品种和母猪日粮蛋白水平对仔猪肝脏胆固醇代谢的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆固醇稳态是维持正常生命活动的保障。肝脏是胆固醇合成、转运、分泌和转化的场所,在维持机体胆固醇稳态方面是不可替代的。肝脏胆固醇代谢存在品种差异,但形成这种差异的分子机制尚不清楚。营养因素影响肝脏胆固醇代谢。食物中脂类和甾醇类对肝脏胆固醇合成、转运和转化的影响研究较多,而日粮蛋白水平对肝脏胆固醇代谢的影响鲜有报道。最近在大鼠上的研究表明,母体日粮蛋白限饲通过改变胆固醇转化关键酶表遗传修饰,影响子代肝脏胆固醇的转运和转化,而母体日粮蛋白水平对肝脏胆固醇合成的影响未见报道。本实验分两个部分。第一部分以肉脂型的二花脸猪和瘦肉型的大白猪为模型,研究肝脏胆固醇代谢的品种差异及其机制。第二部分以梅山猪为模型,研究母猪妊娠期和哺乳期饲喂传统的低蛋白日粮和NRC标准蛋白日粮对子代肝脏胆固醇代谢的影响及其表遗传机制。
     1仔猪肝脏胆固醇代谢的品种差异
     选取0日龄和25日龄的大白猪和二花脸猪各6头,称重采样,检测血清和肝脏的胆固醇水平和血清生化指标;Real-time PCR检测肝脏胆固醇代谢相关因子的表达;Western blotting检测肝脏胆固醇代谢调控因子和酶的蛋白含量。结果显示,0日龄和25日龄二花脸猪的体重极显著低于大白猪(P<0.01),0日龄和25日龄二花脸猪的肝重极显著低于大白猪的肝重(P<0.01),但两个日龄的肝体比在品种间无显著差异。0日龄二花脸仔猪血清总胆固醇和高密度脂蛋白胆固醇浓度极显著高于大白仔猪(P<0.01),血清低密度脂蛋白胆固醇浓度二花脸猪极显著低于大白猪(P<0.0J1),血清甘油三酯浓度无显著差异。0日龄仔猪肝脏胆固醇含量二花脸猪显著高于大白猪(P<0.05),肝脏甘油三酯含量在品种间无显著差异;25日龄二花脸仔猪血清总胆固醇、高密度脂蛋白胆固醇和低密度脂蛋白胆固醇,以及甘油三酯浓度均显著高于大白猪(P<0.01)。25日龄仔猪肝脏胆固醇含量(P<0.05)和甘油三酯含量(P<0.01)二花脸猪均显著高于大白猪。0日龄仔猪肝脏胆固醇代谢相关基因的表达差异表现为肝脏胆固醇转化中性途径的关键酶胆固醇-7α-羟化酶二花脸猪显著低于大白猪(P<0.01);25日龄仔猪肝脏胆固醇调节元件结合蛋白2(SREBP2) mRNA表达和蛋白含量二花脸猪均显著高于大白猪(P<0.05)。
     以上结果表明,二花脸猪肝脏和血清胆固醇含量高于大白猪。0日龄时主要与胆固醇-7α-羟化酶表达较低有关,提示新生二花脸猪肝脏胆固醇向胆汁酸的转化水平较低;25日龄主要表现为较高的SREBP2表达,提示二花脸猪肝脏胆固醇的合成能力较强。尽管0日龄和25日龄二花脸猪肝脏胆固醇含量均高于大白猪,但其分子机制具有年龄依赖性。
     2母猪日粮蛋白水平对断奶仔猪肝脏胆固醇含量及相关基因和蛋白表达的影响
     选用14头初产的小梅山母猪,随机分为两组,即标准蛋白组(SP)和低蛋白组(LP)。标准蛋白组妊娠期和哺乳期饲料中粗蛋白含量分别为12%和14%,低蛋白组妊娠期和哺乳期饲料中粗蛋白含量分别为6%和7%,饲料粗蛋白含量不同但能量相等。仔猪35d断奶。测定仔猪体重、肝重,采集血清和肝脏样品,检测血清激素水平、生化指标、肝脏甘油三酯和胆固醇含量;Real-time PCR检测肝脏胆固醇代谢相关因子的表达;Western blotting检测肝脏胆固醇代谢调控因子;酶活分析试剂盒检测肝脏胆固醇合戍关键酶的活性。结果显示:LP组断奶仔猪的体重和肝重显著低于SP组(P<0.05),但肝体比两组间没有差异;母体低蛋白日粮对断奶仔猪血清T3、T4没有影响,血清胰岛素水平LP组显著低于SP组(P<0.05);母体低蛋白日粮显著降低了断奶仔猪血清和肝脏的胆固醇含量(P<0.05),肝脏甘油三酯有下降的趋势(P=0.08);血清低密度脂蛋白胆固醇和高密度脂蛋白胆固醇,低密度脂蛋白胆固醇/高密度脂蛋白胆固醇比值在两组间无显著差异;LP组仔猪肝脏胆固醇调节元件结合蛋白2(SREBP2)的mRNA表达和蛋白含量显著升高(P<0.05),胰岛素诱导基因(Insig)和胆固醇调节元件结合蛋白裂解激活蛋白mRNA表达显著增加(P<0.05),3-羟-3-甲基戊二酸单酰CoA还原酶(HMGCR) mRNA表达和酶活显著增加(P<0.05),肝脏胆固醇降解经典途径的关键酶-CYP7α1mRNA表达LP组显著高于SP组(P<0.05),而肝脏胆固醇降解替代途径的关键酶-CYP27α1mRNA表达两组间没有差异。
     以上结果说明,梅山母猪妊娠期和哺乳期饲喂低蛋白日粮,显著降低断奶仔猪血清和肝脏的胆固醇含量,并伴随肝脏胆固醇合成、转化相关基因表达模式的变化,提示母猪日粮蛋白水平通过调控相关功能基因表达,影响子代肝脏胆固醇代谢。
     3母猪日粮蛋白水平影响子代肝脏胆固醇合成的表遗传机制
     鉴于羟甲基戊二酸单酰辅酶A还原酶(HMGCR)为肝脏胆固醇合成的限速酶,母体日粮蛋白水平显著影响子代肝脏HMGCR的表达和活性,并且HMGCR的启动子序列清楚,因此选择HMGCR为靶基因研究母猪日粮蛋白水平影响子代肝脏胆固醇合成的表遗传机制。用5-甲基胞嘧啶抗体进行DNA免疫沉淀检测HMGCR启动子区的DNA甲基化程度;用组蛋白H3乙酰化抗体、组蛋白H3K9单甲基化抗体、组蛋白H3K27三甲基化抗体和组蛋白H3K4三甲基化抗体进行染色质免疫沉淀分别检测HMGCR基因启动子区组蛋白H3的乙酰化和甲基化修饰状况。此外,采用Real-time检测了以HMGCR为靶的miRNA的表达。结果表明,LP组HMGCR基因启动子区甲基化和组蛋白H3K9me水平显著低于SP组(P<0.01),而组蛋白组H3乙酰化显著升高(P<0.01),同时组蛋白H3K27me3有下降的趋势(P=0.08);但以HMGCR为靶的miRNA的表达两组间无显著差异(P>0.08)。
     以上结果表明梅山母猪妊娠期和哺乳期饲喂低蛋白日粮通过降低HMGCR基因启动子的甲基化水平,提高启动子区组蛋白H3乙酰化程度,并下调H3K9me和H3K27me3表遗传标记,从而使HMGCR基因表达上调,影响肝脏胆固醇稳态。
Cholesterol homeostasis is necessary for the maintenance of normal life activities. Liver is for the place where cholesterol is synthesized, transported, secreted and transformated, thus liver takes an irreplaceable role in cholesterol homeostasis. Hepatic cholesterol metabolism differs between breeds, yet the molecular mechanism is unclear. Nutrients, such as lipids and sterols in diets, are reported to effect on hepatic cholesterol transportation and transformation, while the effect of dietary protein is rarely reported. Recent study on rats show that maternal dietary protein restriction could change cholesterol homeostasis by epigenetic modification of key enzymes for cholesterol transportation and transformation in offspring livers, while the epigenetic programming on cholesterol synthesis in the liver is not explored yet. Our study divided into two parts. The first part took fat Erhualian and lean Large White as models to study the differences in hepatic cholesterol metabolism between breeds and the mechanism involved. The second part was done on Meishan pigs to study the effects of maternal protein (traditional low-protein diet and standard protein diet of NRC) during pregnancy and lactation on hepatic cholesterol metabolism of offspring and the epigenetic mechanisms.
