用户名: 密码: 验证码:
基于金属磁记忆法的铁磁材料早期损伤检测与评价的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性应力集中、微观塑性变形等引起的早期物理性损伤会降低工程材料和结构的承载能力,甚至最终导致灾难性突发事故的发生,因此对其实现有效监测是确保工业运行安全的关键。传统漏磁检测虽然在工程中已得到广泛应用,但这类强磁检测技术不适用于对材料早期损伤的检测。近十几年来发展起来的金属磁记忆检测法是一种被动式弱磁检测技术,通过检测被测对象由于局部应力集中或损伤形成的表面自发漏磁场确定损伤位置及损伤程度。理论上说该方法可能是目前最有希望可以实现对铁磁材料及结构进行早期诊断的无损检测方法。但是由于该方法发展时间较短,影响因素众多,目前在工程应用中只作为确定缺陷可能存在位置的一种初步检测手段,无法提供定量化结果。本文利用金属磁记忆检测技术测试了含孔铁磁材料试样单向拉伸、非铁磁—铁磁和铁磁—铁磁接触下漏磁信号的变化特征,并在分析漏磁信号变化力磁机制的基础上,提出了相应的损伤判据,根据漏磁信号的梯度曲线获得了损伤评价参数;最后进行了数值模拟,并利用实验提出的损伤判据和评价参数,对损伤区的反演进行了初探。主要内容和结论包括:
     (1)针对含孔45号钢试样进行了单向拉伸实验,提出了塑性损伤判据:在应力集中部位,法向漏磁信号发生较明显的波动变化,漏磁梯度出现极值,切向漏磁信号出现一个较为明显的极值,漏磁梯度出现峰—峰值变化并在应力集中的中心位置过零点。
     (2)开展非铁磁(铜质)圆压头与45号钢试样间的接触实验,提出了接触应力集中的损伤判据:沿垂直于加载方向,法向漏磁信号的梯度值出现极值,同时切向漏磁信号的梯度值出现峰—峰值变化并在应力集中的中心位置过零点。同时开展了铁磁圆压头与45号钢试样间的接触实验,发现其漏磁信号变化特征与铜质圆压头实验完全不同,相应的损伤判据为:法向漏磁信号出现一个极值,漏磁梯度出现峰—峰值变化并在接触区中心位置过零点;切向漏磁信号出现峰—峰值变化并且过零点,漏磁梯度出现极值。
     (3)开展了非铁磁(铜质)和铁磁平压头与45号钢试样的接触实验。其中铜质和退磁处理的铁磁平压头接触实验中漏磁信号的变化曲线均可看作由相同工况下圆压头的结果叠加而成,因此可参照圆压头的情况建立损伤判据。未退磁处理的铁磁平压头接触的漏磁信号特征则有很大的不同,相应的损伤判据为:法向漏磁信号的曲线斜率出现明显的变化,漏磁的梯度出现两个反向的峰—峰值变化并出现两个过零点;切向漏磁信号出现两个明显的峰值,漏磁的梯度出现一个波峰和一个波谷。
     (4)由漏磁信号及其梯度曲线均可获得一些特征参量用以评价损伤的情况(包括损伤程度和范围等)。但梯度曲线能够清除外部磁场的影响,且能突出反映损伤局部化的程度。可利用漏磁信号梯度曲线上的峰—峰值、峰—谷值和峰值等参量来评价损伤的局部化程度;相应的峰—峰值宽、峰—谷值宽和峰值过零点的水平间距等参量来评价损伤范围。
     (5)利用有限元法对含损伤试样的漏磁信号进行了数值分析研究,结果表明:磁记忆检测对发生在试件表面的损伤更敏感;测量中要尽量保证传感器贴合在试件表面;试件方向对漏磁梯度曲线的变化没有影响;实验结果提出的表征损伤范围的评价参数可用来反演损伤区的大小和形状。
Early physical damage caused by elastic stress concentration, mirco plastic deformation, etc. will certainly lead to lower loading capacity of engineering materials and structures, and sometimes even to catastrophic accidents. Therefore, effective monitoring is the key to ensure the industrial safety. Although the traditional magnetic flux leakage detection has already been widely used in practical engineering, such strong magnetic detection technology is not suitable for the detection of early damages. In the most recent decade, the metal magnetic memory (MMM) method is developed as a passive weak magnetic detection technology, which identifies the damage locations and conditions by detecting the surface spontaneous magnetic leakage field due to the localized stress concentration of damage in the measured object. Theoretically, the MMM method is a prospective method that can realized early nondestructive detection for ferromagnetic materials and structures. However, due to short developing period and various influencing factors, this method, in practical engineering, is only applied as a preliminary testing technique for determining the possible location of defects. This thesis uses the MMM method to detect the magnetic flux leakage signals in uni-axial tensile of a ferromagnetic metal specimen with a hole and contact of nonferromagnetic-ferromagnetic materials and ferromagnetic-ferromagnetic materials, respectively. Furthermore, on the basis of magneto-mechanical analysis of magnetic flux leakage signals, we propose the corresponding damage criteria and get the evaluation parameters based on the gradient of the magnetic flux leakage signals. Finally, we present numerical simulation and discuss the image of the damage shapes by using the damage criteria and evaluation parameters. Detailed contents and main conclusions are as follows:
