兴安地块“前寒武纪变质岩系”—下古生界锆石年代学研究及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴安地块位于大兴安岭北部,从属于中亚造山带的东段。中亚造山带古生代的构造演化与古亚洲洋的闭合密切相关。大量俯冲增生楔、不同时代的岩浆弧及夹杂其中的微陆块、海底高原和洋岛等构造单元构成了中亚造山带现今复杂的构造格局。中亚造山带内各微陆块的变质基底形成时代、造山带汇聚方式和汇聚时代、显生宙地壳增生机制等问题,是解开中亚造山带造山过程的关键和钥匙。目前,人们对兴安地块基底的形成时代及其早古生代的构造演化等问题一直存在争议。由于缺少系统的年代学研究,兴安地块大部分前寒武纪变质岩系-下古生界的形成时代仍属空白。因此,论文对兴安地块内前寒武纪变质岩系-下古生界具有代表性的岩石地层进行了系统的锆石LA-ICP-MS U-Pb年代学研究,旨在为区域构造演化提供依据。
     对兴安地块的前寒武纪变质岩系新开岭群、落马湖群、额尔古纳河组以及倭勒根群的年代学研究显示:嫩江-多宝山地区的新开岭群千枚岩的沉积时代不早于485Ma,角闪斜长片麻岩原岩的形成时代为309Ma,糜棱岩化花岗岩的形成时代为164Ma;落马湖地区的落马湖群二云母石英片岩的形成时代不早于420Ma;塔尔气地区的额尔古纳河组糜棱质绢云绿泥石英片岩的形成时代不早于410Ma;新林地区的倭勒根群透闪黑云微晶片岩的形成时代不早于480Ma,玄武粗安岩的形成时代为431Ma。综合前人对兴安地块扎兰屯群、新开岭群-科洛杂岩以及风水沟河群等变质岩系的年代学研究资料,揭示出兴安地块原定的“前寒武纪变质岩系”的原岩形成时代均为显生宙,认为兴安地块可能不存在统一的前寒武纪变质基底,但不排除局部存在微陆块的可能性。
     对多宝山-罕达气地区早古生代火山岩的年代学研究显示:多宝山地区原奥陶系多宝山组英安岩形成于485Ma,为早奥陶世早期;原泥盆系罕达气组晶屑岩屑凝灰岩形成时代为463Ma,为中奥陶世。对兴安地块奥陶系-志留系的碎屑锆石测年结果显示:伊敏河地区奥陶系多宝山组绢云石英片岩的沉积时代不早于463Ma;罕达气地区上奥陶统二云绿泥石英片岩的沉积时代不早于470Ma;罕达气地区志留系八十里小河组凝灰质粉砂岩的沉积时代不早于432Ma;小索尔奇地区志留系泥鳅河组糜棱岩化凝灰质细砂岩的沉积时代不早于447Ma。
     兴安地块奥陶系-中泥盆统碎屑锆石年龄以早古生代为主体,其次为新元古代、古元古代,中元古代和太古宙占比极低。根据文献资料,将其与额尔古纳地块和松嫩地块早古生代和前寒武纪年龄统计结果以及新元古界碎屑锆石年龄峰值分布曲线进行了对比分析。分析表明兴安下古生界沉积物源区的年龄组成与额尔古纳地块的年龄分布特征极为相似,它们都表现出不同程度匮乏中元古代年龄。松嫩地块缺失新元古代花岗岩及古元古代岩石,新元古代沉积岩的碎屑锆石年龄中以中元古代年龄的较高占比而不具有兴安下古生界物源区的特征,表明额尔古纳地块应是兴安下古生界沉积物的最主要物源区。兴安志留系-中泥盆统碎屑锆石中依次含有大量志留纪和早泥盆世峰值年龄,由于额尔古纳地块上缺失该期岩浆事件,说明兴安地块早古生代火山活动也是重要的物源区之一。上述特征表明兴安早古生代海相盆地为单方向陆源供给的大陆边缘盆地,也证明环宇蛇绿岩在早奥陶世已经就位。
     兴安奥陶系碎屑锆石最小峰值年龄与多宝山地区的早-中奥陶世的火山弧和早奥陶世斑岩型铜矿床的形成时代相一致,进一步说明兴安地块早古生代期间为活动大陆边缘。原定兴安地块可能不具有统一的前寒武纪变质基底,其主体形成于早古生代早期额尔古纳地块东缘的板块俯冲增生和拼贴作用。
The Central Asian Orogenic Belt (CAOB) is one of the largest orogenic belts in theworld and its formation is closely related to the evolution of the Paleo-Asian Ocean. Alarge number of tectonic units, including subduction accretionary rocks, magmatic arcs,micro–continents, seafloor plateaux, and oceanic islands now form the complex tectonicframework of the CAOB. The key to understanding the orogenic formation of the CAOBis to constrain the age and nature of the micro–continents (or continental blocks) in theCAOB, the timing and mechanisms of their convergence, and hence the characteristics ofPhanerozoic crustal growth. The Great Xing’an Range in northeast China is located in theeastern part of the CAOB and is an important area to study the formation of the CAOB.From north to south, the Great Xing’an Range is divided into the Erguna, Xing’an, andSongliao blocks. Controversy exists regarding the timing and formation of themicro-continents and the Early Palaeozoic tectonic evolution in the Xing’an block. Due tothe lack of systematic chronology, the formation time of the most Precambrianmetamorphic rocks and the Lower Paleozoic remain blank in the Xing’an block. As such,we have conducted a laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) U–Pb dating study of zircons from the Precambrian metamorphic rocksand the Lower Paleozoic in the Xing’an Block.
