Ag表面等离子体四极子增强型MgZnO紫外探测器的设计制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外探测技术是继激光和红外探测技术之后发展起来的又一新型军民两用探测技术,目前在导弹尾焰探测、空间探测、燃烧工程、火焰探测等诸多领域发挥着巨大的作用。近年来,宽禁带半导体紫外探测器因其体积小、重量轻、工作时不需滤光片、无需制冷等优点被认为是可以取代真空光电倍增管和Si光电倍增管的第三代紫外探测器。在众多宽禁带半导体材料中,ZnO基材料具有缺陷密度低,抗辐射能力强,环境友好等诸多优点,且可通过Mg的掺杂使其光学带隙在3.37-7.78eV范围连续可调,因此被认为是制备日盲及可见盲紫外探测器的最理想材料之一。由于高质量P型ZnO基材料的制备仍是国际难题,因此,在努力实现高效稳定的P型ZnO(MgZnO)的同时,如何提高现有ZnO基紫外探测器的性能逐渐成为近年来人们研究的热点。据之前的文献报道可知,金属表面等离子体技术已经广泛应用提高发光二极管、太阳能电池等光电器件的量子效率等诸多性能。由于金属表面等离极化激元与宽禁带半导体之间大的能量失配限制了金属表面等离子体技术在紫外波段的应用,因此,目前报道的金属表面等离子体技术的应用主要集中在可见和红外波段。虽然最近国际上也有一些关于金属表面等离极化激元提高紫外探测器响应度的报道,但是其内部的物理机制还不是很清晰。
     本论文针对上述ZnO基紫外探测器研究领域的热点和难点,开展工作如下:
     1.通过时域有限差分方法(FDTD)的理论模拟结果,设计并制备出了一种在紫外波段具有杂化四极子的Ag纳米材料。有文献调研可知,此种杂化四极子具有偶极活性,可与紫外光发生耦合作用,为金属表面等离子体技术的应用扩展到紫外波段提供了一种新的途径。
     2.通过对上述Ag纳米团簇的四极共振频率和强度的有效调控,使MgZnO材料的近带边光致发光得到了选择性增强,表明Ag纳米团簇的表面等离极化激元杂化四极子确实具有偶极活性,可以与MgZnO近带边激子进行耦合作用,为Ag表面等离子体增强型MgZnO紫外探测器的制备奠定了坚实根基。
     3.在前面工作基础上,制备出了一种响应峰值位于350nm附近的高度波长选择性增强的MgZnO/Ag复合型紫外探测器。
     4.为了进一步降低探测器的光电转化能耗,设计并制备出了一种全新的非对称金属-半导体-金属(Au-MgxZn1-xO-Au)结构的自驱动式ZnO基紫外探测器,即一种可在无外加偏压下工作的紫外探测器。此种非对称金属-半导体-金属结构具有很好的普适性,可广泛应用于ZnO基材料以外的自驱动半导体光电探测器的制备。最后在前面所有工作的基础上,我们制备出了一种高灵敏度、低能耗、低噪声的Au-MgxZn1-xO/Ag-Au自驱动紫外探测器。
Following the laser detection and infrared detection technology, ultraviolet (UV)detection technology is a new kind of detection technology which played animportant role in both of the military and civilian areas. It has been applicated inconvert communications, flame sensing, air and water purification, and missileplume sensing, etal. As the third generation detectors, the wide band band gapseminconductor detectors with compact dimensions, low weight have beenconsidered to replace the vacuum phototube and Si-based photomultiplier whichcould work without cooling system and additional light filters. Among thesemiconductor family, ZnO combined with Mg, which is a tunable band gapssemiconductor which is a very promising candidate for fabricating visible (VIS) andsolar-blind ultraviolet photodetectors. However, due to a big challange to realizehigh efficiency and steady p-type ZnO (MgZnO), many performance targets of itsUV detectors were not achieved design requirement. Thus, before the breakthroughin p-type doping of ZnO based materials, how to achieve a highly effective ZnObased UV detectors is becaming a hot topic. In the previous reports, surfaceplasmons have been widely used to improve the efficiency of photoelectronicdevices such as light-emitting diodes and solar cells.at visible or IR range based onthe dipole resonance, which is usually appear at visible or IR range. Therefore, itlimited its applications in ultraviolet regime due to a large energy separation between the metallic dipole and wide gap semiconductor. Although there are some reports onimprovement in UV detector responsivity via surface plasmon, but its internalmechanism is still not very clear.