     (1) Magnetic flux leakage experiments for a45#steel specimen with a small hole under the uni-axial tensile are performed. A criterion of plastic damage is developed which states:at the stress-concentration zone, the normal magnetic flux leakage signal has obvious fluctuation, with its gradient exhibiting a peak. Meanwhile, a clear peak appears in the tangential magnetic flux leakage signal; and its gradient follows a peak-peak change with a value of zero at the center of the stress-concentration zone.
     (2) Contact test between a cylindrical nonferromagnetic (copper) indenter and a45#steel specimen are performed. The criterion of damage states:along the direction perpendicular to the loading, the normal magnetic flux leakage gradient exhibits a peak, and the tangential magnetic flux leakage gradient follows a peak-peak change with a value of zero at the center of the stress-concentration zone. Meanwhile the contact tests between a cylindrical ferromagnetic indenter and a45#steel specimen are performed. It is found that the features of the magnetic flux leakage signals are totally different from those of a cooper cylindrical indenter. The criterion of damage in this case becomes:the normal magnetic flux leakage signal exhibits a peak, which its gradient following a peak-peak change with a value of zero at the center of the stress-concentration zone. Moreover, tangential magnetic flux leakage signal follows a peak-peak change with a value of zero, and its gradient exhibits a peak.
     (3) Contact test between a flat nonferromagnetic (cooper) or ferromagnetic indenter and45#steel specimen are performed. For the contact tests of a flat cooper indenter or demagnetized ferromagnetic indenter, the magnetic flux leakage signal curves can be created as superpositions of the results of cylindrical indenter under the same condition. The criterion of damage may be developed based on those for a cylindrical indenter. The magnetic flux leakage signals in the contact test of a non-demagnetized ferromagnetic indenter are quite different. The criterion of damage is: the normal magnetic flux leakage gradient follows two reverse peak-peak changes with two values of zero. Also, the tangential magnetic flux leakage signal exhibits two peaks, and its gradient shows a peak and a valley.
     (4) From the curves of the magnetic flux leakage signals and their gradient, some characteristic parameters can be obtained to evaluate damage degree and region. However, the gradient curves can avoid influence of external magnetic fields, and can highlight the localization of damage. The inhomogeneity of damage can be evaluated through the magnetic flux leakage gradient curves by the peak-peak values, peak-valley values and peaks; and the damage area can be evaluated by the peak-peak widths, peak-valley widths and horizontal distances of zero crossings.
     (5) Numerical results of the magnetic flux leakage signals of a specimen which damage are presented. The results show that the MMM method is more sensitive to the damage at the surface of a specimen. In the test, the sensor should approach the specimen surface as closely as possible. The testing direction is of no influence on the magnetic flux leakage gradient curves. The size and shape of the damage area can be imaged by the evaluation parameters.
引文
[1]税国双,汪越胜,曲建民.材料力学性能退化的超声无损检测与评价[J].力学进展,2005,35(2):52-68.
    [2]中国机械工业学会无损检测学会编.磁粉探伤[M].北京:机械工业出版社.1987.
    [3]ASTM,无损检测标准.铁磁性管道的漏磁检测标准方法[M].E570-584.
    [4]Barkhausen H. Two phenomena revealed with the help of new amplifiers [J]. Physikdische Zeitschrift.1919,29:401-403.