     1. The differences on hepatic cholesterol metabolism between Erhualian and Large White piglets
     Large White and Erhualian piglets (at birth and25-day-old) were used in the study,6each time point per breed. Animals were weighted, liver and serum were collected for the analysis. Cholesterol concentration and other lipid parameters were measured by commercial kits, hepatic cholesterol metabolism-related gene expressions were tested by Real-time PCR. The protein of the key regulatory factors and enzyme were investigated by Western blotting. These results suggest that Erhualian piglets had significantly lower body and liver weight compared with Large White (P<0.01), but the liver/body weight ratio showed no difference between the two breeds, no matter which time point tested. On the birth piglets, Erhualian had significantly higher serum total cholesterol (Tch) as well as higher density lipoprotein cholesterol (HDL-C) and liver cholesterol content (P<0.01), but significantly lower serum low density lipoprotein cholesterol (LDL-C) concentration compared with Large White; serum and liver triglyceride (TG) concentrations were similar between breeds (P>0.05) together with significantly lower CYP7A1mRNA in the Erhualian piglets. On the25-day-old piglets, cholesterol and triglyceride concentrations in serum (P<0.01) and liver (P<0.05) were significantly higher in Erhualian than those in Large White, with significantly higher SREBP2mRNA and protein levels in Erhualian.
     In conclusion, Erhualian had significantly higher liver and serum cholesterol than Large White. The lower CYP7A1expression in birth Erhualian indicated a lower conversion rate from cholesterol to bile acids in Erhualian birth, while the higher content of SREBP2in liver result in a stronger cholesterol synthesis in Erhualian of25-day-old, indicating that the age-depended of the mechanism effect on cholesterol concentration in breed-specific in this study.
     2. Effects of maternal protein on liver cholesterol, cholesterol metabolism related gene and protein expression in g Little Meishan weanin piglets
     14primiparous Little Meishan sow were randomly divided into two groups, treated with standard protein (SP) and low-protein (LP) during pregnancy and lactation respectively. Crude protein concentration in SP, according to NTC, was12%during pregnancy and14%during lactation and those of LP were6%and7%, respectively; the energy content was balanced to the same. The piglets were under35-day weaning program, slaughtered at day35. Serum and liver were collected for measurement of hormones, serum lipid parameters and liver triglyceride and cholesterol analysis. Hepatic cholesterol metabolism-related gene expressions were tested by Real-time PCR. The protein of the key regulatory factors and enzyme were investigated by Western blotting. The activities of key enzymes in liver cholesterol synthesis were evaluated by commercial kits. The results indicated that body weight and liver weight of weaning piglets in LP group were significantly lower than that of SP group (P<0.05), while the liver/body weight ratio were comparable. Seum T3and T4were not changed by maternal protein, but circulating insulin, cholesterol and liver cholesterol were significantly lower in piglets from LP fed sows(P<0.05), with a tendency to down of liver TG(P=0.08). The serum HDL, LDL and HDL/LDL ratio were not changed. Piglets from LP fed sows had significant higher mRNA and protein of SREBP2, higher transcription of Insig and HMGCR and lower levels of CYP7al transcript(P<0.05). These results indicated that by feeding Little Meishan sows with low-protein diet during pregnancy and lactation, had lower serum and liver cholesterol level, accompanied with change on cholesterol synthesis-and transformation-related genes and/or proteins, suggesting that the liver cholesterol metabolism in the offspring was programmed by maternal diet protein through changing functional gene and/or protein expression.
     3. Maternal dietary protein level affects offspring hepatic cholesterol synthesis through epigenetic regulation of gene expression
     HMGCR is the rate-limiting enzyme in hepatic cholesterol synthesis and its promoter region is well displaied, so it is an ideal target to explore the epigenetic modifications involved in the programming mechanism on the offsprings.
     Methylation level of HMGCR promoter region was measured by DNA immunoprecipitation by using5-methylcytosine antibody. Anti-histone H3acetylation, histone H3K9monomethyl, histone H3K27trimethyl and histone H3K4trimethyl antibodies were used to measure histone H3acetylation and methylation in HMGCR promoter region by chromatin immunoprecipitation. In addition, expression of miRNAs targeting HMGCR was measured by Real-time PCR. Results indicated methylation in HMGCR promoter region and histone H3K9me enrichment in the LP group was significantly lower than that in SP group (P<0.01), together with significantly higher histone H3acetylation (P<0.01) but lower histone H3K27me3(P=0.08) enrichment on HMGCR promoter region. The expression of liver miRNAs targeting HMGCR showed no significant difference between LP and SP (P>0.05). In summary, the low-protein diet during pregnancy and lactation period of Little Meishan sows could enhance HMGCR expression in the offspring livers through reducing DNA methylation of HMGCR promoter region, increasing acetylation of histone H3, and down regulation epigenetic modifications, such as H3K9me and H3K27me3.
引文
[1]Levine GN, Keaney Jr JF, Vita JA. Cholesterol reduction in cardiovascular diseaseiaclinical benefits and possible mechanisms. New England Journal of Medicine 1995;332(8):512-521.
    [2]Knopp RH. Drug treatment of lipid disorders. N Engl J Med 1999 Aug 12;341 (7):498-511.
    [3]Wollemann M, Benyhe S. Non-opioid actions of opioid peptides. Life Sci 2004 Jun 4;75(3):257-270.
    [4]Pond WG, Mersmann HJ, Young LD. Heritability of plasma cholesterol and triglyceride concentrations in swine. Proc Soc Exp Biol Med 1986 Jun; 182(2):221-224.
    [5]Pond WG, Su DR, Mersmann HJ. Divergent concentrations of plasma metabolites in swine selected for seven generations for high or low plasma total cholesterol. J Anim Sci 1997 Feb;75(2):311-316.
    [6]Wheeler TL, Davis GW, Stoecker BJ, Harmon CJ. Cholesterol concentration of longissimus muscle, subcutaneous fat and serum of two beef cattle breed types. J Anim Sci 1987 Dec;65(6):1531-1537.
    [7]Adams WC, Gaman EM, Feigenbaum AS. Breed differences in the responses of rabbits to atherogenic diets. Atherosclerosis 1972 Nov-Dec;16(3):405-411.
    [8]Lacombe C, Nibbelink M. Breed differences in nutritionally induced hyperlipoproteinemia in the rabbit. Artery 1980;7(5):419-427.
    [9]Serao NV, Veroneze R, Ribeiro AM, Verardo LL, Braccini Neto J, Gasparino E, Campos CF, Lopes PS, Guimaraes SE. Candidate gene expression and intramuscular fat content in pigs. J Anim Breed Genet 2011 Feb;128(1):28-34.
    [10]Marchand K, Revesz A, Arany E, Hardy DB. Maternal Protein Restriction Elevates Cholesterol in Adult Rat Offspring Due to Repressive Changes in Histone Modifications at the Cholesterol 7{alpha}-Hydroxylase Promoter. Mol Endocrinol.2011 May;25(5):785-98.
    [11]van Straten EM, Bloks VW, Huijkman NC, Baller JF, van MH, Lutjohann D, Kuipers F, Plosch T. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. AmJPhysiol RegulIntegrComp Physiol 2010;298(2):R275-R282.