     Thus, based on aforementioned hotspot and difficult questions of ZnO based UVphotodetectors, the following researches in this paper are carried out:
     1. Based the results of the FDTD simulations, we realized Ag hybridquadrupole resonance in the Ag nanoclusters in the UV regimeexperimentally. As previous report, the hybrid quadrupole with an activityas dipole could interact with UV emission directly, which provide a newway for the application of surface plasmon technology to the ultravioletregime.
     2. Realization of the strong coupling tunable hybridized quadrupole plasmonsand their coupling with excitons in ZnMgO/Ag system, which may lay asolid ground for the future applications of surface plsamon enhancedphotodetectors.
     3. We fabricated MgxZn1xO/Ag ultraviolet photodetectors which has a highwavelength (350nm) selectively enhancement propertity based on theprevious work.
     4. Realization of Self-powered Ultraviolet photodetectors based on theasymmetry metal-semiconductor-metal (Au-MgxZn1-xO-Au) structure withthe same metal Au for the first time. It is worthy of note that the asymmetrymetal-semiconductor-metal structure was found to be extensively applicablein fabricating other kind of semiconductor detectors. At last, we fabricateAu-MgxZn1-xO/Ag-Au decector with high responsivity, low dark current,and low energy consumption of the photoelectric conversion properties.
引文
[1](德)Gerhard Lutz著,刘忠立译,半导体辐射探测器(Semiconductor RadiationDetectors)[M].国防工业出版社,2004。
    [2]李慧蕊,新型紫外探测器件及其应用[J].光电子技术,2000,20,45。
    [3]石顺祥,光电子技术及其应用[M],电子科技大学出版社,2000。
    [4]齐丕智等,光敏感器件及其应用[M],科学出版社,1987。
    [5]张松祥,胡齐丰,光辐射探测技术[M],上海交通大学出版社,1998。
    [7] Razeghi, M.; Rogalski. A.; Semiconductor ultraviolet detectors [J]. J. Phys. Lett.1996,79,7433-7473.
    [6] Sze,S. M. Physics of Semiconductor Devices[M], John Wiley Sons. Inc,2007.
    [8](英)E.H.罗德里克,金属半导体接触[M],科学出版社,1984。
    [9] Levin, E. M.; Robbins,C. R.; McMurdie,H. F. Phase Diagrams for Ceramists[J].The American Ceramic Society, Columbus, Ohio,1964.
    [10] Choopun, S.; Vispute, R.; Yang, W.; Sharma, R.; Venkatesan, T.; Shen, H.Realization of band gap above5.0eV in metastable cubic-phase MgxZn1-xO alloyfilms [J]. Appl. Phys. Lett.2002,80,1529-1531.
    [11] Auret, F.; Goodman, S.; Hayes, M.; Legodi, M.; Van Laarhoven, H.; Look, D. C.Electrical characterization of1.8meV proton-bombarded ZnO [J]. Appl. Phys.Lett.2001,79,3074-3076.
    [12] Ohtomo, A.; Kawasaki, M.; Koida, T.; Masubuchi, K.; Koinuma, H.; Sakurai, Y.;Yoshida, Y.; Yasuda, T.; Segawa, Y. MgxZn1-XO as a II–VI widegapsemiconductor alloy [J]. Appl. Phys. Lett.1998,72,2466-2468.
    [13] Fabricius, H.; Skettrup, T.; Bisgaard, P. Ultraviolet detectors in thin sputteredZnO films [J]. Appl. Opt.1986,25,2764-2767.
    [14] Liu, Y.; Gorla, C.; Liang, S.; Emanetoglu, N.; Lu, Y.; Shen, H.; Wraback, M.Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD [J]. J. Elec.Mater.2000,29,69-74.
    [15]Bie, Y. Q.; Liao, Z. M.; Zhang, H. Z.; Li, G. R.; Ye, Y.; Zhou, Y. B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D. P. Self-powered, ultrafast, visible-blind uv detection andoptical logical operation based on ZnO/GaN nanoscale p-n junctions [J]. Adv.Mater.2011,23,649-653.
    [16] Yang, W.; Vispute, R.; Choopun, S.; Sharma, R.; Venkatesan, T.; Shen, H.Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films[J]. Appl. Phys. Lett.2001,78,2787-2789.
