骨髓间充质干细胞移植对梗死后大鼠心肌钾离子通道Ito Kv4.2影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:骨髓间充质干细胞(Mesenchymal Stem Cells,MSCs)是一种具有多向分化潜能和自我复制功能的未分化细胞群。大量的实验研究和临床研究均证实移植MSCs能改善梗死后心功能,但移植细胞潜在的致心律失常作用仍是当今心血管领域不容忽视的问题。I_(to)是动作电位发生时第一个复极电流,它包括两个成分:快成分I_(tof)和慢成分I_(tos)。Itof属于Kv4.2或Kv4.3通道电流。有研究表明,在异常条件下,I_(to)是形成2相折返的重要因素1。敲除Kv1.4和Kv4.2的小鼠研究表明,动作电位时程延长,甚至出现了早后去极化(early afterdepolarization,EAD)。
     目的:探讨心肌梗死后移植骨髓间充质干细胞对心室肌细胞钾离子通道Ito亚单位Kv4.2基因表达的影响,为MSCs移植治疗心肌梗死和对梗死后心肌电生理影响机制提供理论基础。
     方法:采用贴壁培养方法分离和扩增MSCs,使用流式细胞仪检测细胞表面抗原,并鉴定MSCs的成骨、成脂和成心肌分化的多向分化能力。将上述MSCs及其实验对照注射到急性冠状动脉前降支结扎的雄性大鼠左心室前壁,移植后7天观察MSCs在梗死心脏中的定位和存活;14天后程序电刺激(Programmed Electrical Stimulation,PES)测定室性心律失常(Ventricular Arrhythmias,VAs)诱发率;心肌组织HE染色和荧光显微镜观察移植细胞,RT-PCR和Western blot分别检测钾离子通道Ito亚单位Kv4.2基因mRNA和蛋白水平。
     结果:1.培养的MSCs表达CD_(44)(94.5%)、CD_(29)(90.7%)、CD_(105)(73.5%),很少表达CD_(34)(3.3%)、CD_(14)(1.2%)、CD_(45)(5.2%)。在合适的培养条件下可以诱导分化成脂肪细胞、骨细胞以及心肌样细胞。2.心肌梗死后两周VAs诱发率增加,MSCs能减少VAs的诱发率,但各组间没有统计学意义。3.心肌组织免疫荧光检测发现,MSCs集中分布于梗死区和梗死心肌周围;4.心肌梗死组和心肌梗死+细胞培养基组Kv4.2 mRNA量和蛋白量明显下降,与假手术组相比有显著差异;心肌梗死+干细胞组Kv4.2mRNA量和蛋白表达量较心肌梗死组明显升高,与心肌梗死组间差异有统计学意义。
     结论:MSCs移植减少了VAs诱发率,提高心肌组织中I_(to)亚单位Kv4.2基因表达,改善其分布,可能减少心律失常发生。
Backgrounds: Bone marrow mesenchymal stem cells (MSCs) are undifferentiated multipotent cell population with the potential to be self-renewed. A variety of experiments and clinical studies suggested that MSCs can improve cardiac pump function after acute myocardial infarction. Moreover, concern that intramyocardial transplantation of cells could cause potentially life-threatening ventricular arrhythmias has been repeatedly reported. Transient Outward Potassium Current(Ito) is the first repolarization current when action potential occurs, which includes fast Ito and slow I_(to). The study demonstrated that I_(to) is a important factor of tow phase reentry. The study on rat without genes Kv1.4 and Kv4.2 indicated prolongation of action potential duration, even with early afterdepolarization.
     Objectives: To investigate the effects of bone marrow mesenchymal stem cells (MSCs) implantation in postinfarcted rat myocardium on transient outward potassium Kv4.2 of cardiomyocytes in left ventricle, to assess the electrophysiological and arrhythmogenic effects and provide efficacy and safety evidences for MSCs therapy in AMI.