    [12]Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med 2007 Feb;7(1):85-102.
    [13]Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005 Jul 26; 102(30):10604-10609.
    [14]Sarr O, Louveau I, Kalbe C, Metges CC, Rehfeldt C, Gondret F. Prenatal exposure to maternal low or high protein diets induces modest changes in the adipose tissue proteome of newborn piglets. J Anim Sci 2010 May;88(5):1626-1641.
    [15]Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986 Nov 28;256(20):2823-2828.
    [16]Scott CL. Diagnosis, prevention, and intervention for the metabolic syndrome. Am J Cardiol 2003 Jul 3;92(lA):35i-42i.
    [17]周顺伍.动物生物化学.北京:中国农业出版社1999 1999;第三版.
    [18]Naik SU, Wang X, Da Silva JS, Jaye M, Macphee CH, Reilly MP, Billheimer JT, Rothblat GH, Rader DJ. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006 Jan 3;113(1):90-97.
    [19]Chiang JY. Regulation of bile acid synthesis:pathways, nuclear receptors, and mechanisms. J Hepatol 2004 Mar;40(3):539-551.
    [20]Vlahcevic Zr Fau-Pandak WM, Pandak Wm Fau-Stravitz RT, Stravitz RT. Regulation of bile acid biosynthesis.1999.
    [21]Chiang JY. Regulation of bile acid synthesis. Front Biosci 1998 Feb 15;3:d176-193.
    [22]Rajavashisth TB, Taylor AK, Andalibi A, Svenson KL, Lusis AJ. Identification of a zinc finger protein that binds to the sterol regulatory element. Science 1989 Aug 11;245(4918):640-643.
    [23]Simons K, Ikonen E. Functional rafts in cell membranes. Nature 1997 Jun 5;387(6633):569-572.
    [24]Brown MS, Goldstein JL. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997 May 2;89(3):331-340.
    [25]Tontonoz P, Kim JB, Graves RA, Spiegelman BM. ADD1:a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993 Aug;13(8):4753-4759.
    [26]Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, Wang X. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci U S A 1993 Dec 15;90(24):11603-11607.
    [27]Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 1993 Oc+ 8;75(1):187-197.
    [28]Brown Ms Fau-Goldstein JL, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood.1999 Sep 28;96(20):11041-8..
    [29]Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys 2002 Jan 15;397(2):139-148.
    [30]Edwards PA, Tabor D, Kast HR, Venkateswaran A. Regulation of gene expression by SREBP and SCAP. Biochim Biophys Acta 2000 Dec 15;1529(1-3):103-113.
    [31]Nohturfft A Fau-Brown MS, Brown Ms Fau-Goldstein JL, Goldstein JL. Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain.1998 19980806 DCOM-1998 Jul 3;273(27):17243-50.
    [32]Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL. Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 1997 Aug 8;272(32):20213-20221.
    [33]Neer Ej Fau-Schmidt CJ, Schmidt Cj Fau-Nambudripad R, Nambudripad R Fau-Smith TF, Smith TF. The ancient regulatory-protein family of WD-repeat proteins.1994 Oct 27;371(6500):812.
    [34]Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, Goldstein JL. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J Biol Chem 2004 Dec 10;279(50):52772-52780.
    [35]Gong Y Fau-Lee JN, Lee Jn Fau-Lee PCW, Lee Pc Fau-Goldstein JL, Goldstein Jl Fau-Brown MS, Brown Ms Fau-Ye J, Ye J. Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake.2006 Jan;3(1):15-24.
    [36]Bengoechea-Alonso Mt Fau-Ericsson J, Ericsson J. SREBP in signal transduction:cholesterol metabolism and beyond.2007 Apr;19(2):215-22.
    [37]Espenshade PJ, Cheng D, Goldstein JL, Brown MS. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 1999 Aug 6;274(32):22795-22804.
    [38]Shimano H. Sterol regulatory element-binding proteins (SREBPs):transcriptional regulators of lipid synthetic genes.2001 Nov;40(6):439-52.
    [39]Horton JD, Goldstein JL, Brown MS. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002 May; 109(9):1125-1131.
    [40]Guillet-Deniau I, Mieulet V, Le Lay S, Achouri Y, Carre D, Girard J, Foufelle F, Ferre P. Sterol regulatory element binding protein-lc expression and action in rat muscles:insulin-like effects on the control of glycolytic and lipogenic enzymes and UCP3 gene expression. Diabetes 2002 Jun;51(6):1722-1728.
    [41]Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys.2010 Sep 15;501(2):177-81.
    [42]Omkumar Rv Fau-Darnay BG, Darnay Bg Fau-Rodwell VW, Rodwell VW. Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. J Biol Chem 1994 Jun 10;269(23):16518.
    [43]Crestani M Fau-Karam WG, Karam Wg Fau-Chiang JY, Chiang JY. Effects of bile acids and steroid/thyroid hormones on the expression of cholesterol 7 alpha-hydroxylase mRNA and the CYP7 gene in HepG2 cells. Biochem Biophys Res Commun.1994 Jan 28;198(2):546-53.
    [44]Stravitz Rt Fau-Hylemon PB, Hylemon Pb Fau-Heuman DM, Heuman Dm Fau-Hagey LR, Hagey Lr Fau-Schteingart CD, Schteingart Cd Fau-Ton-Nu HT, Ton-Nu Ht Fau-Hofmann AF, Hofinann Af Fau-Vlahcevic ZR, Vlahcevic ZR. Transcriptional regulation of cholesterol 7 alpha-hydroxylase mRNA by conjugated bile acids in primary cultures of rat hepatocytes. J Biol Chem.1993 Jul 5;268(19):13987-93.
    [45]Pandak Wm Fau-Vlahcevic ZR, Vlahcevic Zr Fau-Heuman DM, Heuman Dm Fau-Redford KS, Redford Ks Fau-Chiang JY, Chiang Jy Fau-Hylemon PB, Hylemon PB. Effects of different bile salts on steady-state mRNA levels and transcriptional activity of cholesterol 7 alpha-hydroxylase. Hepatology.1994 Apr; 19(4):941-7.
    [46]Wang L Fau-Lee Y-K, Lee Yk Fau-Bundman D, Bundman D Fau-Han Y, Han Y Fau Thevananther S, Thevananther S Fau-Kim CS, Kim Cs Fau-Chua SS, Chua Ss Fau-Wei P, Wei P Fau-Heyman RA, Heyman Ra Fau-Karin M, Karin M Fau-Moore DD, Moore DD. Redundant pathways for negative feedback regulation of bile acid production. Dev Cell.2002 Jun;2(6):721-31.
    [47]Goodwin B Fau-Jones SA, Jones Sa Fau-Price RR, Price Rr Fau-Watson MA, Watson Ma Fau-McKee DD, McKee Dd Fau-Moore LB, Moore Lb Fau-Galardi C, Galardi C Fau-Wilson JG, Wilson Jg Fau-Lewis MC, Lewis Mc Fau-Roth ME, Roth Me Fau-Maloney PR, Maloney Pr Fau-Willson TM, Willson Tin Fau-Kliewer SA, Kliewer SA. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell.2000 Sep;6(3):517-26.
    [48]Lu Tt Fau-Makishima M, Makishima M Fau-Repa JJ, Repa Jj Fau-Schoonjans K, Schoonjans K Fau-Kerr TA, Kerr Ta Fau-Auwerx J, Auwerx J Fau-Mangelsdorf DJ, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell.2000 Sep;6(3):507-15.
    [49]Handschin C Fau-Gnerre C, Gnerre C Fau-Fraser DJ, Fraser Dj Fau-Martinez-Jimenez C, Martinez-Jimenez C Fau-Jover R, Jover R Fau-Meyer UA, Meyer UA. Species-specific mechanisms for cholesterol 7alpha-hydroxylase (CYP7A1) regulation by drugs and bile acids. Arch Biochem Biophys.2005 Feb 1;434(1):75-85.