    [5]Lord A E. Acoustic Emission in Physical Acoustics [M]. New York.1975.
    [6]Langman R. Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength [J]. NDT & E International.1981,14(5):255-262.
    [7]Doubov A A. Screening of weld quality using the metal magnetic memory [J]. Weld World. 1998,41:196-199.
    [8]Doubov A A. Diagnostics of metal items and equipment by means of metal magnetic memory [C]. Proc of CHSNDT 7th Conference on NDT and International Research Symposium. Shantou China:Non-Destructive Testing Institution, CEMS.1999,181-187.
    [9]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社.2002.
    [10]徐莉.我国射线检测技术的发展[J].内江科技.2007,28(10):129-130.
    [11]朱丹,曾效舒.铸铁件超声波检测方法的应用和发展[J].现代铸铁.2009,(5):76-79.
    [12]徐驰.散斑检测技术[D].广州,南华理工大学.2007.
    [13]庞彬,李华,郑明.计算机工程与技术[J].管道检测数据分析系统.2006,27(21):4117-4119.
    [14]郭贻诚.铁磁学[M].北京:人民教育出版社.1965:82-90.
    [15]钟文定,铁磁学(中册)[M].科学出版社.2000:156-189.
    [16]姜寿亭,李卫.凝聚态磁性物理[M].科学出版社.2003.
    [17]宛德福,马兴隆.磁性物理学(修订本)[M].电子工业出版社.1999:35-46.
    [18]近角聪信著,葛世惠译.铁磁性物理[M].兰州大学出版社.2002.
    [19]张启仁.量子力学[M].科学出版社.2002.
    [20]Ivanov P A, Zhang Z, Yeoh C H, Udpa L. Magnetic flux leakage modeling for mechanical damage in transmission pipelines [J]. IEEE Transaction on Magnetics.1998,34(5): 3020-3023.
    [21]Kuroda M, Yamanaka S, Yamada K, Isobe Y. Evaluation of residual stresses and plastic deformations for iron-based materials by leakage magnetic flux sensors [J]. Journal of Alloys and Compounds.2001,314(1-2):232-239.
    [22]Maker J M, Tanner B K. The effect of stresses approaching and exceeding the yield point on the magnetic properties of high strength pearlitic steels [J]. NDT & E International.1998, 31(2):117-127.
    [23]Yamamoto K, Sasaki T, Yamashiro Y. Magnetization change due to stress change in a constant magnetic field on amorphous ribbons [J]. Journal of Applied Physics.1997,81(8):5796-5798.
    [24]Notoji A, Haykawa M, Saito A. Strain-magnetization properties and domain structure change of silicon steel sheets due to plastic stress [J]. IEEE Transaction on Magnetics.2000,36(5): 3074-3077.
    [25]Kaleta J, Przemyslaw W. Magneto-vision as a tool for investigation of fatigue process of ferromagnetic [C]. SAE Brazil International Conference on Fatigue. Brazil:2002.
    [26]Sukegawa T. Magnetic nondestructive evaluation of ferromagnetic steels due to mechanical loading [C]. Electromagnetic nondestructive evaluation IOS Press.2002:135-142.
    [27]黄松岭,李路明,施克仁,汪来富,范红旗.地磁场激励下残余应力分布的磁检测方法[J].清华大学学报(自然科学版).2002,42(11):1426-1428.
    [28]Huang S L, Li L M, Shi K R, Wang X F. Magnetic field properties caused by stress concentration [J]. Journal of Central South University of Technology.2004,11(1):23-26.
    [29]Yang E, Li L M. Magnetization changes induced by low cycle fatigue both in the geomagnetic field and the magnetic-free environment [J]. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV.2005, SPIE 5767: 373-380.
    [30]Yang E, Li L M, Chen X. Magnetic field aberration induced by cycle stress [J]. Journal of Magnetism and Magnetic Materials.2007,312(1):72-77.
    [31]邸新杰,李午申,严春妍,白世武,刘方明,薛振奎.基于金属磁记忆的宏观焊接裂纹识别方法[J].中国机械工程.2007,18(12):1475-1478.
    [32]梁志芳,王迎娜,李午中,白世武,薛振奎.焊接裂纹金属磁记忆信号特征研究的进展[J].机械科学与技术.2007,26(1):81-83.