     Methods: Male MSCs are cultured and expanded using density gradient centrifugation. Seven days after intracardiac injection into a male rat left anterior descending (LAD) ligation model, cell survival and engraftment were identified by GFP immunofluorescence. Two weeks after transplantation, ventricular arrhythmias (VAs)inducibility were assessed by echocardiography and programmed electrical stimulation(PES). Left ventricular morphology was evaluated through H&E. Transplanted cells were observed by fluorescent microscope. RT-PCR and Western blot were used to identify expression of I_(to) Kv4.2.
     Results: 1. MSCs were negative for haemopoietic markers CD_(34),CD_(14) and CD45 and positive for CD_(29), CD_(44), and CD_(105). MSCs cultured in differentiation medium led to Oil red-O-positive or Alizarin Red positive. Part of 5-azacytidine treated MSCs expressed cardiac marker troponin T. 2. Fluorescent microscope showed that MSC-derived cells survived. The expression of Kv4.2 in the MI group and MI-CM group was significantly lower than that in the sham-operating group. Compared to MI-CM group and MI group, expression of Kv4.2 was significantly increased. MSCs injection led to significantly reduced inducibility of VAs.
     Conclusion: The MSCs transplantation significantly reduced inducibility of VAs. The MSCs transplantation treatment can elevate the expression of Kv4.2 of AMI rats, which may be related to decrease of arrhythmias after MSCs transplantation.
引文
1. Antzelevitch C, Yan G-X, Shimizu W, et al. Electrical heterogeneity, the ECG, and cardiac arrhythmias. In Zipes DP, Jalife J, eds: Electrophysiology:from cell to bedside. Philadelphia, WB Saunders; 1999, 222-38.
    2. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic transplantation of bone marrow, Analysis of precursor cells, for osteogenic and hematopoti tissues. J Transplantation, 1968; 6:230.
    3 Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal cell: nature, biology and potential application. J Stem cells, 2001; 19:180-192.
    4. Pittingey M, Mackay A, Beck S, et al. Multilinage potential of adult human mesenchymal stem cells. J Science, 1999; 248(54II):143-147.
    5. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004; 364(9429):141-148.
    6. Li TS, Murakami M, Kobayashi T, Shirasawa B, Mikamo A, Hamano K. Long-term efficacy and safety of the intramyocardial implantation of autologous bone marrow cells for the treatment of ischemic heart disease. J Thorac Cardiovasc Surg. 2007;134(5):1347-1349.
    7. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grogaard HK, Bjornerheim R, Brekke M, Muller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K. Intracoronary injection of mononuclear bonemarrow cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1199-1209.
    8. Assmus B, Fischer-Rasokat U, Honold J, Seeger FH, Fichtlscherer S, Tonn T, Seifried E, Schachinger V, Dimmeler S, Zeiher AM. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ Res. 2007;100(8):1234-1241.
    9. Huikuri HV, Kervinen K, Niemela M, Ylitalo K, Saily M, Koistinen P, Savolainen ER, Ukkonen H, Pietila M, Airaksinen JK, Knuuti J, Makikallio TH. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J. 2008 29(22):2723-2732.
    10. Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, Tracz W, Musialek P, Piwowarska W, Nessler J, Buszman P, Grajek S, Breborowicz P, Majka M. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30(11):1313-1321.
    11. Hirsch A, Nijveldt R, van der Vleuten PA, Biemond BJ, Doevendans PA, van Rossum AC, Tijssen JG, Zijlstra F, Piek JJ. Intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention: rationale and designof the HEBE trial--a prospective, multicenter, randomized trial. Am Heart J. 2006;152(3):434-441.
    12. Gyongyosi M, Lang I, Dettke M, Beran G, Graf S, Sochor H, Nyolczas N, Charwat S, Hemetsberger R, Christ G, Edes I, Balogh L, Krause KT, Jaquet K, Kuck KH, Benedek I, Hintea T, Kiss R, Preda I, Kotevski V, Pejkov H, Zamini S, Khorsand A, Sodeck G, Kaider A, Maurer G, Glogar D. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat Clin Pract Cardiovasc Med. 2009;6(1):70-81.