     Detrital zircons from phyllites of the Xinkailing Group in Duobaoshan yieldpopulations of~1505,~810, and~485Ma, with the youngest peak constraining itsdepositional age to be <485Ma. Zircons from amphibolitic gneisses of the XinkailingGroup in Nenjiang have magmatic ages of309Ma. Mylonitic granites of the XinkailingGroup in Nenjiang have zircon magmatic ages of164Ma. Detrital zircons from two-micaquartz schists of the Luomahu Group in the Galashan Forest yield~2419,~1789,~801,~536,~480, and~420Ma, with the youngest peak indicating its depositional age is <420Ma. Detrital zircons from mylonitized sericite–chlorite schist of the Ergunhe Formation inTaerqi yield populations of982–948,~519, and~410Ma, with the youngest peakdemonstrating that its depositional age is <410Ma. The meta-sedimentary rock of theWolegen Group was formed not earlier than the Early Ordovician as attested by the peak age of480Ma of the youngest population of zircons. The meta-volcanic rock of theWolegen Group was formed at431Ma, belonging to the Early Silurian.
     Based on these results and published data, these zircon ages for a range oflithologies show that the metamorphic rocks formed during the Phanerozoic. We concludethat there is no evidence of Precambrian metamorphic basement in the Xing’an block. Insummary, the age data indicate that: a unified Precambrian metamorphic basement maynot exist in the Xing’an region, but probably will be that there are some micro-continentalblocks exist in local areas.
     Dacite of the Duobaoshan Formation in Duobaoshan have zircon magmatic ages of485Ma, belonging to the Early Ordovician. Lithic tuffs of the Handaqi Formation inHandaqi have zircon magmatic ages of463Ma, belonging to the Middle Ordovician. Thesericite-quartz schist of the Duobaoshan Formation in Yiminhe was formed not earlierthan the Middle Ordovician as attested by the peak age of463Ma of the youngestpopulation of zircons. The two-mica chlorite quartz schists of the Upper Ordovician inHandaqi were formed not earlier than the Middle Ordovician as attested by the peak ageof470Ma of the youngest population of zircons. The tuffaceous siltstone of theBashilixiaohe Formation in Handaqi was formed not earlier than the Early Silurian asattested by the peak age of432Ma of the youngest population of zircons. Themylonitized tuffaceous fine sandstone of the Niqiuhe Formation in Xiaosuoerqi wasformed not earlier than the Late Ordovician as attested by the peak age of447Ma of theyoungest population of zircons.