    [17] Takeuchi, I.; Yang, W.; Chang, K.-S.; Aronova, M.; Venkatesan, T.; Vispute, R.;Bendersky, L. Monolithic multichannel ultraviolet detector arrays and continuousphase evolution in MgxZn1-xO composition spreads [J]. J. Appl. Phys.2003,94,7336-7340.
    [18] Yang, W.; Hullavarad, S.; Nagaraj, B.; Takeuchi, I.; Sharma, R.; Venkatesan, T.;Vispute, R.; Shen, H. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors [J]. Appl. Phys. Lett.2003,82,3424-3426.
    [19] Liu, K.; Shen, D.; Shan, C.; Zhang, J.; Yao, B.; Zhao, D.; Lu, Y.; Fan, X. Zn0.76Mg0.24O homojunction photodiode for ultraviolet detection [J]. Appl. Phys. Lett.2007,91,201106-201106-3.
    [20] Zhu, H.; Shan, C.; Wang, L.; Zheng, J.; Zhang, J.; Yao, B.; Shen, D. Metaloxide-semiconductor-structured MgZnO ultraviolet photodetector with highinternal gain [J]. J. Phys. Chem. C2010,114,7169-7172.
    [21] Zhu, H.; Shan, C.; Yao, B.; Li, B.; Zhang, J.; Zhao, D.; Shen, D.; Fan, X. Highspectrum selectivity ultraviolet photodetector fabricated from an n-ZnO/p-GaNheterojunction [J]. J. Phys. Chem. C2008,112,20546-20548.
    [22] Ju, Z.; Shan, C.; Jiang, D.; Zhang, J.; Yao, B.; Zhao, D.; Shen, D.; Fan, X. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range [J].Appl. Phys. Lett.2008,93,173505-173505-3.
    [23] Wang, L.; Ju, Z.; Zhang, J.; Zheng, J.; Shen, D.; Yao, B.; Zhao, D.; Zhang, Z.; Li,B.; Shan, C. Single-crystalline cubic MgZnO films and their application indeep-ultraviolet optoelectronic devices [J]. Appl. Phys. Lett.2009,95,131113.
    [24] Ferry, V. E.; Sweatlock, L. A.; Pacifici, D.; Atwater, H. A. Plasmonicnanostructure design for efficient light coupling into solar cells [J]. Nano Lett.2008,8,4391-4397.
    [25] Liu, K.; Sakurai, M.; Liao, M.; Aono, M. Giant improvement of the performanceof ZnO nanowire photodetectors by Au nanoparticles [J]. J. Phys. Chem. C2010,114,19835-19839.
    [26] Prins, F.; Buscema, M.; Seldenthuis, J. S.; Etaki, S.; Buchs, G.; Barkelid, M.;Zwiller, V.; Gao, Y.; Houtepen, A. J.; Siebbeles, L. D. et al. Fast and efficientphotodetection in nanoscale quantum-dot junctions [J]. Nano Lett.2012,12,5740-3.
    [27] Sorger, V. J.; Oulton, R. F.; Ma, R.-M.; Zhang, X. Toward integrated plasmoniccircuits[J]. MRS bulletin,2012,37,728-738.
    [28] Qiao, Q.; Shan, C.-X.; Zheng, J.; Li, B.-H.; Zhang, Z.-Z.; Zhang, L.-G.; Shen,D.-Z. Localized surface plasmon enhanced light-emitting devices [J]. J. Mater.Chem.2012,22,9481-9484.
    [29]Qiao, Q.; Shan, C.-X.; Zheng, J.; Zhu, H.; Yu, S.-F.; Li, B.-H.; Jia, Y.; Shen, D.-Z.Surface plasmon enhanced electrically pumped random lasers [J]. Nanoscale2013,5,513-517.
    [30] Knight,M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection withActive Optical Antennas [J]. Science2011,332,702-704.
    [31] Konstantatos, G.; Sargent, E.H.; Nanostructured Materials for Photon Detection[J]. Nat. Nano.2010,5,391-400.
    [32] Ferry, V. E.; Munday, J. N.; Atwater, H. A. Design considerations for plasmonicphotovoltaics [J]. Adv. Mater.2010,22,4794-808.
    [33] Ferry, V. E.; Sweatlock, L. A.; Domenico Pacifici, and Harry A. AtwaterPlasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells [J].Nano Lett.2008,12,4391-4397.