    13. Meyer GP, Wollert KC, Lotz J, Pirr J, Rager U, Lippolt P, Hahn A, Fichtner S, Schaefer A, Arseniev L, Ganser A, Drexler H. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J. 2009.
    14. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003; 41:1078-1083.
    15. Smits PC, van Geuns R-J, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol, 2003; 42:2063-9.
    16. Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure. Lancet. 2001; 357:279-80.
    17. Beeres SL, Zeppenfeld K, Bax JJ, Dibbets-Schneider P, Stokkel MP, Fibbe WE, van der Wall EE, Atsma DE, Schalij MJ. Electrophysiological and arrhythmogenic effects of intramyocardial bone marrow cell injection in patients with chronic ischemic heart disease. Heart Rhythm.2007;4(3):257-265.
    18. Katritsis DG, Sotiropoulou P, Giazitzoglou E, Karvouni E, Papamichail M. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace. 2007;9(3):167-171.
    19. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277-2286.
    20. Lory P, Bidaud I, Chemin J. T-type calcium channels in differentiation and proliferation. Cell Calcium. 2006;40(2):135-146.
    21. Baba S, Dun W, Cabo C, Boyden PA. Remodeling in cells from different regions of the reentrant circuit during ventricular tachycardia. Circulation. 2005;112(16):2386-2396.
    22. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87(2):425-456.
    23. Qin D, Zhang Z-H, Boutdjir M, et al, Cellular and ionic basic of arrhythmias in post-infarction remodeled ventricular myocardium. Circ Res 1996, 79: 461–73.
    24. Kaprielian R, Sah R, Nguyen T, et al. Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, Ito K~+ currents, [Ca~(2+)]i transients. Am J Physiol Heart Circ Physiol 2002, 283: H1157–H1168.
    25. Huang B, Qin D, El-Sherif N. Early down-regulation of K_ channel genes and currents in the postinfarction heart. J Cardiovasc Electrophysiol 2000, 11: 1252–61.
    1. Yuehua J, Jahagirdar BN, Reinhardt RL, Jaiswal RK, et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature. 2002;418(8):41-49.
    2. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy[J]. J Cell Mol Med. 2004;8(3):301-316.
    3. Seshi B, Kumar S, Sellers D. Human bone marrow stromal cell: Coexpression of markers specific for multiple mesenchymal cell lineages[J]. Blood cells Mol Dis. 2000;26(9):234-246.
    4. Phinney DG, Kopen RL, Isaacson RL, et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: Variation in yield, growth, and differentiation[J]. J Cell Biochem. 1999:72(8):570-585.
    5. Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood[J]. Exp Hematol. 2005;33(11):1402-1416.
    6. Balana B, Nicoletti C, Zahanich I, et al. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res. 2006;16(12):949-960.
    7. Koninckx R, Hensen K, Daniels A, et al. Human bone marrow stem cells co-cultured with neonatal rat cardiomyocytes display limited cardiomyogenic plasticity. Cytotherapy. 2009:1-15.
    8. Murry CE, Soonpaa MH, Reinecke H, et al, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664-668.
    9. Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204-1219.
    10. Muller-Ehmsen J, Krausgrill B, Burst V, et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol. 2006;41(5):876-884.
    11. Aslan H, Zilberman Y, Kandel L, et al. Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells. 2006;24(7):1728-1737.
    12. Sekiya I, Larson BL, Vuoristo JT, et al. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res. 2004;19(2):256-264.
    13. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697-705.
    14. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263-272.
    15. Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327(3):449-462.
    16. Stolzing A, Sethe S, Scutt AM. Stressed stem cells: Temperature response in aged mesenchymal stem cells. Stem Cells Dev. 2006;15(4):478-487.
