaN p-i-n photodetectors with an LT-GaN inter layer. IET Optoelectron,2008,2(2):59.
    [3.22]Zhang S K, Wang W B, Alfano R R, et al. Unusual transient photocapacitance in GaN/AlGaN multi-quantum wells. Superlattices and Microstructures.2004, 35:77.
    [3.23]Kang Y, Xu Y H, Zhao D Q et al. Frequency dependence of junction capacitance of GaN p-i-n UV detectors. Solid State Electronics.2005,49: 1135.
    [3.24]Ahrenkiei R K. Photocapacitance of CdZnS/CuInSe2thin-film heterojunctions. J.Appl. Phys.1986,59(1):161.
    [3.25]Simpson J C, Cordaro J F. Photocapacitance and photoconductance of Bi-doped ZnO. J Appl. Phys.1991,69(7):4011.
    [3.26]Hierro A, Kwon D, Ringel S A. Photocapacitance study of bulk deep levels inZn SE Grown by molecular-beam epitaxy. J. Appl. Phys.2000,87(2):730.
    [3.27]Huang Y L, Sun C K. Nonlinear saturation behaviours of high-speed p-i-n photodetectors. Journal of Lightwave Technology.2000,18(2):203
    [3.28]http://www.kyosemi.co.jp/product/pro_ele_mea_e03.html#gan
    [4.1]Chakraborty A, Sarkar C K. Electron transport in two dimensional electron gas formed at the heteroj unction of AlGaN/GaN at microwave frequencies. Microelectronics Reliability.2010,50:965.
    [4.2]Fan L, Hao Y, Zhao Y F, et al. Degraded model of radiation-induced acceptor defects for GaN-based high electron mobility transistors (HEMTs). Chin. Phys. B.2009,18(7):2912.
    [4.3]周建军,江若琏,姬小利,等.界面极化效应对AlGaN/GaN异质结pin探测器光电响应的影响.半导体学报.2007,28(6):947.
    [4.4]Collazo R, Mita S, Daiman R, et al. Impact of polarity control and related defects on the electrical properties of GaN grown by MOVPE. Phys. Stat. Sol. C.2007,4 (7): 2597.
    [4.5]Peng C X, Weng H M, Zhu C F, et al. Influcence of GaN polarity and intermediate temperature buffer layers on strain relaxation and defects. Physica B.2007,391:6.
    [4.6]Ambacher O, Eickhoff M, Link A, et al. Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures Phys. Stat. Sol. C.2003,0 (6):1878.
    [4.7]Morkoc H, Cingolani R, Gil B. Polarization effects in nitride semiconductors and device structures. Mat. Res. Innovat.1999,3:97.
    [4.8]Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys.2000,87(1):334.
    [4.9]Angerer H, Brunner D, Freudenberg F, et al. Determination of the Al mole fraction and the band gap bowing of epitaxial AlGaN films. Appl. Phys. Lett. 1997,71(11):1504.
    [4.10]Gao B, Liu H X, Wang S L. AlGaN/GaN ultraviolet detector with dual band response. Chin. Phys. Lett.2011,28(5):057802.
    [5.1]Ahn H S, Kim K H, Yang M, et al. Growth of thick AlGaN by mixed-source hydride vapor phase epitaxy. Appl. Surf. Sci.2005,243:178.
    [5.2]Mcaleese C, Kappers M J, Rayment F D G, et al. Strain effects of AlN interlayers for MOVPE growth of crack-free AlGaN and AIN/GaN multilayers on GaN. Journal of Crystal Growth.2004,272:475.
    [5.3]Mastro M A, Eddy C R, Gaskill D K, et al. MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates. Journal of Crystal Growth.2006, 287:610.
    [5.4]Makoto M, Takashi E, Hiroyasu I. Study on mobility enhancement in MOVPE grown AlGaN/AlN/GaN HEMT structures using a thin AlN interfacial layer. Solid State Electronics.2006,50:1515.
    [5.5]Wang X L, Zhao D G, Li X Y, et al. The effects of LT AlN buffer thickness on the properties of high Al composition AlGaN epilayers. Materials Letters.2006, 60:3693.
    [5.6]Korona K P, Drabinska A, Caban P, et al. Tunable GaN/AlGaN ultraviolet detectors with built-in electric field. J. Appl. Phys.2009,105:083712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700