    [50]Alberts B JA, Lewis J, et al.. Chapter 13:Intracellular vesicular traffic, in:Molebiology of the Cell 4th ed.. Garlan Science 2002:711-766.
    [51]Sekar N Fau-Veldhuis JD, Veldhuis JD. Involvement of Spl and SREBP-la in transcriptional activation of the LDL receptor gene by insulin and LH in cultured porcine granulosa-luteal cells. Am J Physiol Endocrinol Metab.2004 Jul;287(1):E128-35. Epub 2004 Mar 2.
    [52]Liu J, Ahlborn TE, Briggs MR, Kraemer FB. Identification of a novel sterol-independent regulatory element in the human low density lipoprotein receptor promoter. J Biol Chem 2000 Feb 18;275(7):5214-5221.
    [53]Li C, Kraemer FB, Ahlborn TE, Liu J. Induction of low density lipoprotein receptor (LDLR) transcription by oncostatin M is mediated by the extracellular signal-regulated kinase signaling pathway and the repeat 3 element of the LDLR promoter. J Biol Chem 1999 Mar 5;274(10):6747-6753.
    [54]Kong W, Abidi P, Kraemer FB, Jiang JD, Liu J. In vivo activities of cytokine oncostatin M in the regulation of plasma lipid levels. J Lipid Res 2005 Jun;46(6):1163-1171.
    [55]Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Li Z, Liu J, Jiang JD. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004 Dec;10(12):1344-1351.
    [56]Ness Gc Fau-Lopez D, Lopez D Fau-Chambers CM, Chambers Cm Fau-Newsome WP, Newsome Wp Fau-Cornelius P, Cornelius P Fau-Long CA, Long Ca Fau-Harwood HJ, Jr., Harwood HJ, Jr. Effects of L-triiodothyronine and the thyromimetic L-94901 on serum lipoprotein levels and hepatic low-density lipoprotein receptor,3-hydroxy-3-methylglutaryl coenzyme A reductase, and apo A-I gene expression. Biochem Pharmacol.1998 Jul 1;56(1):121-9.
    [57]Rodriguez-Sanabria F Fau-Rull A, Rull A Fau-Aragones G, Aragones G Fau-Beltran-Debon R, Beltran-Debon R Fau-Alonso-Villaverde C, Alonso-Villaverde C Fau-Camps J, Camps J Fau-Joven J, Joven J. Differential response of two models of genetically modified mice fed with high fat and cholesterol diets:relationship to the study of non-alcoholic steatohepatitis. Mol Cell Biochem. 2010 Oct;343(1-2):59-66. Epub 2010 May 29.
    [58]Chen M, Bradley MN, Beaven SW, Tontonoz P. Phosphorylation of the liver X receptors. FEBS Lett 2006 Sep 4;580(20):4835-4841.
    [59]Reynolds WF, Kumar AP, Piedrafita FJ. The human myeloperoxidase gene is regulated by LXR and PPARalpha ligands. Biochem Biophys Res Commun 2006 Oct 20;349(2):846-854.
    [60]Geyeregger R, Zeyda M, Stulnig TM. Liver X receptors in cardiovascular and metabolic disease. Cell Mol Life Sci 2006 Mar;63(5):524-539.
    [61]Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest 2006 Mar;l 16(3):607-614.
    [62]Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 2005 Aug 11;353(6):604-615.
    [63]Ishimoto K, Tachibana K, Sumitomo M, Omote S, Hanano I, Yamasaki D, Watanabe Y, Tanaka T, Hamakubo T, Sakai J, Kodama T, Doi T. Identification of human low-density lipoprotein receptor as a novel target gene regulated by liver X receptor alpha. FEBS Lett 2006 Sep 4;580(20):4929-4933.
    [64]Buono C, Li Y, Waldo SW, Kruth HS. Liver X receptors inhibit human monocyte-derived macrophage foam cell formation by inhibiting fluid-phase pinocytosis of LDL. J Lipid Res 2007 Nov;48(11):2411-2418.
    [65]Forman BM, Evans RM. Nuclear hormone receptors activate direct, inverted, and everted repeats. Ann N Y Acad Sci 1995 Jun 12;761:29-37.
    [66]Tu H, Okamoto AY, Shan B. FXR, a bile acid receptor and biological sensor. Trends Cardiovasc Med 2000 Jan;10(1):30-35.
    [67]Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 1999 May 21;284(5418):1362-1365.
    [68]Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999 May;3(5):543-553.
    [69]Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000 Apr 14;275(15):10918-10924.
    [70]Lambert G, Amar MJ, Guo G, Brewer HB, Jr., Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 2003 Jan 24;278(4):2563-2570.
    [71]Song BL, Wang CH, Yao XM, Yang L, Zhang WJ, Wang ZZ, Zhao XN, Yang JB, Qi W, Yang XY, Inoue K, Lin ZX, Zhang HZ, Kodama T, Chang CC, Liu YK, Chang TY, Li BL. Human acyl-CoA:cholesterol acyltransferase 2 gene expression in intestinal Caco-2 cells and in hepatocellular carcinoma. Biochem J 2006 Mar 15;394(Pt 3):617-626.
    [72]Yao XM, Wang CH, Song BL, Yang XY, Wang ZZ, Qi W, Lin ZX, Chang CC, Chang TY, Li BL. Two human ACAT2 mRNA variants produced by alternative splicing and coding for novel isoenzymes. Acta Biochim Biophys Sin (Shanghai) 2005 Dec;37(12):797-806.
    [73]Buhman KF, Accad M, Farese RV. Mammalian acyl-CoA:cholesterol acyltransferases. Biochim Biophys Acta 2000 Dec 15;1529(1-3):142-154.
    [74]Chang CC, Sakashita N, Ornvold K, Lee O, Chang ET, Dong R, Lin S, Lee CY, Strom SC, Kashyap R, Fung JJ, Farese RV, Jr., Patoiseau JF, Delhon A, Chang TY. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem 2000 Sep 8;275(36):28083-28092.
    [75]Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 2001 May;42(5):725-734.
    [76]Brown JM, Bell TA,3rd, Alger HM, Sawyer JK, Smith TL, Kelley K, Shah R, Wilson MD, Davis MA, Lee RG, Graham MJ, Crooke RM, Rudel LL. Targeted depletion of hepatic ACAT2-driven cholesterol esterification reveals a non-biliary route for fecal neutral sterol loss. J Biol Chem 2008 Apr 18;283(16):10522-10534.
    [77]Temel RE, Gebre AK, Parks JS, Rudel LL. Compared with Acyl-CoA:cholesterol O-acyltransferase (ACAT) 1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. J Biol Chem 2003 Nov 28;278(48):47594-47601.
    [78]An S, Cho KH, Lee WS, Lee JO, Paik YK, Jeong TS. A critical role for the histidine residues in the catalytic function of acyl-CoA:cholesterol acyltransferase catalysis:evidence for catalytic difference between ACAT1 and ACAT2. FEBS Lett 2006 May 15;580(11):2741-2749.
    [79]Downs LG, Bolton CH, Crispin SM, Wills JM. Plasma lipoprotein lipids in five different breeds of dogs. Res Vet Sci 1993 Jan;54(1):63-67.
    [80]Pasquini A, Luchetti E, Cardini G. Plasma lipoprotein concentrations in the dog:the effects of gender, age, breed and diet. J Anim Physiol Anim Nutr (Berl) 2008 Dec;92(6):718-722.
    [81]Sato K, Agoh H, Kaneshige T, Hikasa Y, Kagota K. Hypercholesterolemia in Shetland sheepdogs. J Vet Med Sci 2000 Dec;62(12):1297-1301.
    [82]O'Kelly JC, Wallace AL. Plasma thyroid hormones and cholesterol in the newborn of genetically different types of cattle in a tropical environment. Biol Neonate 1979;36(1-2):55-62.