    17. Li X, Yu X, Lin Q, et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol. 2007;42(2):295-303.
    18. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-147.
    19. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875-884.
    20. Cancedda R, Bianchi G, Derubeis A, Quarto R. Cell therapy for bone disease: a review of current status. Stem Cells. 2003;21(5):610-619.
    21. Peter SJ, Liang CR, Kim DJ, Widmer MS, Mikos AG. Osteoblastic phenotype of rat marrow stromal cells cultured in the presence of dexamethasone, beta-glycerolphosphate, and L-ascorbic acid. J Cell Biochem. 1998;71(1):55-62.
    22. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cell. J Cell Biochem. 1999;284:143-147.
    23 Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697-705.
    24. Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, et al. In vitrocardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg. 2007;6(5):593-597.
    25. Balana B, Nicoletti C, Zahanich I, et al. 5-Azacytidine induces changes in electrophysiological properties of human mesenchymal stem cells. Cell Res. 2006;16(12):949-960.
    26. Koninckx R, Hensen K, Daniels A, et al. Human bone marrow stem cells co-cultured with neonatal rat cardiomyocytes display limited cardiomyogenic plasticity. Cytotherapy. 2009:1-15.
    27. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428(6983):664-668.
    28. Robertson KD, Jones PA. DNA methylation: past, present and future dirctiongs. J Carcinogenesis. 2000;21(12):461-467.
    29. Yabubi M, Otsu K. Intercellular calcium signaling via gap junction in connexin-43-transfected cells. J Bio Chem. 1998;273(3):1519-1522.
    30. Tomas SA, Schuesslar RB, Berul CI, et al. Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction. J Circulation. 1998;97(12):686-692.
    1. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204-1219.
    2. Boyle AJ, Schulman SP, Hare JM, et al. Stem cell therapy for cardiac repair: ready for the next step. Circulation. 2006;114(19):339-352.
    3. Oettgen P, Boyle AJ, Schulman SP, Hare JM. Cardiac stem cell therapy: need for optimization of efficacy and safety monitoring. Circulation. 2006;114(2):353-358.
    4. Dimmeler S, Zeiher AM, Schneider MD. Unchain my heart: the scientific foundation of cardiac repair. J Clin Invest. 2005;115:572-583.
    5. K??b S, Nuss HB, Chiamvimonvat N, et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res. 1996;78:262-273.
    6. Wickenden AD, Lee P, Sah R, et al. Targeted expression of a dominant-negative K(v)4.2 K(+)channel subunit in the mouse heart. Cardiovasc Res. 1999;85:1067-1076.
    7. Zicha S, Xiao L, Stafford S, et al. Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol. 2004;561:738-748.
    8. Patel S, Campbell DL. Transient outward potassium current,‘Ito’, phenotypes in the mammalian left ventricular: underlying molecular, cellular and biophysical mechanisms. J Physiol. 2005;569:7-39.
    9. Antzelevitch C, Yan G-X, Shimizu W, et al. Electrical heterogeneity, the ECG, and cardiac arrhythmias. In Zipes DP, Jalife J, eds: Electrophysiology: from cell to bedside. Philadelphia, WB Saunders. 1999;222-238.
    10. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem celltransplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation. 2005;112(2):214-223.
    11. Muller-Ehmsen J, Krausgrill B, Burst V, et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol. 2006;41(5):876-884.
    12. Fernandes S, Amirault JC, Lande G, et al. Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res. 2006;69(2):348-358.
    13. Forrester JS, Price MJ, Makkar RR. Stem cell repair of infracted myocardium: an overview for clinicians. Circulation. 2003;108:1139-1145.
    14. Chiu RCJ, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg. 1995;60:12-18.
    15. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation.Nat Med. 1998;4:929-933.
    16. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, remodeling and improves cardiac function. Nat Med. 2001;7(2):430-436.
    17. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41(7):1078-1083.
    18. Dib N, Michler RE, Pagani FD, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-yearfollow-up. Circulation. 2005;112(12):1748-1755.