    [33]邸新杰,李午申,白世武,刘方明,焊接裂纹金属磁记忆信号的神经网络识别[J].焊接学报.2008,29(3):13-16.
    [34]Yan C Y, Li W S, Di X J, Xue Z K, Bai S W, Liu F M. Variation regularity of metal magnetic memory signals with inspecting time-interval and location [J]. Journal of Central South University Technology.2007,14(3):319-323.
    [35]刘红光,张卫民,毛新颜.基于磁记忆检测技术的焊接缺陷多参数识别[J].制造业自动化.2009,31(2):7-10.
    [36]张卫民,刘红光,孙海涛.中低碳钢静拉伸时磁记忆效应的实验研究[J].北京理工大学学报.2004,24(7):571-574.
    [37]Xie D X, Zhang W M, Bai B D, Zeng L S, Wang L S. Finite element analysis of Permanent magnet assembly with high field strength using preisach theory [J]. IEEE Transaction on Magnetics.2007,43(4):1393-1396.
    [38]Wang Z X, Zhang W M, Liu H G. Modeling and analysis of magnetic dipoles in weak magnetic field [J]. Frontiers of Mechanical Engineering in China.2008,3(2):222-225.
    [39]张卫民,林俊杰,王朝霞,刘红光.螺纹连接承载过程的力-磁关系研究[J].中国机械工程.2009,20(1):34-37.
    [40]张卫民,王朝霞,高玄怡,高乾鹏.拉伸情况下含裂纹16MnR钢的磁记忆检测实验[J].测试技术学报.2010,24(5):381-384.
    [41]张卫民,涂青松,殷亮.静拉伸条件下螺纹联接件三维弱磁信号研究[J].北京理工大学学报.2010,30(10):1151-1154.
    [42]董世运,徐滨士,董丽虹,王丹.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[J].中国表面工程.2006,19(5):71-75.
    [43]尹大伟,徐滨士,董世运,董丽虹.中碳钢疲劳试验的磁记忆检测[J].中国机械工程.2007,43(3):60-65.
    [44]王翔,陈铭,徐滨士.48MnV钢拉压疲劳过程中的磁记忆信号变化[J].中国机械工程.2007,18(15):1862-1864.
    [45]Dong L H, Xu B S, Dong S Y, Chen Q Z, Wang D. Variation of stress-induced magnetic signals during tensile testing of ferromagnetic steels [J]. NDT&E International.2008,41(3): 184-189.
    [46]Dong L H, Xu B S, Dong S Y, Chen Q Z, Wang D. Monitoring fatigue crack propagation of ferromagnetic materials with spontaneous abnormal magnetic signals [J]. International Journal of Fatigue.2008,30(9):1599-1605.
    [47]Dong L H, Xu B S, Dong S Y, Song L, Chen Q Z, Wang D. Stress dependence of the spontaneous stray field signals of ferromagnetic steel [J]. NDT&E International.2009,42(4): 323-327.
    [48]Guo P J, Chen X D, Guan W H, et al. Effect of tensile stress on the variation of magnetic field of low-alloy steel [J]. Journal of Magnetism and Magnetic Materials.2011,323:2474-2477.
    [49]任吉林,王东升,宋凯.典型铁磁构件磁记忆效应的试验研究[J].无损检测.2005,27(8):409-411.
    [50]任吉林,陈曦,宋凯.金属构件磁记忆效应影响因素研究[J].无损检测.2006,28(6):292-295.
    [51]任吉林,陈晨,刘昌奎,陈曦,舒铭航,陈星.磁记忆检测力-磁效应微观机理的试验研究[J].航空材料学报.2008,28(5):41-44.
    [52]任尚坤,杨雅玲,任吉林,宋凯.含小孔铁磁平板单向拉伸的漏磁场应力分布[J].钢铁研究学报.2008,20(8):55-58.
    [53]陈曦,任吉林,王伟兰,陈晨.地磁场中应力对磁畴组织的影响[J].失效分析与预防.2007,2(1):6-9.
    [54]任尚坤,任吉林,邬冠华,宋凯,杨雅玲.35号冷轧钢在不同阶段应力作用下的磁效应特征[J].无损检测,2008,30(4):244-247,254.