    [83]Eichhorn JM, Coleman LJ, Wakayama EJ, Blomquist GJ, Bailey CM, Jenkins TG. Effects of breed type and restricted versus ad libitum feeding on fatty acid composition and cholesterol content of muscle and adipose tissue from mature bovine females. J Anim Sci 1986 Sep;63(3):781-794.
    [84]Yin JD, Shang XG, Li DF, Wang FL, Guan YF, Wang ZY. Effects of dietary conjugated linoleic acid on the fatty acid profile and cholesterol content of egg yolks from different breeds of layers. Poult Sci 2008 Feb;87(2):284-290.
    [85]Trost Su Fau-Swanson E, Swanson E Fau-Gloss B, Gloss B Fau-Wang-Iverson DB, Wang-Iverson Db Fau-Zhang H, Zhang H Fau-Volodarsky T, Volodarsky T Fau-Grover GJ, Grover Gj Fau-Baxter JD, Baxter Jd Fau-Chiellini G, Chiellini G Fau-Scanlan TS, Scanlan Ts Fau-Dillmann WH, Dillmann WH. The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology.2000 Sep;141(9):3057-64.
    [86]Pedrelli M Fau-Pramfalk C, Pramfalk C Fau-Parini P, Parini P. Thyroid hormones and thyroid hormone receptors:effects of thyromimetics on reverse cholesterol transport. World J Gastroenterol. 2010 Dec 21;16(47):5958-64.
    [87]Hylemon Pb Fau-Gurley EC, Gurley Ec Fau-Stravitz RT, Stravitz Rt Fau-Litz JS, Litz Js Fau-Pandak WM, Pandak Wm Fau-Chiang JY, Chiang Jy Fau-Vlahcevic ZR, Vlahcevic ZR. Hormonal regulation of cholesterol 7 alpha-hydroxylase mRNA levels and transcriptional activity in primary rat hepatocyte cultures. J Biol Chem.1992 Aug 25;267(24):16866-71.
    [88]Tancevski I Fau-Demetz E, Demetz E Fau-Eller P, Eller P. Sobetirome:a selective thyromimetic for the treatment of dyslipidemia. Recent Pat Cardiovasc Drug Discov.2011 Jan;6(1):16-9.
    [89]Yellaturu CR, Deng X, Park EA, Raghow R, Elam MB. Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-lc by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-lc complex. J Biol Chem 2009 Nov 13;284(46):31726-31734.
    [90]Yellaturu CR, Deng X, Cagen LM, Wilcox HG, Mansbach CM,2nd, Siddiqi SA, Park EA, Raghow R, Elam MB. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J Biol Chem 2009 Mar 20;284(12):7518-7532.
    [91]Ness GC, Zhao Z, Wiggins L. Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity by affecting immunoreactive protein levels. J Biol Chem 1994 Nov 18;269(46):29168-29172.
    [92]Ness Gc Fau-Wiggins L, Wiggins L Fau-Zhao Z, Zhao Z. Insulin increases hepatic 3-hydroxy-methylglutaryl coenzyme A reductase mRNA and immunoreactive protein levels in diabetic rats. Arch Biochem Biophys.1994 Feb 15;309(1):193-4.
    [93]Mulvihill Ee Fau-Allister EM, Allister Em Fau-Sutherland BG, Sutherland Bg Fau-Telford DE, Telford De Fau-Sawyez CG, Sawyez Cg Fau-Edwards JY, Edwards Jy Fau-Markle JM, Markle Jm Fau-Hegele RA, Hegele Ra Fau-Huff MW, Huff MW. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes.2009 Oct;58(10):2198-210. Epub 2009 Jul 10.
    [94]De Fabiani E Fau-Crestani M, Crestani M Fau-Marrapodi M, Marrapodi M Fau-Pinelli A, Pinelli A Fau-Golfieri V, Golfieri V Fau-Galli G, Galli G. Identification and characterization of cis-acting elements conferring insulin responsiveness on hamster cholesterol 7alpha-hydroxylase gene promoter. Biochem J.2000 Apr 1;347 Pt 1:147-54.
    [95]Tabas I. Consequences of cellular cholesterol accumulation:basic concepts and physiological implications. J Clin Invest 2002 Oct;110(7):905-911.
    [96]Duncan EA, Brown MS, Goldstein JL, Sakai J. Cleavage site for sterol-regulated protease localized to a leu-Ser bond in the lumenal loop of sterol regulatory element-binding protein-2. J Biol Chem 1997 May 9;272(19):12778-12785.
    [97]Harding Sv Fau-Rideout TC, Rideout Tc Fau-Jones PJH, Jones PJ. Hepatic nuclear sterol regulatory binding element protein 2 abundance is decreased and that of ABCG5 increased in male hamsters fed plant sterols. J Nutr.2010 Jul;140(7):1249-54.
    [98]Chan MY, Heng CK. Sequential effects of a high-fiber diet with psyllium husks on the expression levels of hepatic genes and plasma lipids. Nutrition 2008 Jan;24(1):57-66.
    [99]Engle TE, Spears JW, Armstrong TA, Wright CL, Odle J. Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. J Anim Sci 2000 Apr;78(4):1053-1059.
    [100]Engle TE, Spears JW, Xi L, Edens FW. Dietary copper effects on lipid metabolism and circulating catecholamine concentrations in finishing steers. J Anim Sci 2000 Oct;78(10):2737-2744.
    [101]Qasem RJ, Cherala G, D'mello AP. Maternal protein restriction during pregnancy and lactation in rats imprints long-term reduction in hepatic lipid content selectively in the male offspring. NutrRes 2010;30(6):410-417.
    [102]Zambrano E Fau-Bautista CJ, Bautista Cj Fau-Deas M, Deas M Fau-Martinez-Samayoa PM, Martinez-Samayoa Pm Fau-Gonzalez-Zamorano M, Gonzalez-Zamorano M Fau-Ledesma H, Ledesma H Fau-Morales J, Morales J Fau-Larrea F, Larrea F Fau-Nathanielsz PW, Nathanielsz PW. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol.2006 Feb 15;571(Pt 1):221-30.
    [103]Lucas A, Baker BA, Desai M, Hales CN. Nutrition in pregnant or lactating rats programs lipid metabolism in the offspring. BrJNutr 1996;76(4):605-612.
    [104]Liscum L, Finer-Moore J, Stroud RM, Luskey KL, Brown MS, Goldstein JL. Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. J Biol Chem 1985 Jan 10;260(1):522-530.
    [105]Luskey KL. Structure and expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Ann N Y Acad Sci.1986;478:249-54.
    [106]Beg ZH, Stonik JA, Brewer HB, Jr. Phosphorylation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and modulation of its enzymic activity by calcium-activated and phospholipid-dependent protein kinase. J Biol Chem 1985 Feb 10;260(3):1682-1687.
    [107]Ferrer A, Caelles C, Massot N, Hegardt FG. Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5'-monophosphate. Biochem Biophys Res Commun 1985 Oct 30;132(2):497-504.
    [108]Harwood HJ, Jr., Rodwell VW. HMG-CoA reductase kinase:measurement of activity by methods that preclude interference by inhibitors of HMG-CoA reductase activity or by mevalonate kinase. J Lipid Res 1982 Jul;23(5):754-761.
    [109]Zammit Va Fau-Easom RA, Easom RA. Regulation of hepatic HMG-CoA reductase in vivo by reversible phosphorylation. Biochim Biophys Acta.1987 Feb 18;927(2):223-8.
    [110]Ness GC, Chambers CM. The diurnal variation of hepatic HMG-CoA reductase activity is due to changes in the level of immunoreactive protein. Arch Biochem Biophys 1996 Mar 1;327(1):41-44.
    [111]Miquel K Fau-Pradines A, Pradines A Fau-Favre G, Favre G. Farnesol and geranylgeraniol induce actin cytoskeleton disorganization and apoptosis in A549 lung adenocarcinoma cells. Biochem Biophys Res Commun.1996 Aug 23;225(3):869-76.