    19. Abraham MR, Henrikson CA, Tung L, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res. 2005;97(2):159-167.
    20. Roell W, Lewalter T, Sasse P, et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature. 2007;450(7171):819-824.
    21. Antzelevitch C. Modulation of transmural repolarization. Ann N Y Acad Sci. 2005;1047:314-323.
    22. Davies MP, An RH, Doevendans P, et al. Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res. 1996;78(1):15-25.
    23. Qin D, Zhang Z-H, Boutdjir M, et al. Cellular and ionic basic of arrhythmias in post-infarction remodeled ventricular myocardium. Circ Res. 1996;79(2):461-473.
    24. Kaprielian R, Sah R, Nguyen T, et al. Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, Ito K~+ currents, [Ca~(2+)]i transients. Am J Physiol Heart Cir Physiol. 2002;283(5):H1157-1168.
    25. Huang B, Qin D, El-Sherif N. Early down-regulation of K_ channel genes and currents in the postinfarction heart. J Cardiovasc Electrophysiol. 2000;11(2):1252-1261.
    26. Perrier E, Kerfant BG, Lalevee N, et al. Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction. Circulation. 2004;110:776-783.
    27. Cai Benzhi, Zhao Limei, Wang Ning, et al. Bone marrow mesenchymal stem cells upregulate transient outward potassium currents in postnatal rat ventricular myocytes. J Mol Cell Cardiol. 2009;47:41-48.
    28. Katritsis DG, Sotiropoulou P, Giazitzoglou E, et al. Electrophysiological effects of intracoronary transplantation of autologous mesenchymal andendothelial progenitor cells. Europace. 2007;9:167-171.
    29. Li M, Uemura R, Dai Y, et al. Expression of the rat BFGF antisense RNA transcript is tissue-specific and developmentally regulated. Mol Cell Endocrinol. 1996;118(1-2):113-123.
    30. Ulger H, Karabulut AK, Pratten MK, et al. The growth promoting effects of bFGF, PDECGF and VEGF on cultured postimplantation rat embryos deprived of serum fractions. J Anat. 2000;197(5):207-219.
    31. Guo W, Kamiya K, Toyama J. bFGF promotes functional expression of transient outward currents in cultured neonatal rat ventricular cell. Pflugers Arch. 1995;430(6):H1015-1017.
    32. Guo W, Kamiya K, Toyama J. Modulated expression of transient outward current in cultured neonatal rat ventricular myocytes: comprison with development in situ. Cardiovasc Res. 1996;32:524-533.
    33. Scharbrodt W, Kuhlmann CR, Wu Y, et al. Basic fibroblast growth factor-induced endothelial proliferation and NO synthesis involve inward rectifier K+ current. Arterioscler Thromb Vasc Biol. 2004;24(7):1229-1233.
    34. Gamper N, Fillon S, Huber SM, et al. IGF-1 upregulates K+ channels via PI3-kinase, PDK1 and SGK1. J Neurophysiol. 2003;89(6):3008-3017.
    35. Guo W, Kamiya K, Yasui K, et al. alpha1-adrenoceptor agonists and IGF-1, myocardial hypertrophic factor, regulate the Kv1.5 K+ channel expression differentially in cultured newborn rat ventricular cells. Pflugers Arch. 1998;436(1):26-32.
    1. Forrester JS, Price MJ, Makkar RR. Stem cell repair of infarcted myocardium: an overview for clinicians. Circulation. 2003; 108(9): 1139-45.
    2. Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003; 41(7): 1078-83.
    3. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410(6829):701-5.
    4. Smits PC, van Geuns RJ, Poldermans D, Bountioukos M, Onderwater EE, Lee CH, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol. 2003; 42(12): 2063-9.
    5. Thompson RB, Emani SM, Davis BH, van den Bos EJ, Morimoto Y, Craig D, et al. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation. 2003; 108 Suppl 1: II264-71.