     The detrital zircon age of the Ordovician-Middle Devonian in the Xing’an blockare dominated by Early Palaeozoic, followed by Neoproterozoic and Paleoproterozoic,with few Middle Proterozoic and Archean. Compared with the dating statistical results ofthe Precambrian-Early Palaeozoic and the detrital zircon age distribution curve of theNeoproterozoic in the Erguna and Songliao blocks, the age composition of LowerPaleozoic in the Xing’an Block is consistent with that in the Erguna Block. And they areall lack of the Middle Proterozoic age. The absence of the Neoproterozoic granite andPaleoproterozoic rocks in the Songliao block, and the high proportion of MiddleProterozoic age in the Neoproterozoic sedimentary in the Songliao block, showing thatthe Songliao block is different from the Erguna and Xing’an blocks. And the Ergunablock should be a main source area of the Lower Paleozoic sediments in the Xing’anblock. There is a lot of Silurian and Devonian age peaks in the detrital zircons from theSilurian and Devonian in the Xing’an block respectively, due to the absence of themagmatic event in the Erguna block, indicating the Early Paleozoic volcanic activity inthe Xing’an block was also an important source area. The above characteristics suggestedthat the Early Paleozoic marine basin in the Xing’an region is a continental margin basin,with the single direction terrigenous supply, also proved the Huanyu ophiolite was alreadyin place in the Early Ordovician.
     The Early-Middle Ordovician age peak in the detrital zircons from the Ordovician-Middle Devonian in the Xing’an block is consistent with the formation age of Early-Middle Ordovician magmatic arc and the Early Ordovician porphyry Cu deposit in theXing’an region, showing that Xing’an block is an active continental margin in EarlyPaleozoic. The Xing’an block may not have a uniform Precambrian metamorphicbasement, which formed in the plate subduction and collage based on the eastern edge ofthe Erguna block during the early Early Paleozoic.
引文
[1] Charvet J, Shu L S and Laurent-Charvet S. Paleozoic structural and geodynamic evolution ofeastern Tianshan (NW China): welding of the Tarim and Junggar plates [J]. Episodes,2007,30(3):162-186.
    [2] Cooke D R, Hollings P and Walsh J L. Giant porphyry deposits: Characteristics, distribution, andtectonic controls [J]. Econ. Geol.,2005,100(5):801-818.
    [3] Chen B, Jahn B M, Wilde S A, et al. Two contrasting Paleozoic magmatic belts in northern InnerMongolia, China: Petrogenesis and tectonic implications [J]. Tectonophysics,2000,328(1):157-182.
    [4] Gou J, Sun D Y, Ren Y S, et al. Petrogenesis and geodynamic setting of Neoproterozoic and LatePaleozoic magmatism in the Manzhouli–Erguna area of Inner Mongolia, China:Geochronological, geochemical and Hf isotopic evidence[J]. Journal of Asian Earth Sciences,2013,67:114-137.
    [5] Han G Q, Liu Y J, Neubauer F, et al. Origin of terranes in the eastern Central Asian Orogenic Belt,NE China: U-Pb ages of detrital zircons from Ordovician-Devonian sandstones, North DaXing'an Mts [J]. Tectonophysics,2011,511(3):109-124.
    [6] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition ofnitrogen in the central channel gas [J]. Journal of Analytical Atomic Spectrometry,2008,23(8):1093-1101.
    [7] James D E and Sacks I S. Cenozoic formation of the Central Andes: A geophysical perspective. In:Skinner, B.J., ed. Geology and ore deposits of the Central Andes [M]. Society of Econ. Geol.,Special Publication,1999.17:1-26.
    [8] Jahn B M, Griffin W L, Windley B F. Continental growth in the Phanerozoic: evidence fromCentral Asia [J]. Tectonophysics,2000,328(1): vii-x.
    [9] Jahn B M. The Central Asian orogenic belt and growth of the continental crust in the Phanerozoic
    [C]//Malpas J. Aspects of the tectonic evolution of China. Geological Society, London, SpecialPublication,2004,:73-100.
    [10] Khain E V, Bibikova E V, Kr ner A, et al. The most ancient ophiolites of the Central Asian foldbelt: U-Pb and Pb-Pb zircon ages for the Dunzhugur complex, Eastern Sayan, Siberia, andgeodynamic implications [J]. Earth and Planetary Science Letters,2002,199(3-4):311-325.
    [11] Kr ner A, Windley B F, Badarch G, et al. Accretionary growth and crust-formation in the CentralAsian Orogenic Belt and comparison with the Arabian-Nubian shield[C]. Geological Society ofAmerica, Memoirs,2007.
    [12] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of thePaleo-Asian Ocean and subduction of the Paleo-Pacific Plate [J]. Journal of Asian Earth Sciences,2006,26(3-4):207-224.
    [13] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous mineralsby LA-ICP-MS without applying an internal standard [J]. Chemical Geology,2008,257(1-2):34-43.