    [112]Addeo R, Altucci L, Battista T, Bonapace IM, Cancemi M, Cicatiello L, Germano D, Pacilio C, Salzano S, Bresciani F, Weisz A. Stimulation of human breast cancer MCF-7 cells with estrogen prevents cell cycle arrest by HMG-CoA reductase inhibitors. Biochem Biophys Res Commun 1996 Mar 27;220(3):864-870.
    [113]Jentsch S. Ubiquitin-dependent protein degradation:a cellular perspective. Trends Cell Biol 1992 Apr;2(4):98-103.
    [114]Sever N, Song BL, Yabe D, Goldstein JL, Brown MS, DeBose-Boyd RA. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem 2003 Dec 26;278(52):52479-52490.
    [115]Song BL, DeBose-Boyd RA. Insig-dependent ubiquitination and degradation of 3-hydroxy-3-methylglutaryl coenzyme a reductase stimulated by delta- and gamma-tocotrienols. J Biol Chem 2006 Sep 1;281 (35):25054-25061.
    [116]Ness Gc Fau-Chambers CM, Chambers CM. Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase:the concept of cholesterol buffering capacity. Proc Soc Exp Biol Med.2000 May;224(1):8-19.
    [117]DeBose-Boyd RA. Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 2008 Jun;18(6):609-621.
    [118]Lopez Jp Fau-Sancho MJ, Sancho Mj Fau-Marino A, Marino A Fau-Macarulla JM, Macarulla JM. Cholesterol biosynthesis in chicken liver:effect of triiodothyronine. Exp Clin Endocrinol.1984 Jul;84(1):45-51.
    [119]Carlson SE, Mitchell AD, Carter ML, Goldfarb S. Evidence that physiologic levels of circulating estrogens and neonatal sex-imprinting modify postpubertal hepatic microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Biochim Biophys Acta 1980 Dec 1;633(2):154-161.
    [120]Chen HJ, Shapiro DJ. Nucleotide sequence and estrogen induction of Xenopus laevis 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 1990 Mar 15;265(8):4622-4629.
    [121]Simonet WS, Ness GC. Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA in rat liver. Glucocorticoids block the stabilization caused by thyroid hormones. J Biol Chem 1989 Jan 5;264(1):569-573.
    [122]Simonet WS, Ness GC. Transcriptional and posttranscriptional regulation of rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase by thyroid hormones. J Biol Chem 1988 Sep 5;263(25):12448-12453.
    [123]Pullinger Cr Fau-Gibbons GF, Gibbons GF. The role of substrate supply in the regulation of cholesterol biosynthesis in rat hepatocytes. Biochem J.1983 Mar 15;210(3):625-32.
    [124]Prieur X Fau-Tung YCL, Tung Yc Fau-Griffin JL, Griffin J1 Fau-Farooqi IS, Farooqi Is Fau-O'Rahilly S, O'Rahilly S Fau-Coll AP, Coll AP. Leptin regulates peripheral lipid metabolism primarily through central effects on food intake. Endocrinology.2008 Nov; 149(11):5432-9.
    [125]Tandy S Fau-Chung RWS, Chung Rw Fau-Kamili A, Kamili A Fau-Wat E, Wat E Fau-Weir JM, Weir Jm Fau-Meikle PJ, Meikle Pj Fau-Cohn JS, Cohn JS. Hydrogenated phosphatidylcholine supplementation reduces hepatic lipid levels in mice fed a high-fat diet. Atherosclerosis.2010 Nov;213(1):142-7.
    [126]Duckworth PF, Vlahcevic ZR, Studer EJ, Gurley EC, Heuman DM, Beg ZH, Hylemon PB. Effect of hydrophobic bile acids on 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity and mRNA levels in the rat. J Biol Chem 1991 May 25;266(15):9413-9418.
    [127]Yount NY, McNamara DJ, Al-Othman AA, Lei KY. The effect of copper deficiency on rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. The Journal of Nutritional Biochemistry 1990;1(1):21-27.
    [128]Lucas A. Programming by early nutrition:an experimental approach. J Nutr 1998 Feb;128(2 Suppl):401S-406S.
    [129]Ozanne SE. Metabolic programming in animals. Br Med Bull 2001;60:143-152.
    [130]Hahn P. Effect of litter size on plasma cholesterol and insulin and some liver and adipose tissue enzymes in adult rodents. J Nutr 1984 Jul;114(7):1231-1234.
    [131]Fomon SJ, Rogers RR, Ziegler EE, Nelson SE, Thomas LN. Indices of fatness and serum cholesterol at age eight years in relation to feeding and growth during early infancy. Pediatr Res 1984 Dec;18(12):1233-1238.
    [132]Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993 Apr 10;341(8850):938-941.
    [133]Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH. Growth in utero and serum cholesterol concentrations in adult life. BMJ 1993 Dec 11;307(6918):1524-1527.
    [134]Langley-Evans Sc Fau-Sculley DV, Sculley DV. The association between birthweight and longevity in the rat is complex and modulated by maternal protein intake during fetal life. FEBS Lett.2006 Jul 24;580(17):4150-3.
    [135]Ozanne SE, Nicholas Hales C. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech Ageing Dev 2005 Aug;126(8):852-854.
    [136]Chan LL, Sebert SP, Hyatt MA, Stephenson T, Budge H, Symonds ME, Gardner DS. Effect of maternal nutrient restriction from early to midgestation on cardiac function and metabolism after adolescent-onset obesity. Am J Physiol Regul Integr Comp Physiol 2009 May;296(5):R1455-1463.
    [137]Hyatt Ma Fau-Gopalakrishnan GS, Gopalakrishnan Gs Fau-Bispham J, Bispham J Fau-Gentili S, Gentili S Fau-McMillen IC, McMillen Ic Fau-Rhind SM, Rhind Sm Fau-Rae MT, Rae Mt Fau-Kyle CE, Kyle Ce Fau-Brooks AN, Brooks An Fau-Jones C, Jones C Fau-Budge H, Budge H Fau-Walker D, Walker D Fau-Stephenson T, Stephenson T Fau-Symonds ME, Symonds ME. Maternal nutrient restriction in early pregnancy programs hepatic mRNA expression of growth-related genes and liver size in adult male sheep. J Endocrinol.2007 Jan;192(1):87-97
    [138]Chen JH, Martin-Gronert MS, Tarry-Adkins J, Ozanne SE. Maternal protein restriction affects postnatal growth and the expression of key proteins involved in lifespan regulation in mice. PLoS One 2009;4(3):e4950.
    [139]Pond WG, Wu JF. Mature body weight and life span of male and female progeny of primiparous rats fed a low protein or adequate diet throughout pregnancy. J Nutr 1981 Nov; 111 (11):1949-1954.
    [140]Kuzawa CW, Adair LS. Lipid profiles in adolescent Filipinos:relation to birth weight and maternal energy status during pregnancy. The American journal of clinical nutrition 2003;77(4):960.
    [141]Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 2000 Jul;279(1):E83-87.
    [142]Vickers Mh Fau-Breier BH, Breier Bh Fau-McCarthy D, McCarthy D Fau-Gluckman PD, Gluckman PD. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol Regul Integr Comp Physiol. 2003 Jul;285(1):R271-3.
    [143]Osmond C, Barker DJ. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environ Health Perspect 2000 Jun;108 Suppl 3:545-553.
    [144]Armitage JA, Taylor PD, Poston L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. The Journal of Physiology 2005;565(1):3-8.
    [145]Ford Sp Fau-Zhang L, Zhang L Fau-Zhu M, Zhu M Fau-Miller MM, Miller Mm Fau-Smith DT, Smith Dt Fau-Hess BW, Hess Bw Fau-Moss GE, Moss Ge Fau-Nathanielsz PW, Nathanielsz Pw Fau-Nijland MJ, Nijland MJ. Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep:prenatal consequences. Am J Physiol Regul Integr Comp Physiol.2009 Sep;297(3):R835-43.