    [34] Ferry, V. E.; Verschuuren, M. A.; Li, H. B. T.; Verhagen, Walters, E.; R. J.;Schropp, R. E. I.; Atwater, H. A.; Albert Polman Light trapping in ultrathinplasmonic solar cells [J]. Opt. Express2010,18(102): A237-A245.
    [35] Pala, R. A.; White, J.; Barnard, E.; Liu, J.; Brongersma, M. L.; Design ofPlasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements [J].Adv. Mater.2009,21(34):3504-3509.
    [36] Maier, S. A. Plasmonics: Fundamentals and applications[M]. Springer:2007.
    [37] Murray, W. A.; Barnes, W. L. Plasmonic materials[J]. Adv. Mater.2007,19,3771-3782.
    [38] Armelles, G.; Cebollada, A.; Garc í a‐Mart í n, A.; González, M. U.Magnetoplasmonics: Combining magnetic and plasmonic functionalities [J]. Adv.Opt. Mater.2013,1,10-35.
    [39] Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.;Xia, Y. Controlling the synthesis and assembly of silver nanostructures forplasmonic applications [J]. Chem. Rev.2011,111,3669-712.
    [40] Scholl, J. A.; Koh, A. L.; Dionne, J. A. Quantum plasmon resonances ofindividual metallic nanoparticles [J]. Nature2012,483,421-7.
    [41] Stuart, R.N.; Wooter, F.; Mean free path of hot electrons and hole in metals [J].Phys. Rev. Lett.1963,10,1.
    [42] Luk'yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.;Giessen, H.; Chong, C. T. The fano resonance in plasmonic nanostructures andmetamaterials[J]. Nat. M ater.2010,9,707-715.
    [43] Rahmani, M.; Luk'yanchuk, B.; Hong, M. Fano resonance in novel plasmonicnanostructures[J]. Laser Photonics Rev.2013,7,329-349.
    [44] Fang, Z.; Cai, J.; Yan, Z.; Nordlander, P.; Halas, N. J.; Zhu, X. Removing awedge from a metallic nanodisk reveals a fano resonance[J]. Nano Lett.2011,11,4475-9.
    [45] Habteyes, T. G.; Dhuey, S.; Cabrini, S.; Schuck, P. J.; Leone, S. R. Theta-shapedplasmonic nanostructures: Bringing "dark" multipole plasmon resonances intoaction via conductive coupling [J]. Nano Lett.2011,11,1819-25.
    [46] Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G.Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science2001,294,1901-3.
    [47] Stockman, M.; Faleev, S.; Bergman, D. Localization versus delocalization ofsurface plasmons in nanosystems: Can one state have both characteristics [J].Phys. Rev. Lett.2001,87.
    [48] Ye, J.; Wen, F.; Sobhani, H.; Lassiter, J. B.; Van Dorpe, P.; Nordlander, P.; Halas,N. J. Plasmonic nanoclusters: Near field properties of the fano resonanceinterrogated with SERS [J]. Nano lett.2012,12,1660-7.
    [49] Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model forthe plasmon response of complex nanostructures [J]. Science2003,302,419-22.
    [50] Frimmer, M.; Coenen, T.; Koenderink, A. F. Signature of a fano resonance in aplasmonic metamolecule’s local density of optical states [J]. Phys. Rev. Lett.2012,108,077404.
    [51] Giannini, V.; Francescato, Y.; Amrania, H.; Phillips, C. C.; Maier, S. A. FanoResonances in Nanoscale Plasmonic Systems: A Parameter-Free ModelingApproach [J]. Nano Lett.2011,11,2835-2840.
    [52] Ho, J. F.; Luk’yanchuk, B.; Zhang, J. B.; Tunable Fano resonances insilver–silica–silver multilayer nanoshells [J]. Appl. Phys. A2011, DOI:10.1007/s00339-012-6757-1.
    [53] Atay, T.; Song, J.-H.; Nurmikko, A. V.; Strongly Interacting PlasmonNanoparticle Pairs: From Dipole Dipole Interaction to Conductively CoupledRegime [J]. Nano Lett.2004,4,1627-1631.
    [54] Lassiter, J. B.; Sobhani, H.; Knight, M. W.; Mielczarek, W. S.; Nordlander, P.;Halas, N. J. Designing and deconstructing the fano lineshape in plasmonicnanoclusters[J]. Nano Lett.2012,12,1058-1062.