    [14] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotiteinteractions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements inzircons from mantle xenoliths [J]. Journal of Petrology,2010a,51(1-2):537-571.
    [15] Liu Y S, Hu Z C, Zong, K Q, et al. Reappraisement and refinement of zircon U-Pb isotope andtrace element analyses by LA-ICP-MS [J]. Chinese Science Bulletin,2010b,55(15):1535-1546.
    [16] Ludwig K R. User's manual for Isoplot3.00: a geochronological toolkit for Microsoft Excel [M].Kenneth R. Ludwig,2003.
    [17] Meng E, Xu W L, Pei F P, et al. Detrital-zircon geochronology of Late Paleozoic sedimentaryrocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of theeastern segment of the Central Asian Orogenic Belt [J]. Tectonophysics,2010,485(1):42-51.
    [18] Mitchell A H G. Metallogenetic belts and angle of dip of Benioff zones [J]. Nature,1973,245:49-52.
    [19] Richards J P, Boyce A J, and Pringle M S. Geologic evolution of the Escondida area, northernChile: A model for spatial and temporal localization of porphyry Cu mineralization [J]. Econ.Geol.,2001,96(2):271-305.
    [20] Rosenbaum G, Giles D, Saxon M, et al. Subduction of the Nazca Ridge and the Inca Plateau:Insights into the formation of ore deposits in Peru [J]. Earth and Planetary Science Letters,2005,239(1):18-32.
    [21] Seng r A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoiccrustal growth in Eurasia [J]. Nature,1993,364:209-307.
    [22]Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits [J]. Econ. Geol.,1972,67(2):184-197.
    [23] Sun D Y, Wu F Y, Li H M, et al. Emplacement age of the post-orogenic A-type granites innorthwestern Lesser Xing'an Ranges, and its relationship to the eastward extension ofSuolunshan–Hegenshan–Zhalaite collisional suture zone [J]. Chinese Science Bulletin,2001,46(5),427-432.
    [24] Sun D Y, Gou J, Wang T H, et al. Geochronological and geochemical constraints on the Ergunamassif basement, NE China–subduction history of the Mongol–Okhotsk oceanic crust [J].International Geology Review,2013,55(14):1801-1816.
    [25] Sun W, Chi X G, Zhao Z, et al. Zircon geochronology constraints on the age and nature of“Precambrian metamorphic rocks” in the Xing’an block of northeast China [J]. International GeologyReview,2014,56(6):672-694. DOI:10.1080/00206814.2014.883183.
    [26] Tang J, Xu W L, Wang F, et al. Geochronology and geochemistry of Neoproterozoic magmatismin the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodiniasupercontinent [J]. Precambrian Research,2013,224:597-611.
    [27] Wang F, Xu W L, Meng E, et al. Early Paleozoic amalgamation of the Songnen–ZhangguangcaiRange and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt:Geochronological and geochemical evidence from granitoids and rhyolites[J]. Asian EarthSciences,2012,49:234-248.
    [28] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central AsianOrogenic Belt[J]. Journal of the Geological Society,2007,164(1):31-47.
    [29]Wu F Y, Sun D Y, Li H M, et al. A-Type Granites in Northeastern China: Age and GeochemicalConstraints on Their Petrogenesis[J]. Chemical Geology,2002,187(1/2):143-173.
    [30] Wu F Y, Yang J H, Wilde S A, et al. Geochronology, petrogenesis and tectonic implications ofJurassic granites in the Liaodong Peninsula, NE China [J]. Chemical Geology,2005,221(1/2):127-156.
    [31] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeasternChina[J]. Journal of Asian Earth Sciences,2011,41(1):1-30.
    [32] Wu G., Chen Y C, Chen Y J, et al. Zircon U-Pb ages of the metamorphic supracrustal rocks of theXinghuadukou Group and granitic complexes in the Argun massif of the northern Great HingganRange, NE China, and their tectonic implications [J]. Journal of Asian Earth Sciences,2012,49:214-233.
    [33] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonkersuture, Inner Mongolia, China: Termination of the central Asian orogenic belt [J]. Tectonics,2003,22(6),1069:1-21.
    [34] Xu M J, Xu W L, Wang F, et al. Age, Association and Provenance of the “Neoproterozoic”Fengshuigouhe Group in the Northwestern Lesser Xing’an Range, NE China: Constraints fromZircon U-Pb Geochronology [J]. Journal of Earth Science,2012,23(6):786-801.