    [146]Lea RG, Wooding P, Stewart I, Hannah LT, Morton S, Wallace K, Aitken RP, Milne JS, Regnault TR, Anthony RV, Wallace JM. The expression of ovine placental lactogen, StAR and progesterone-associated steroidogenic enzymes in placentae of overnourished growing adolescent ewes. Reproduction 2007 Apr;133(4):785-796.
    [147]Taylor PD, McConnell J, Khan IY, Holemans K, Lawrence KM, Asare-Anane H, Persaud SJ, Jones PM, Petrie L, Hanson MA, Poston L. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol 2005 Jan;288(1):R134-139.
    [148]Napoli C, de Nigris F, Welch JS, Calara FB, Stuart RO, Glass CK, Palinski W. Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation 2002 Mar 19;105(11):1360-1367.
    [149]Khan IY, Taylor PD, Dekou V, Seed PT, Lakasing L, Graham D, Dominiczak AF, Hanson MA, Poston L. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 2003 Jan;41(1):168-175.
    [150]Chechi K Fau-Cheema SK, Cheema SK. Maternal diet rich in saturated fats has deleterious effects on plasma lipids of mice. Exp Clin Cardiol.2006 Summer;11(2):129-35.
    [151]Siemelink M, Verhoef A, Dormans JA, Span PN, Piersma AH. Dietary fatty acid composition during pregnancy and lactation in the rat programs growth and glucose metabolism in the offspring. Diabetologia 2002 Oct;45(10):1397-1403.
    [152]Chechi K, McGuire JJ, Cheema SK. Developmental programming of lipid metabolism and aortic vascular function in C57BL/6 mice:a novel study suggesting an involvement of LDL-receptor. Am J Physiol Regul Integr Comp Physiol 2009 Apr;296(4):R1029-1040.
    [153]Alexander BT. Developmental programming of sex-dependent alterations in lipid metabolism:a role for long-term, sex-specific alterations in LDL-receptor expression. Focus on "developmental programming of lipid metabolism and aortic vascular function in C57BL/6 mice:a novel study suggesting an involvement of LDL-receptor". Am J Physiol Regul Integr Comp Physiol 2009 Apr;296(4):R1027-1028.
    [154]Yoshida S, Wada Y. Transfer of maternal cholesterol to embryo and fetus in pregnant mice. Journal of lipid research 2005;46(10):2168.
    [155]Yeh YY. Maternal dietary restriction causes myelin and lipid deficits in the brain of offspring. J Neurosci Res 1988 Mar;19(3):357-363.
    [156]Smart JL, Dobbing J, Adlard BP, Lynch A, Sands J. Vulnerability of developing brain:relative effects of growth restriction during the fetal and suckling periods on behavior and brain composition of adult rats. J Nutr 1973 Sep;103(9):1327-1338.
    [157]Kind KL, Clifton PM, Katsman AI, Tsiounis M, Robinson JS, Owens JA. Restricted fetal growth and the response to dietary cholesterol in the guinea pig. Am J Physiol 1999 Dec;277(6 Pt 2):R1675-1682.
    [158]Yates Z, Tarling EJ, Langley-Evans SC, Salter AM. Maternal undernutrition programmes atherosclerosis in the ApoE*3-Leiden mouse. Br J Nutr 2009 Apr; 101 (8):1185-1194.
    [159]Bol V, Desjardins F, Reusens B, Balligand JL, Remacle C. Does early mismatched nutrition predispose to hypertension and atherosclerosis, in male mice? PLoS One 2010;5(9).
    [160]Joshi S, Garole V, Daware M, Girigosavi S, Rao S. Maternal protein restriction before pregnancy affects vital organs of offspring in Wistar rats. Metabolism 2003 Jan;52(1):13-18.
    [161]Sohi G, Marchand K, Revesz A, Arany E, Hardy DB. Maternal Protein Restriction Elevates Cholesterol in Adult Rat Offspring Due to Repressive Changes in Histone Modifications at the Cholesterol 7{alpha}-Hydroxylase Promoter. Mol Endocrinol.2011 May;25(5):785-98..
    [162]Steffen Km Fau-Cooper ME, Cooper Me Fau-Shi M, Shi M Fau-Caprau D, Caprau D Fau-Simhan HN, Simhan Hn Fau-Dagle JM, Dagle Jm Fau-Marazita ML, Marazita M1 Fau-Murray JC, Murray JC. Maternal and fetal variation in genes of cholesterol metabolism is associated with preterm delivery. J Perinatol.2007 Nov;27(11):672-80.
    [163]Lopes KL, Furukawa LN, de Oliveira IB, Dolnikoff MS, Heimann JC. Perinatal salt restriction:a new pathway to programming adiposity indices in adult female Wistar rats. Life Sci 2008 Mar 26;82(13-14):728-732.
    [164]van der Maten GD. Low sodium diet in pregnancy:effects on maternal nutritional status. Eur J Obstet Gynecol Reprod Biol 1995 Jul;61(1):63-64.
    [165]van der Maten GD, van Raaij JM, Visman L, van der Heijden LJ, Oosterbaan HP, de Boer R, Eskes TK, Hautvast JG. Low-sodium diet in pregnancy:effects on blood pressure and maternal nutritional status. Br J Nutr 1997 May;77(5):703-720.
    [166]Gillman MW, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Lipshultz SE. Maternal calcium intake and offspring blood pressure. Circulation 2004;110(14):1990.
    [167]Bakker R, Rifas-Shiman SL, Kleinman KP, Lipshultz SE, Gillman MW. Maternal calcium intake during pregnancy and blood pressure in the offspring at age 3 years:a follow-up analysis of the Project Viva cohort. Am J Epidemiol 2008 Dec 15; 168(12):1374-1380.
    [168]Bergel E, Belizan JM. A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. BJOG 2002 May,109(5):540-545.
    [169]Zhang J, Lewis RM, Wang C, Hales N, Byrne CD. Maternal dietary iron restriction modulates hepatic lipid metabolism in the fetuses. AmJPhysiol RegulIntegrComp Physiol 2005;288(1):R104-R111.
    [170]Lewis RM, Forhead AJ, Petry CJ, Ozanne SE, Hales CN. Long-term programming of blood pressure by maternal dietary iron restriction in the rat. Br J Nutr 2002 Sep;88(3):283-290.
    [171]Venu L, Padmavathi IJ, Kishore YD, Bhanu NV, Rao KR, Sainath PB, Ganeshan M, Raghunath M. Long-term effects of maternal magnesium restriction on adiposity and insulin resistance in rat pups. Obesity (Silver Spring) 2008 Jun;16(6):1270-1276.
    [172]Choi S-W, Corrocher, R., and Friso, S. Nutrients and DNA methylation. Nutrients and Epigenetic 2009 2009:pp.105-126. CRC Press Taylor & Francis Group,
    [173]Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP. Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 2008 Oct 27;1237:25-34.
    [174]Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 2005 Jun;135(6):1382-1386.
    [175]Gong L, Pan YX, Chen H. Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics 2010 Oct 2;5(7).
    [176]Gibney Er Fau-Nolan CM, Nolan CM. Epigenetics and gene expression. Heredity.2010 Jul;105(1):4-13.
    [177]Eilertsen KJ, Power RA, Harkins LL, Misica P. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim Reprod Sci 2007 Mar;98(1-2):129-146.
    [178]Kouzarides T. Chromatin modifications and their function. Cell 2007 Feb 23;128(4):693-705.
    [179]Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 2010;71:3-39.
    [180]Zheng S, Pan YX. Histone modifications, not DNA methylation, cause transcriptional repression of p16 (CDKN2A) in the mammary glands of offspring of protein-restricted rats. J Nutr Biochem 2010 Oct 7.
    [181]Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J 2010 Jan;24(1):184-195.
    [182]Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, Lane RH. Developmental origins of disease and determinants of chromatin structure:maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 2008 Aug;41(2):91-102.
    [183]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004 Jan 23; 116(2):281-297.