    [55] Lawrie, B. J.; Kim, K.-W.; Norton, D. P.; Haglund Jr, R. F. Plasmon–excitonhybridization in ZnO quantum-well al nanodisc heterostructures[J]. Nano Lett.2012,12,6152-6157.
    [56] Halas, N. J.; Lal, S.; Link, S.; Chang, W. S.; Natelson, D.; Hafner, J. H.;Nordlander, P. A plethora of plasmonics from the laboratory for nanophotonics atrice university[J]. Adv. Mater.2012,24,4842-4877.
    [57] Butet, J.; Bachelier, G.; Russier-Antoine, I.; Bertorelle, F.; Mosset, A.; Lascoux,N.; Jonin, C.; Benichou, E.; Brevet, P. F. Nonlinear fano profiles in the opticalsecond-harmonic generation from silver nanoparticles[J]. Phys. Rev. B2012,86.
    [58] Sonnefraud, Y.; Verellen, N.; Sobhani, H.; Vandenbosch, G. A.; Moshchalkov, V.V.; Van Dorpe, P.; Nordlander, P.; Maier, S. A. Experimental realization ofsubradiant, superradiant, and fano resonances in ring/disk plasmonicnanocavities[J]. ACS Nano2010,4,1664-1670.
    [59] Lawrie, B. J.; Kim, K. W.; Norton, D. P.; Haglund, R. F., Jr. Plasmon-excitonhybridization in ZnO quantum-well al nanodisc heterostructures[J]. Nano Lett.2012,12,6152-7.
    [60] Zang, Y.; He, X.; Li, J.; Yin, J.; Li, K.; Yue, C.; Wu, Z.; Wu, S.; Kang, J. Bandedge emission enhancement by quadrupole surface plasmon–exciton couplingusing direct-contact ag/zno nanospheres[J]. Nanoscale2013,5,574-580.
    [61]Johnson, P. B.; Christy, R. W. Optical constants of the noble metals[J]. Phys. Rev.B1972,6,4370-4379.
    [62] Liu, M.; Lee, T.-W.; Gray, S. K.; Guyot-Sionnest, P.; Pelton, M. Excitation ofdark plasmons in metal nanoparticles by a localized emitter [J]. Phys. Rev. Lett.2009,102,107401.
    [63] Liu, N. The benefits of darkness [J].Nat. Mater.2009,699
    [64] Yang, Z.-J.; Zhang, Z.-S.; Zhang, L.-H.; Li, Q.-Q.; Hao, Z.-H.; Wang, Q.-Q. Fanoresonances in dipole-quadrupole plasmon coupling nanorod dimers [J]. Opt. Lett.2011,36,1542-1544.
    [65] Lassiter, J. B.; Sobhani, H. Knight, M. W.; Mielczarek, W. S.; Nordlander, P.;Halas, N. J. Designing and Deconstructing the Fano Lineshape in PlasmonicNanoclusters [J]. Nano Lett.2012,12,10581062.
    [66] Su, Y.-H.; Ke, Y.-F.; Cai, S.-L.; Yao, Q.-Y. Surface plasmon resonance oflayer-by-layer gold nanoparticles induced photoelectric current inenvironmentally-friendly plasmon-sensitized solar cell [J]. Light: Sci. Appl.2012,1, e14.
    [67] Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diodewith a wavelength of210nanometres [J]. Nature2006,441,325-328.
    [68] Wiley, B. J.; Xiong, Y.; Li, Z.-Y.; Yin, Y.; Xia, Y. Right bipyramids of silver: Anew shape derived from single twinned seeds[J]. Nano Lett.2006,6,765-768.
    [69] Sau, T. K.; Rogach, A. L.; J ckel, F.; Klar, T. A.; Feldmann, J. Properties andapplications of colloidal nonspherical noble metal nanoparticles[J]. Adv. Mater.2010,22,1805-1825.
    [70] Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M.L. Plasmonics for extreme light concentration and manipulation[J]. Nat. Mater.2010,9,193-204.
    [71] Li, D.; Sun, X.; Song, H.; Li, Z.; Chen, Y.; Jiang, H.; Miao, G. Realization of ahigh-performance gan uv detector by nanoplasmonic enhancement [J]. Adv.Mater.2012,24,845-9.
    [72] Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection withactive optical antennas [J]. Science2011,332,702-4.