    [35] Yu J J, Wang F, Xu W L, et al. Early Jurassic mafic magmatism in the LesserXing’an-Zhangguangcai Range, NE China, and its tectonic implications: Constrains from zirconU-Pb chronology and geochemistry [J]. Lithos,2012,(142-143):256-266.
    [36] Zhou J B, Wilde S A, Zhang X Z, et al. The onset of Pacific margin accretion in NE China:evidence from the Heilongjiang high-pressure metamorphic belt [J]. Tectonophysics,2009,478:230–246.
    [37] Zhou J B, Wilde S A, Zhang X Z, et al. Pan-African metamorphic and magmatic rocks of theKhanka Massif, NE China: further evidence regarding their affinity [J]. Geological Magazine,2010a,147(5):737–749.
    [38] Zhou J B, Wilde S A, Zhao G C, et al. Was the easternmost segment of the Central AsianOrogenic Belt derived from Gondwana or Siberia: an intriguing dilemma [J]. Journal ofGeodynamics,2010b,50:300–317.
    [39] Zhou J B, Wilde S A, Zhao G C, et al. New SHRIMP U–Pb Zircon ages from the Heilongjiangcomplex in NE China: constraints on the Mesozoic evolution of NE China [J]. American Journalof Science,2010c,(310):1024–1053.
    [40] Zhou J B, Wilde S A, Zhang X Z, et al. Pan-African metamorphic rocks of the Erguna Massif inthe Great Xing'an Range, NE China: evidence and tectonic implications [J]. Tectonophysics,2011a,499(1–4):105–117.
    [41] Zhou J B, Wilde S A, Zhang X Z, et al. A>1300km late Pan-African metamorphic belt in NEChina: New evidence from the Xing'an block and its tectonic implications [J]. Tectonophysics,2011b,509(3):280-292.
    [42] Zhou J B, Wilde S A, Zhang X Z, et al. Detrital zircons from Phanerozoic rocks of the SongliaoBlock, NE China: evidence and tectonic implications [J]. Journal of Asian Earth Sciences,2012,47:21–34.
    [43] Zhou J B and Wilde S A. The crustal accretion history and tectonic evolution of the NE Chinasegment of the Central Asian Orogenic Belt [J]. Gondwana Research,2013,23:1365–1377.
    [44] Zhang Y H, Xu W L, Tang J, et al. Age and provenance of the Ergunahe Group and theWubinaobao Formation, northeastern Inner Mongolia, NE China: implications for tectonic settingof the Erguna Massif [J]. International Geology Review,2014,56(6):653-671.
    [45]崔革.小兴安岭西北部奥陶纪大陆边缘岛弧的确定及其演化[C].中国北方板块构造文集.北京:地质出版社,1983:293-315.
    [46]崔根,王金益,张景仙,等.黑龙江多宝山花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义[J].世界地质,2008,27(4):387-397.
    [47]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述—兼论大别造山带锆石定年[J].岩石学报,2001,17(01):129-138.
    [48]丁雪.满洲里-额尔古纳地区佳疙疸组变质岩系变质变形研究[D].长春:吉林大学硕士学位论文,2010.
    [49]冯坚.伊春—延寿构造带早古生代构造属性研究[D].长春:吉林大学硕士学位论文,2012.
    [50]葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005,50(12):1239-1247.
    [51]葛文春,隋振民,吴福元,等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007a,23(02):423-440.
    [52]葛文春,吴福元,周长勇,等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007b,52(20):2407-2417.
    [53]高福红,王枫,许文良,等.小兴安岭“古元古代”东风山群的形成时代及其构造意义:锆石U-Pb年代学证据[J].吉林大学学报:地球科学版,2013,43(2):440-456.
    [54]黑龙江省地质矿产局.1:20万区域地质调查报告卧都河幅[R],1975.
    [55]黑龙江省地质矿产局.1:20万区域地质调查报告沐河屯幅[R],1977.
    [56]黑龙江省地质矿产局.1:20万区域地质调查报告龙镇幅[R],1978.
    [57]黑龙江省地质矿产局.1:20万区域地质调查报告喜桂图旗幅-塔尔其幅-绰尔幅[R],1981.
    [58]黑龙江省地质矿产局.1:20万区域地质调查报告霍龙门幅[R],1984a.