    [55]Wilson J W, Tian G Y, Barrans S. Residual magnetic field sensing for stress measurement [J]. Sensor and Actuators A:Physical.2007,135(2):381-387.
    [56]Zhang Y L, Gou R B, Li J M, Shen G T. Characteristics of metal magnetic memory signals of different steels under static tension [J]. Frontiers of Mechanical Engineering in China.2010, 5(2):226-232.
    [57]李济民,张亦良.Q235钢材料拉伸时磁记忆效应的试验研究[J].压力容器.2008,25(7):10-12.
    [58]李济民,张亦良,沈功田.拉伸变形过程中磁记忆效应及微观表征的试验研究[J].压力容器.2009,26(8):15-20.
    [59]李济民.基于疲劳累积损伤的磁记忆效应及工程应用研究[学位论文].北京,北京工业大学.2009,226-232.
    [60]Roskosz M, Gawrilenko P. Analysis of changes in residual magnetic field in loaded notched samples [J]. NDT&E International.2008,41(7):570-576.
    [61]Roskosz M, Bieniek M. Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements [J]. NDT&E International.2012,45(1):55-62.
    [62]Roskosz M, Bieniek M. Analysis of the universality of the residual stress evaluation method based on residual magnetic field measurements [J]. NDT & E International.2013,54:63-68.
    [63]Roskosz M. Metal magnetic memory testing of welded joints of ferritic and austenitic steels [J]. NDT & E International.2011,44(3):305-310.
    [64]Li J W, Xu M Q, Leng J C, Xu M X. The characteristics of the magnetic memory signals under different states for Q235 defect samples [J]. Advanced Materials Research.2010, 97(101):500-503.
    [65]冷建成,徐敏强,李建伟,樊久铭.磁记忆信号与应力之间的关系[J].哈尔滨工业大学学报.2010,42(2):232-235.
    [66]Li J W, Xu M Q, Xu M X, Leng J C. Investigation of the variation in magnetic field induced by cyclic tensile-compressive stress [J]. Insight Non-Destructives Testing and Condition Monitoring.2011,53(9):487-489,493.
    [67]邢海燕,樊久铭,王日新,徐敏强,张嘉钟.早期损伤临界应力状态磁记忆检测技术[J].哈尔滨工业大学学报.2009,41(5):26-30.
    [68]刘畅.金属磁记忆检测系统设计及测量环境影响因素研究[D].哈尔滨,哈尔滨工业大学.2008,36-39.
    [69]邢海燕.基于磁记忆技术的疲劳损伤评估及寿命预测[D].哈尔滨,哈尔滨工业大学.2007,121-124.
    [70]Li J W, Xu M Q. Influence of uni-axial plastic deformation on surface magnetic field in steel [J]. Meccanica.2012,47(1):135-139.
    [71]Li J W, Xu M Q. Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress [J]. Journal of Applized Physics.2011,110(6):063918-1
    [72]Leng J C, Xu M Q, Li J W, Zhang J Z. Characterization of the elastic region based on magnetic memory effect [J]. Chinese Journal of Mechanical Engineering.2010,23(4): 1-5.
    [73]刘昌奎,陶春虎,陈星,董世运.基于金属磁记忆技术的18CrNi4A钢缺口试件疲劳损伤模型[J].航空学报.2009,30(9):1641-1647.
    [74]刘昌奎,陶春虎,陈星,张兵,董世运.金属磁记忆检测技术定量评估构件疲劳损伤研究[J].材料工程.2009,(8):33-37.
    [75]刘昌奎,陈星,张兵,任吉林,董世运,陶春虎.构件低周疲劳损伤的金属磁记忆检测试验研究[J].航空材料学报.2010,30(1):72-77.
    [76]Zatsepin N N, Shcherbinin V E, On calculation of the magnetostatic field of surface flaws [J]. Defektoskopiya.1966,5:50-65.
    [77]Bozorth R M, Williams H J. Effect of small stresses on magnetic properties [J]. Reviews of Modern Physics.1945,17(1):72.
    [78]Brown W F. Irreversible magnetic effects of stress [J]. Physical Review.1949,75: 147-154.
    [79]Craik D J, Wood M J. Magnetization changes induced by stress in a constant applied field [J]. Journal of Physics D:Applied Physics.1971,3(7):1009-1016.