    [73] Ma, R. M.; Oulton, R. F.; Sorger, V. J.; Zhang, X. Plasmon lasers: Coherent lightsource at molecular scales [J]. Laser Photonics Rev.2013,7,1-21.
    [74] Cheng, C. W.; Sie, E. J.; Liu, B.; Huan, C. H. A.; Sum, T. C.; Sun, H. D.; Fan, H.J. Surface plasmon enhanced band edge luminescence of zno nanorods bycapping au nanoparticles[J]. Appl. Phys. Lett.2010,96,071107.
    [75] Cheng, P.; Li, D.; Yuan, Z.; Chen, P.; Yang, D. Enhancement of ZnO lightemission via coupling with localized surface plasmon of ag island film[J]. Appl.Phys. Lett.2008,92,041119.
    [76] Chichibu, S.; Azuhata, T.; Sota, T.; Nakamura, S. Spontaneous emission oflocalized excitons in InGaN single and multiquantum well structures[J]. Appl.Phys. Lett.1996,69,4188.
    [77] Lozano, G.; Louwers, D. J.; Rodríguez, S. R. K.; Murai, S.; Jansen, O. T. A.;Verschuuren, M. A.; Gómez Rivas, J. Plasmonics for solid-state lighting:Enhanced excitation and directional emission of highly efficient light sources.Light: Sci. Appl.2013,2, e66.
    [78] Lukas Novotny, Niek van Hulst, Antennas for light [J]. Nat. Photon.2011,5,83-90.
    [79] Lu, Y.; Lal, A. High-efficiency ordered silicon nano-conical-frustum array solarcells by self-powered parallel electron lithography [J]. Nano Lett.2010,10,4651-6.
    [80] Mandalapu, L. J.; Yang, Z.; Xiu, F. X.; Zhao, D. T.; Liu, J. L. Homojunctionphotodiodes based on sb-doped p-type zno for ultraviolet detection [J]. Appl.Phys. Lett.2006,88,092103.
    [81] Park, W. I.; Yi, G.-C.; Kim, J. W.; Park, S. M. Schottky nanocontacts on ZnOnanorod arrays [J]. Appl. Phys. Lett.2003,82,4358.
    [82] Sun, X.; Li, D.; Jiang, H.; Li, Z.; Song, H.; Chen, Y.; Miao, G. Improvedperformance of GaN metal-semiconductor-metal ultraviolet detectors bydepositing SiO2nanoparticles on a gan surface[J]. Appl. Phys. Lett.2011,98,121117.
    [83] Tabares, G.; Hierro, A.; Ulloa, J. M.; Guzman, A.; Mu oz, E.; Nakamura, A.;Hayashi, T.; Temmyo, J. High responsivity and internal gain mechanisms inau-znmgo schottky photodiodes [J]. Appl. Phys. Lett.2010,96,101112.
    [84] Tut, T.; Yelboga, T.; Ulker, E.; Ozbay, E. Solar-blind algan-based p-i-nphotodetectors with high breakdown voltage and detectivity [J]. Appl. Phys. Lett.2008,92,103502.
    [85]Wang, W. J.; Shan, C. X.; Zhu, H.; Ma, F. Y.; Shen, D. Z.; Fan, X. W.; Choy, K. L.Metal–insulator–semiconductor–insulator–metal structured titanium dioxideultraviolet photodetector [J]. J. Phys. D: Appl. Phys.2010,43,045102.
    [86] Xu, S.; Hansen, B. J.; Wang, Z. L. Piezoelectric-nanowire-enabled power sourcefor driving wireless microelectronics [J]. Nat. Commun2010,1,93.
    [87] Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Self-powered nanowiredevices [J]. Nat. Nano.2010,5,366-73.
    [88] Xue, X.; Wang, S.; Guo, W.; Zhang, Y.; Wang, Z. L. Hybridizing energyconversion and storage in a mechanical-to-electrochemical process forself-charging power cell[J]. Nano Lett.2012,12,5048-54.
    [89] Yang, C.; Li, X. M.; Yu, W. D.; Gao, X. D.; Cao, X.; Li, Y. Z. Zero-biasedsolar-blind photodetector based on ZnBeMgO/Si heterojunction[J]. J. Phys. DAppl. Phys.2009,42.
    [90] Han, S.; Zhang, J.; Zhang, Z.; Wang, L.; Zhao, Y.; Zheng, J.; Cao, J.; Yao, B.;Zhao, D.; Shen, D. Contact properties of Au/Mg0.27Zn0.73O by differentannealing processes[J]. J. Phys. Chem. C2010,114,21757-21761.