    [59]黑龙江省地质矿产局.1:20万区域地质调查报告罕达气幅[R],1984b.
    [60]黑龙江省地质矿产局.1:20万区域地质调查报告塔源幅[R],1985.
    [61]黑龙江省地质矿产局.1:20万区域地质调查报告三道卡-白石砬子幅[R],1986.
    [62]黑龙江省地质矿产局.1:20万区域地质调查报告黑河市幅-孙吴县幅[R],1989.
    [63]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [64]黑龙江省地质矿产局.1:5万区域地质调查报告塔源幅[R],1995.
    [65]黑龙江省地质矿产局.黑龙江省岩石地层[M].武汉:中国地质大学出版社,1997.
    [66]黑龙江省地质调查研究院.1:20万区域地质调查报告塔源幅[R],2000.
    [67]黑龙江省地质调查研究总院.1:25万区域地质调查报告阿荣旗幅[R],2005.
    [68]黑龙江省地质调查研究总院.多宝山地区矿产远景调查项目报告[R],2010.
    [69]黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    [70]姜春潮.小兴安岭北西部的前震旦系—黑龙江流域及毗邻地区地质[M].北京:地质出版社,1963.
    [71]李春昱,王荃,张之孟,等.中国板块构造的轮廓[J].地球学报,1980,2(1):1-15.
    [72]李春昱,王荃,刘雪亚.亚洲大地构造图(1/800万)说明书[M].北京:中国地图出版社,1982:1-49.
    [73]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    [74]李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报:地球科学版,2009,39(4):584-605.
    [75]李瑞山.新林蛇绿岩[J].黑龙江地质,1991,2(1):19-32.
    [76]刘永江,张兴洲,金巍,等.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951.
    [77]刘财,孟令顺,等.东北地球物理场与地壳演化[M].北京:地质出版社,2010,82-88,116-117,183-190.
    [78]刘建峰,迟效国,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27(04):534-544.
    [79]莫友忱.头道桥的蓝闪片岩的岩石特征,黑龙江地质,1980(2).
    [80]苗来成.大兴安岭的锆石SHRIMP地质年代学研究[R].北京:中国科学院地质与地球物理研究所博士后研究报告,2003.
    [81]苗来成,范蔚茗,张福勤,等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报,2003,48(22):2315-2323.
    [82]苗来成,刘敦一,张福勤,等.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMP U-Pb年龄[J].科学通报,2007,52(5):591-601.
    [83]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    [84]内蒙古自治区地质矿产局.全国地层多重划分对比研究-内蒙古自治区岩石地层[M].武汉:中国地质大学出版社,1996.
    [85]南润善,朱慈英,郑月娟,等.内蒙古兴安区奥陶纪生物组合和古地理某些特征//南润善、郭胜哲等,内蒙古东北地槽区古生物地层及古地理[M].北京:地质出版社,1992:1-70.
    [86]彭玉鲸,赵成弼.古吉黑造山带的演化与陆壳的增生[J].吉林地质,2001,20(2):1-9.
    [87]裴福萍,许文良,杨德彬,等.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义[J].科学通报,2006,51(24):2881-2887.
    [88]秦秀峰,尹志刚,汪岩,等.大兴安岭北段漠河地区早古生代埃达克质岩特征及地质意义[J].岩石学报,2007,23(6):1501-1511.
    [89]权京玉,迟效国,张蕊,等.松嫩地块东部新元古代东风山群碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义[J].地质通报,2013,32(2/3):353-364.
    [90]权京玉.松嫩地块东部新元古代—早古生代构造属性研究[D].长春:吉林大学硕士学位论文,2013.
    [91]任纪舜,牛宝贵.软碰撞叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    [92]任邦方,孙立新,程银行,等.大兴安岭北部永庆林场-十八站花岗岩锆石U-Pb年龄、Hf同位素特征[J].地质调查与研究,2012,35(2):109-117.
    [93]芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源区或源区探讨[J].岩石学报,2004,20(2):229-238.
    [94]隋振民,葛文春,吴福元,等.大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因[J].世界地质,2006,5(3):229-236.
    [95]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].长春:吉林大学博士学位论文,2007.
    [96]隋振民,葛文春,徐学纯,等.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报,2009a,25(10):2679-2686.
    [97]隋振民,葛文春,吴福元,等.大兴安岭北部察哈彦岩体的Hf同位素特征及其地质意义[J].吉林大学学报:地球科学版,2009b,39(5):849-856.
