水泥颗粒形貌级配在生产中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先从我国水泥目前所存在的问题出发,指出水泥颗粒形貌和水泥颗粒级配的问题是导致我国水泥一些性能指标不理想的原因之一。根据粉体学理论,分析了水泥颗粒形貌、颗粒细度的大小、细粉含量的高低以及水泥颗粒的级配对水泥性能的影响及在混凝土中作用的影响。在蒙西高新材料股份有限公司分别用两种低碱高性能425#水泥M1和M2在混凝土中进行了这几方面的试验,得到了较好的结果。混凝土的抗压强度、干缩性、耐磨性、早后期强度、耐久性等性能都达到高性能混凝土的要求,且水泥的生产成本也有所降低。把此试验结果应用到蒙西高新材料股份有限公司的水泥生产中,取得了较好经济效益和社会效益。
     根据小试实验,混合材掺量范围为30——35%、比表面积范围为480——520m m2/Kg、细度为0.080mm、筛余为小于1.5%时,水泥的流动度、强度等有较大幅度的提高。根据中试实验,水泥颗粒分布32μm以下占80%以上时,有利于水泥早期和后期强度的发挥;水泥颗粒球形化程度越高,水泥的流动性越好,0.44水灰比下流动度平均值大于130mm。
     根据小试和中试实验的结果,进行了工业化生产,得到两种添加混合材的水泥产品M1和M2。对它们进行检测,结果如下:水泥胶砂强度的各项力学性能远远超过国家标准,特别是在早期强度方面表现突出;水泥物理性能和化学性能(如水化热值、SO_3含量、碱含量等)的各项指标也均超过国家标准,特别是其比表面积(为547m~2/kg和571m~2/kg)和筛余(为1.4%和1.0%)指标远远超过国家标准,说明其具有较多的细粉含量;对水泥颗粒尺寸分布进行检测,水泥颗粒分布较窄,0-32μm的颗粒达到95%,说明水泥颗粒有较好的级配;以XD5图象分析仪进行测定,水泥的颗粒圆形度参数平均值较高;用扫描电镜观测形貌,水泥的颗粒球形化程度较高。把此两种水泥称为“球形窄粒径低碱高性能425#水泥”,
     把两种水泥产品应用到混凝土中,结果如下:水泥与外加剂具有较好适应性;混凝土的强度、防水抗渗、坍落度、坍落扩展度、含气量、泌水率、凝结时间及收缩、耐磨、抗冻性、耐久性等性能都达到优质商品混凝土的要
    
     武汉理工大学硕士学位论文
    求。该两种水泥产品的混合材为炉渣、矿渣、煤研石等工业废渣。因此具有
    良好颗粒形貌和颗粒级配的水泥,添加一定量的混合材后,不仅降低了水泥
    的成本,而且水泥的性能还没有降低,同时还解决了工业废渣的污染问题。
    取得了较好经济效益和社会效益。
From the problem existing in China's cement at present, this thesis pointed out that the cement granules' appearance and the granules' matches is one of the reasons which lead to China's cement being imperfect. Based on the powder theory, this thesis has probed into the influence of some factors on the properties of cement and its functions in the concrete. The factors are as follows: the cement granules' appearance, the size of the granule, the content of fine granules and the granules' matches. Experiments in the laboratory and in the middle scale have been carried out in Inner Mongolia Melic Sea High-tech materials Co., Ltd (IMMSHTCT) by using two kinds of high-performance cements with low alkali named 425#. Good results were obtained. The performances of the concrete, such as anti-press intensity, dry shrinking performance, grinding resistance, intensity from beginning to the end and the wear properties has arrived at a high level. The cost of the cement has also been reduced properly. The results have b
    een used in the IMMSHTCT industry, good economic benefit and social benefit have obtained.
    According to the laboratory results, when the range of additions is 30-35%, the range of specific surface is 480-520m2/kg, the fineness is 0.080mm, the tail-over is 1.5%, then the degree of flowing and intensity of cement have been increased greatly. Experiments in the middle scale have proved that when the distribution of granules that below 30um is over 80%, intensity from beginning to the end will be increased. The higher the roundness degree of cement's granules is, the better the fluidness of the cement will be. When the ratio of water and cement is 0.44, the average of
    