    6. Zhang F, Yang Z, Chen Y, Qin J, Zhu T, Xu D, et al. Clinical cellular cardiomyoplasty: technical considerations. J Card Surg. 2003; 18(3): 268-73.
    7. Ly HQ, Nattel S. Stem cells are not proarrhythmic: letting the genie out of the bottle. Circulation. 2009; 119(13): 1824-31.
    8. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004; 22(10): 1282-9.
    9. Bogun F, Good E, Reich S, Elmouchi D, Igic P, Tschopp D, et al. Role of Purkinje fibers in post-infarction ventricular tachycardia. J Am Coll Cardiol. 2006; 48(12): 2500-7.
    10. Weiss JN, Karma A, Shiferaw Y, Chen PS, Garfinkel A, Qu Z. From pulsus to pulseless: the saga of cardiac alternans. Circ Res. 2006; 98(10): 1244-53.
    11. Liu W, Yasui K, Opthof T, Ishiki R, Lee JK, Kamiya K, et al. Developmental changes of Ca(2+) handling in mouse ventricular cells from early embryo to adulthood. Life Sci. 2002; 71(11): 1279-92.
    12. Tohse N, Seki S, Kobayashi T, Tsutsuura M, Nagashima M, Yamada Y.Development of excitation-contraction coupling in cardiomyocytes. Jpn J Physiol. 2004; 54(1): 1-6.
    13. Liu J, Fu JD, Siu CW, Li RA. Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells. 2007; 25(12): 3038-44.
    14. Makkar RR, Lill M, Chen PS. Stem cell therapy for myocardial repair: is it arrhythmogenic? J Am Coll Cardiol. 2003; 42(12): 2070-2.
    15. Antzelevitch C. Modulation of transmural repolarization. Ann N Y Acad Sci. 2005; 1047: 314-23.
    16. Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol. 2004; 287(4): H1762-70.
    17. Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, Kass RS. Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res. 1996; 78(1): 15-25.
    18. Grandy SA, Trepanier-Boulay V, Fiset C. Postnatal development has a marked effect on ventricular repolarization in mice. Am J Physiol Heart Circ Physiol. 2007; 293(4): H2168-77.
    19. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, et al. Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg. 2005; 27(2): 191-201.
    20. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007; 50(19): 1884-93.
    21. Hansen DE, Craig CS, Hondeghem LM. Stretch-induced arrhythmias in theisolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990; 81(3): 1094-105.
    22. Menasche P. Myoblast transplantation: feasibility, safety and efficacy. Ann Med. 2002; 34(5): 314-5.
    23. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res. 2001; 88(11): 1159-67.
    24. Martins JB, Zipes DP. Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res. 1980; 46(1): 100-10.
    25. Opthof T, Misier AR, Coronel R, Vermeulen JT, Verberne HJ, Frank RG, et al. Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation. Circ Res. 1991; 68(5): 1204-15.
    26. Pak HN, Qayyum M, Kim DT, Hamabe A, Miyauchi Y, Lill MC, et al. Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a Swine model of myocardial infarction. J Cardiovasc Electrophysiol. 2003; 14(8): 841-8.
    27. Liu W, Yasui K, Arai A, Kamiya K, Cheng J, Kodama I, et al. beta-adrenergic modulation of L-type Ca2+-channel currents in early-stage embryonic mouse heart. Am J Physiol. 1999; 276(2 Pt 2): H608-13.
    28. Lory P, Bidaud I, Chemin J. T-type calcium channels in differentiation and proliferation. Cell Calcium. 2006; 40(2): 135-46.
    29. Baba S, Dun W, Cabo C, Boyden PA. Remodeling in cells from different regions of the reentrant circuit during ventricular tachycardia. Circulation. 2005; 112(16): 2386-96.
    30. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007; 87(2): 425-56.
    31. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res. 2003; 93(1): 32-9.
    32. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999; 103(5): 697-705.
    33. Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res. 2004; 94(2): 223-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700