    [91] Liao, M.; Koide, Y.; Alvarez, J. Single schottky-barrier photodiode withinterdigitated-finger geometry: Application to diamond [J]. Appl. Phys. Lett.2007,90,123507.
    [92] Donolato, C. Approximate analytical solution to the space charge problem innanosized schottky diodes[J]. J. Appl. Phys.2004,95,2184.
    [93] Tung, R.T. Electron transport at metal-semiconductor interfaces: General theory[J]. Phys. Rev. B1992,45,13509-13523.
    [94] Léonard, F.; Talin, A. Size-dependent effects on electrical contacts to nanotubesand nanowires[J]. Phys. Rev. Lett.2006,97.
    [95] Ruffino, F.; Grimaldi, M. G.; Giannazzo, F.; Roccaforte, F.; Raineri, V.Size-dependent schottky barrier height in self-assembled gold nanoparticles [J].Appl. Phys. Lett.2006,89,243113.
    [96] Smit, G. D. J.; Rogge, S.; Klapwijk, T. M. Scaling of nano-schottky-diodes [J].Appl. Phys. Lett.2002,81,3852.
    [97] Stevenson, D. T.; Keyes, R. J. Measurement of carrier lifetimes in germaniumand silicon[J]. J. Appl. Phys.1955,26,190.
    [98] Wang, P.; Zhen, Q.; Tang, Q.; Yang, Y.; Guo, L.; Ding, K.; Huang, F. Steady-statecharacteristics and transient response of MgZnO-basedmetal-semiconductor-metal solar-blind ultraviolet photodetector with three typesof electrode structures [J]. Opt. Express2013,21,18387-97.
    [99] Wang, P.; Zheng, Q.; Tang, Q.; Yang, Y.; Guo, L.; Huang, F.; Song, Z.; Zhang, Z.Dark current suppression of MgZnO metal-semiconductor-metal solar-blindultraviolet photodetector by asymmetric electrode structures [J]. Opt. Lett.2014,39,375-8.
    [100]Zhdanov, V. P.; Kasemo, B. Potential profiles near the schottky nanocontacts [J].Physica E: Low-dimensional Systems and Nanostructures2011,43,1486-1489.
    [101] Zhdanov, V. P.; Kasemo, B. Cabrera-mott kinetics of oxidation of metalnanowires[J]. Appl. Phys. Lett.2012,100,243105.
    [102] Zhdanov, V. P.; Kasemo, B. Photo-induced chemical processes onmetal–semiconductor–metal nanostructures [J]. Chem. Phys. Lett.2012,524,16-19.
    [103] Zhdanov, V. P.; Zori, I.; Kasemo, B. Plasmonics: Heat transfer between metalnanoparticles and supporting nanolayers [J]. Phys. E: Low-dimensionalSystems and Nanostructures2012,46,113-118.
    [104] Shen, H.; Shan, C.; Li, B.; Xuan, B.; Shen, D. Reliable self-powered highlyspectrum-selective ZnO ultraviolet photodetectors [J]. Appl. Phys. Lett.2013,103,232112.
    [105] Ni, P.-N.; Shan, C.-X.; Wang, S.-P.; Liu, X.-Y.; Shen, D.-Z. Self-poweredspectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shellnanowire arrays [J]. J. Mater. Chem. C2013,1,4445-4449.
    [106] Ni, P.-N.; Shan, C.-X.; Wang, S.-P.; Li, B.-H.; Zhang, Z.-Z.; Zhao, D.-X.; Liu,L.; Shen, D.-Z. Enhanced responsivity of highly spectrum-selective ultravioletphotodetectors [J]. J. Phys. Chem. C2011,116,1350-1353.
    [107] Hatch, S. M.; Briscoe, J.; Dunn, S. A self-powered ZnO-nanorod/cuscn UVphotodetector exhibiting rapid response [J]. Adv. Mater.2013,25,867-871.
    [108] Sobhani, A.; Knight, M. W.; Wang, Y.; Zheng, B.; King1, N. S.; Brown, L. V.;Fang, Z.; Nordlander, P.; Halas, N. J. Narrow band photodetection in thenear-infrared with a plasmon-induced hot electron device [J]. Nat. Commu.2013,4:1643,1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700