    [80]Birss R R, Faunce C A, Isaac E D. Magnetomechanical effects in iron and iron-carbon alloys [J]. Journal of Physics D:Applied Physics.1971,4(1):1040-1048.
    [81]Schneider C S, Semcken E A. Vibration induced magnetization [J]. Journal of Applized Physics.1980,52(3):2425-2427.
    [82]Schneider C S, Richardson J M. Biaxial magnetoelasticity in steels [J]. Journal of Applized Physical.1982,53(11):8136-8138.
    [83]Finbow D C. The shape of magnetization curves produced by stress in constant small magnetic fields in iron and some steels [J]. Physica Status Solidi A.1970,38(30):743-754.
    [84]Jiles D C, Atherton D L. Theory of the magnetization process in ferromagnets and its application to the magnetomechanical effect [J]. Journal of Physics D:Applied Physics. 1984,17(6):1267-1281.
    [85]Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis [J]. Journal of Magnetism and Magnetic Materials.1986,61(1-2):48-60.
    [86]Jiles D C. Theory of the magnetomechanical effect [J]. Journal of Physics D:Applied Physics.1995,28(8):1537-1546.
    [87]Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis [J]. Journal of Magnetism and Magnetic Materials.1986,61(1-2):48-60.
    [88]Jiles D C. Theory of the magnetomechanical effect [J]. Journal of Physics D:Applied Physics.1995,28(8):1537-1546.
    [89]Ramesh A, Jiles D C, Roderick J M. Model of anisotropic anhysteretic magnetization [J]. IEEE Transaction on Magnetics.1996,32(5):4234-4236.
    [90]Chen Y, Jiles D C. The magnetomechanical effect under torsional stress in a cobalt ferrite composite [J]. IEEE Transaction on Magnetics.2000,36(5):3244-3247.
    [91]Raghunathan A, Melikhov Y, Snyder J E, Jiles D C. Modeling of two-phase magnetic materials based on Jiles-Atherton theory of hysteresis [J]. Journal of Magnetism and Magnetic Materials.2012,324(1):20-22.
    [92]Raghunathan A, Melikhov Y, Snyder J E, Jiles D C. Generalized form of anhysteretic magnetization function for Jiles-Atherton theory of hysteresis [J]. Applied Physics Letters.2009,95(17):172510.
    [93]Sablik M J, Wilhelmus J G, Smith K, Gregory A, Clayton M, Palmer D, Bandyopadhyay A, Fernando J G, Marcos F C. Modeling of plastic deformation effects in ferromagnetic thin films [J]. IEEE Transaction on Magnetics.2010,46(2):491-494.
    [94]Li H Q, Li Q F, Xu X B, Lu T B, Zhang J J, Li L. A modified method for Jiles-Atherton hysteresis model and its application in numerical simulation of devices involving magnetic materials [J]. IEEE Transaction on Magnetics.2011,47(5):1094-1097.
    [95]Pitman K C. The influence of stress on ferromagnetic hysteresis [J]. IEEE Transaction on Magnetics.1990,26(5):1978-1980.
    [96]Maylin M G, Squire P T. Departures from the law of approach to the principal anhysteretic in a ferromagnet [J]. Journal of Applied Physics.1993,73(6):2948-2955.
    [97]Squire P T. Magnetomechanical measurements and their application to soft magnetic materials [J]. Journal of Magnetism and Magnetic Materials.1996,160(1):11-16.
    [98]Dapino M J, Smith R C, Calkins F T, Flatau A B. A coupled magnetomechanical model for magnetostrictive transducers and its application to villari-effect sensors [J]. Journal of Intelligent Material Systems and Structures.2002,13(11):737-747.
    [99]陈钘.基于磁记忆效应的应力集中检测方法研究[D].北京,清华大学.2007,116-118.
    [100]Leng J C, Xu M Q, Xu M X, Zhang J Z. Magnetic field variation induced by cyclic bending stress [J]. NDT&E International.2009,42(5):410-414.
    [101]Sablika M J. Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels [J]. Journal of Applied Physics.2001,89(10):5610-5613.
    [102]Sablika M J, Stegemann D, Krys A. Modeling grain size and dislocation density effects on harmonics of the magnetic induction [J]. Journal of Applied Physics.2001,89(11): 7254-7256.