    
    fluidness of the cement is over 130mm.
    Industrialized manufactures have been carried out according to the experiments in the laboratory and in the middle scale. Two kinds of cements of Ml and M2 that have additions were obtained. Results of check are as follows: the intensities of cement water mortar have exceeded the state standards, especially the early intensity is obvious; physical and chemical properties of cement such as the value of hydrating thermal, the content of SO3 and the content of alkali have also exceeded the state standards, especially the specific surface (547m2/kg and 571m2/kg) and the tail-over (1.4% and 1.0%) exceeded the state standards greatly, this shown that the cements contain many fine granules. The investigation of the granules distribution shows that the range is narrow; the range of granules between 0-32(im is 95%. This indicated that the granules' matches are fine. The average value of the roundness degree of cement's granules is much high by the XD5 image meter and SEM.
    Results of applying Ml and M2 into the concrete are as fellows: the adaptability between cement and additives is fine; performances of the concrete, such as intensity, waterproof, the degree of collapse, the expanding degree of collapse, the content of water, the presentation of water, the time of coagulation, dry shrinking performance, grinding resistance, and the properties of anti-freezing and the properties of lasting have arrived at the level required by high-quality commercial concretes.
    The additions of the two kinds of cements are industry waste residues, such as slag, scoria and coal slag. When put these additions into cements that have fine granules' appearance and fine granules' matches, not only the properties of cement has been enhanced, the cost of the it has also been reduced. Meanwhile, the problem of pollution of industry waste residues
    
    has also been solved. Good economic benefit and social benefit have obtained.
引文
[1] 张少明等,粉体工程,1994
    [2] 乔龄山,水泥的最佳颗粒分布及其评价方法,水泥,2001—8
    [3] 陶珍东等,微细水泥的生产及性能和用途,水泥工程1999—3
    [4] 沈威等,水泥工艺学,武汉工业大学出版社
    [5] 姜玉英,水泥工艺实验,武汉工业大学出版社
    [6] 施娟英,熟料颗粒大小对水泥性能的影响——兼论水泥的最佳颗粒组成,第二届水泥学术议论文选集
    [7] 综合信息,水泥工艺
    [8] 干磨细水泥改性试验报告,武汉工业大学
    [9] 朱清江,高强高性能混凝土研制及应用
    [10] 乔龄山,对如何提高我国通用水泥质量的探讨(一),水泥,2000—1
    [11] 邓聚龙,灰色系统,华中理工大学出版社
    [12] 蒋永惠,X射线定量相分析在水泥化学研究中的应用,武汉建材学院
    [13] 殷庆立,水泥基材料强度影响因素:分析与综述,硅酸盐通报
    [14] 王爱勤,颗粒级配对水泥性能影响的探讨,水泥工程
    [15] 任中京,群粒度均匀性的定量表征,酸盐通报
    [16] 金日光,模糊群子论,哈尔滨,黑龙江科学技术出版社
    [17] 丁星,水泥活性矿物掺料增强效应统计模型研究,硅酸盐学报
    [18] 孟萃青,混杂复合材料的数学模拟,上海机械学院学报
    [19] 叶瑞伦,无机材料物理化学,中国建筑工业出版社
    [20] 杨南如,机械力化学活化过程与效应,建筑材料学报
    [21] 施惠生,游离氧化钙对水浆体体积膨胀的影响机制,水泥
    [22] Y Yamazakai, Y Sakakibara, The mechanism ofexpansive pressure development with the hydration of CaO, Proceeding of the 8th International Congress on the Chemistry of Cement, Rio de Janeiro
    [23] 许仲梓,粒径分布对水泥水化速度的影响的理论探讨,第二届水泥学术会议论文选集
    [24] 冯修吉,利用反射光鉴定水泥岩相的方法,冯修吉水泥论文选
    
    
    [25] 栾军,现代试验设计优化方法,上海交通大学出版社
    [26] Feng Xiuji, An investigation on the effect of particle size distribution upon the strength of cement with the gray system theory, IL Cement Vol, 90
    [27] 施娟英,熟料颗粒大小对水泥性能的影响——兼论水泥的最佳颗粒组成,第二届水泥学术会议论文选集
    [28] 杨淑珍,无机非金属材料测试实验,武汉工业大学出版社
    [29] Goldstein, L. Ya, Combined Cement Process, Stroiizdat, Leningrad
    [30] P.Barnes著,吴兆琦译校,水泥的结构和性能

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700