    [98]苏养正.兴安地层区的古生代地层[J].吉林地质,1996,15(3-4):23-34.
    [99]孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217-2222.
    [100]孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275.
    [101]孙立新,任邦方,赵凤清,等.额尔古纳地块太平川巨斑状花岗岩的锆石U-Pb年龄和Hf同位素特征[J].地学前缘,2012,19(5):114-122.
    [102]孙立新,任邦方,赵凤清,等.内蒙古额尔古纳地块古元古代末期的岩浆记录:来自花岗片麻岩的锆石U-Pb年龄证据[J].地质通报,2013,32(2-3):341-352.
    [103]孙晓猛,刘财,朱德丰,等.大兴安岭西坡德尔布干断裂地球物理特征与构造属性[J].地球物理学报,2011,54(2):433-440.
    [104]孙巍,迟效国,潘世语,等.大兴安岭北部新林地区倭勒根群大网子组锆石LA-ICP-MS U-Pb年龄及其地质意义[J].吉林大学学报:地球科学版,2014,44(1):176-185.
    [105]佘宏全,李进文,向安平,等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报,2012,28(2):571-594.
    [106]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,8(增刊):26-30.
    [107]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [108]武广,孙丰月,赵财胜,等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报,2005,50(20):2278-2288.
    [109]许文良,王枫,孟恩,等.黑龙江省东部古生代—早中生代的构造演化:火成岩组合与碎屑锆石U-Pb年代学证据[J].吉林大学学报:地球科学版,2012,42(5):1378-1389.
    [110]谢鸣谦.拼贴板块构造及其驱动机理-中国东北及其邻区的大地构造演化[M].北京:科学出版社,2000.
    [111]尹冰川,冉清昌.多宝山超大型铜矿床的成矿构造环境[J].矿物学报,1997,17(2):220-224.
    [112]叶茂,张世红,吴福元.中国满洲里-绥芬河地学断面域古生代构造单元及其地质演化[J].长春地质学院学报,1994,24(03):241-245.
    [113]叶慧文,张兴洲,周裕文.从蓝片岩及蛇绿岩特点看满洲里-绥芬河断面岩石圈结构与演化.见:M-SGT地质课题组编.中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究[M].北京:地震出版社.1994,73-83.
    [114]杨现力.扎兰屯浅变质岩系地质特征及碎屑锆石年代学研究[D].长春:吉林大学硕士学位论文,2007.
    [115]张梅生,彭向东,孙晓猛.中国东北古生代构造古地理格局[J].辽宁地质,1998,2:91-96.
    [116]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社,1998.
    [117]张兴洲,杨宝俊,吴福元,等.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823.
    [118]张彦龙,葛文春,柳小明,等.大兴安岭新林镇岩体的同位素特征及其地质意义[J].吉林大学学报:地球科学版,2008,38(2):177-186.
    [119]张彦龙,赵旭晁,葛文春,等.大兴安岭北部塔河花岗杂岩体的地球化学特征及成因[J].岩石学报,2010,26(12):3507-3520.
    [120]周建波,张兴洲,Simon A W,等.黑龙江杂岩的碎屑锆石年代学及其大地构造意义[J].岩石学报,2009,25(8):1924-1936.
    [121]周建波,张兴洲,郑常青.中国东北~500Ma泛非期孔兹岩带的确定及其意义[J].岩石学报,2011,27(4):1235-1245.
    [122]赵芝,迟效国,潘世语,等.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J].岩石学报,2010a,26(8):2452-2464.
    [123]赵芝,迟效国,刘建峰,等.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J].岩石学报,2010b,26(11):3245-3258.
    [124]赵芝.大兴安岭北部晚古生代岩浆作用及其构造意义[D].长春:吉林大学博士论文,2011.
    [125]赵芝,迟效国,赵秀羽,等.大兴安岭北部红水泉组碎屑锆石LA-ICP-MS U-Pb年代学及其地质意义[J].吉林大学学报:地球科学版,2012,42(1):126-135.
    [126]郑常青,周建波,金巍,等.大兴安岭地区德尔布干断裂带北段构造年代学研究[J].岩石学报,2009,25(8):1989-2000.
    [127]张丽,刘永江,李伟民,等.关于额尔古纳地块基底性质和东界的讨论[J].地质科学,2013,48(1):227-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700