    [184]Saetrom P, Snove O, Jr., Rossi JJ. Epigenetics and microRNAs. Pediatr Res 2007 May,61(5 Pt 2):17R-23R.
    [185]Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res 2007 May;61(5 Pt 2):24R-29R.
    [186]Clark JA, Lane RH, Maclennan NK, Holubec H, Dvorakova K, Halpern MD, Williams CS, Payne CM, Dvorak B. Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2005 Apr;288(4):G755-762.
    [187]Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999 Oct 29;286(5441):950-952.
    [188]Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000 Feb 24;403(6772):901-906.
    [189]Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003 Dec 26; 115(7):787-798.
    [190]Ramachandra RK, Salem M, Gahr S, Rexroad CE,3rd, Yao J. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss):their expression during early embryonic development. BMC Dev Biol 2008;8:41.
    [191]Chen J, Xu X. Diet, epigenetic, and cancer prevention. AdvGenet 2010;71:237-255.
    [192]Gaedicke S, Zhang X, Schmelzer C, Lou Y, Doering F, Frank J, Rimbach G. Vitamin E dependent microRNA regulation in rat liver. FEBS Lett 2008 Oct 15;582(23-24):3542-3546.
    [193]Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 2009 Oct;50(4):1152-1161.
    [194]Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog 2009 Jun;48(6):479-487.
    [195]Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M, Hanson M, Lehnert H, Ceriello A, Byrne CD. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 2009; 10:478.
    [196]Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain renin-angiotensin system:fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci 2010 Mar;17(3):227-238.
    [197]Niu CS, Chang TK, Cheng JT. Changes of neuropeptide Y messenger RNA and peptide by drugs influencing endogenous norepinephrine content in cerebrocortex of the rat. J Neurochem 1996 May;66(5):2100-2104.
    [198]Armitage JA, Taylor PD, Poston L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 2005 May 15;565(Pt 1):3-8.
    [199]Innis SM. Changes in plasma cholesterol density distribution of young adult male rats fed a high fat and cholesterol diet following maternal cholestyramine treatment. J Nutr.1989 Mar;119(3):373-9.
    [200]Innis SM. Influence of maternal cholestyramine treatment on cholesterol and bile acid metabolism in adult offspring. J Nutr.1983 Dec;113(12):2464-70.
    [201]Pond Wg Fau-Maurer RR, Maurer Rr Fau-Klindt J, Klindt J. Fetal organ response to maternal protein deprivation during pregnancy in swine. J Nutr.1991 Apr;121(4):504-9.
    [202]Dwyer CM, Stickland NC. The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid hormones and cortisol in the guinea pig. J Dev Physiol 1992 Dec;18(6):303-313.
    [203]Bringhenti I, Schultz A, Rachid T, Bomfim MA, Mandarim-de-Lacerda CA, Aguila MB. An early fish oil-enriched diet reverses biochemical, liver and adipose tissue alterations in male offspring from maternal protein restriction in mice. J Nutr Biochem 2010 Dec 27.
    [204]Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or-2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci U S A 2004 May 4;101(18):7106-7111.
    [205]Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals. Nat Genet 2003 Mar;33 Suppl:245-254.
    [206]He Y. Control of the transition to flowering by chromatin modifications. Mol Plant 2009 Jul;2(4):554-564.
    [207]Burdge Gc Fau-Lillycrop KA, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr.2010 Aug 21;30:315-39.
    [208]Simmons R. Epigenetics and maternal nutrition:nature v. nurture. Proc Nutr Soc.2011 Feb;70(1):73-81. Epub 2010 Nov 29.
    [209]Choudhuri S Fau-Cui Y, Cui Y Fau-Klaassen CD, Klaassen CD. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol.2010 Jun 15;245(3):378-93.
    [210]Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, Lane RH. Developmental origins of disease and determinants of chromatin structure:maternal diet modifies the primate fetal epigenome. JMolEndocrinol 2008;41(2):91-102.
    [211]Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 2005 Oct;39(4):519-525.
    [212]Oliver SS, Denu JM. Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a "histone language". Chembiochem 2011 Jan 24;12(2):299-307.
    [213]Winter S, Fischle W. Epigenetic markers and their cross-talk. Essays Biochem 2010;48(1):45-61.
    [214]Keppler BR, Archer TK. Chromatin-modifying enzymes as therapeutic targets--Part 2. Expert Opin Ther Targets 2008 Nov;12(11):1457-1467.
    [215]Yao JY, Zhang L, Zhang X, He ZY, Ma Y, Hui LJ, Wang X, Hu YP. H3K27 trimethylation is an early epigenetic event of p16INK4a silencing for regaining tumorigenesis in fusion reprogrammed hepatoma cells. JBiolChem 2010;285(24):18828-18837.
    [216]Yamada T, Fischle W, Sugiyama T, Allis CD, Grewal SI. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 2005 Oct 28;20(2):173-185.
    [217]Motamedi MR, Hong EJ, Li X, Gerber S, Denison C, Gygi S, Moazed D. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell 2008 Dec 26;32(6):778-790.
    [218]Sadaie M, Kawaguchi R, Ohtani Y, Arisaka F, Tanaka K, Shirahige K, Nakayama J. Balance between distinct HP1 family proteins controls heterochromatin assembly in fission yeast. Mol Cell Biol 2008 Dec;28(23):6973-6988.
    [219]Sugiyama T, Cam H, Verdel A, Moazed D, Grewal SI. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci U S A 2005 Jan 4;102(1):152-157.
    [220]Hansen KR, Hazan I, Shanker S, Watt S, Verhein-Hansen J, Bahler J, Martienssen RA, Partridge JF, Cohen A, Thon G. H3K9me-independent gene silencing in fission yeast heterochromatin by C1r5 and histone deacetylases. PLoS Genet 2011;7(1):e1001268.
    [221]Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007 Oct 5;131(1):58-69.
    [222]Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007 Mar;39(3):311-318.
    [223]Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009 May 7;459(7243):108-112.
    [224]Lu TY, Kao CF, Lin CT, Huang DY, Chiu CY, Huang YS, Wu HC. DNA methylation and histone modification regulate silencing of OPG during tumor progression. J Cell Biochem 2009 Sep 1;108(1):315-325.
    [225]Choudhuri S, Cui Y, Klaassen CD. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol 2010 Jun 15;245(3):378-393.
    [226]The International HapMap Project. Nature 2003 Dec 18;426(6968):789-796.
    [227]Stephens JW, Bain SC, Humphries SE. Gene-environment interaction and oxidative stress in cardiovascular disease. Atherosclerosis 2008 Oct;200(2):229-238.
    [228]Sing CF, Stengard JH, Kardia SL. Genes, environment, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2003 Jul 1;23(7):1190-1196.
    [229]Iacoviello L, Donati MB. Gene-environment interactions:implications for cardiovascular disease. Cardiologia 1999 Mar;44(3):227-232.
    [230]de Vogel-van den Bosch Hm Fau-de Wit NJW, de Wit Nj Fau-Hooiveld GJEJ, Hooiveld Gj Fau-Vermeulen H, Vermeulen H Fau-van der Veen JN, van der Veen Jn Fau-Houten SM, Houten Sm Fau-Kuipers F, Kuipers F Fau-Muller M, Muller M Fau-van der Meer R, van der Meer R. A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastrointest Liver Physiol.2008 May;294(5):G1171-80. Epub 2008 Mar 20.
    [231]Delage B, Dashwood RH. Dietary manipulation of histone structure and function. Annu Rev Nutr 2008;28:347-366.
    [232]Suter MA, Aagaard-Tillery KM. Environmental influences on epigenetic profiles. Semin Reprod Med 2009 Sep;27(5):380-390.
    [233]Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001 Mar 1;410(6824):116-120.
    [234]Olaharski AJ, Rine J, Marshall BL, Babiarz J, Zhang L, Verdin E, Smith MT. The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet 2005 Dec;1(6):e77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700