    [103]Sablik M J, Landgraf F J G. Modeling microstructural effects on hysteresis loops with the same maximum flux density [J]. IEEE Transaction on Magnetics.2003,39(5):2528-2530.
    [104]Sablik M J, Yonamine T, Landgraf F J G. Modeling plastic deformation effects in steel on hysteresis loops with the same maximum flux density [J]. IEEE Transaction on Magnetics.2004,40(5):3219-3226.
    [105]Sablik M J, Rios S, Landgraf F J G, Yonamine T, and Campos M F. Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation [J]. Journal of Applied Physics.2005,97(10):10E518.
    [106]Wang Z D, Deng B, Yao K. Physical model of plastic deformation on magnetization in ferromagnetic material [J]. Journal of Applied Physics.2011,109(8):083928.
    [107]Schneider C S. Anisotropic cooperative theory of coaxial ferro-magneto-elasticity [J]. Physica B.2004,343(1-4):65-74.
    [108]Schneider C S. Effect of stress on the shape of ferromagnetic hysteresis loops [J]. Journal of Applied Physics.2005,97(10):10E503.
    [109]Schneider C S, Winchell S D. Hysteresis in conducting ferromagnetism [J]. Physica B. 2006,372(1-2):269-272.
    [110]Smith R C, Dapino M J, Braunl T R, Mortensen A P. A homogenized energy framework for ferromagnetic hysteresis [J]. IEEE Transactions on Magnetics.2006,42(7): 1947-1969.
    [111]Smith R C, Dapino M J. A homogenized energy model for the direct magneto-mechanical effect. IEEE Transactions on Magnetics.2006,42(8):1944-1957.
    [112]Ball B L, Smith R C, Kim S J, Seelecke S. A stress-dependent hysteresis model for ferroelectric materials [J]. Journal of Intelligent Material Systems and Structures.2007, 18(1):69-88.
    [113]闫照文,李朗如.电磁场有限元分析的优秀软件[J].设计与研究.2003,36(3):27-29.
    [114]冯蒙丽,蔡玉平,赵建君ANSYS在电磁无损检测中的应用[J].四川兵工学报.2009,30(6):24-29.
    [115]陈正阁,王长龙,梁四洋,熊毅.基于ANSYS软件的管道漏磁场分析[J].火力与指挥控制.2008,33(12):26-29.
    [116]李莺莺,靳世久,魏茂安.管道漏磁法检测的ANSYS仿真研究[J].无损检测.2005,27(2):72-76.
    [117]姚凯,王正道,邓博,丁克勤.金属磁记忆技术的数值研究[J].工程力学.2011,28(9):218-222.
    [118]张英,宋凯,任吉林等ANSYS软件在金属磁记忆检测中的应用[J].无损检测.2004,26(5):217-220.
    [119]张英,宋凯,任吉林.铁磁构件应力集中的计算机模拟和磁记忆检测[J].南昌航空工业学院学报(自然科学版).2004,18(1):64-69.
    [120]李龙军,王晓峰,杨宾峰,张辉,崔文岩,柏雪倩.基于力磁耦合的金属磁记忆检测机理与仿真[J].空军工程大学学报.2012,13(3):85-89.
    [121]张辉,李龙军,杨宾峰,王晓峰,崔文岩.金属磁记忆定量化评价的三维仿真分析与实验[J].空军工程大学学报.2013,14(1):57-61.
    [122]Dubov A A. Problems in estimating the remaining life of aging equipment [J]. Thermal Engineering.2003,50(11):935-938.
    [123]Dubov A A. Diagnostics of steam turbine disks using the metal magnetic memory method [J]. Thermal Engineering.2010,57(1):16-21.
    [124]Dubov A A. Estimating the service life of thermal power equipment in accordance with the new national standard [J]. Thermal Engineering (English translation of Teploenergetika).2011,58(11):957-961.
    [125]Dubov A A. Development of a metal magnetic memory method. Chemical and Petroleum Engineering.2012,47(11-12):837-839.
    [126]仲维畅.铁磁性物体在地磁场中的自发运动磁化[J].无损检测.2005,27(12):626-627.
    [127]仲维畅.金属磁记忆法诊断的理论基础—铁磁性材料的弹—塑性应变磁化[J].无损检测.2001,23(10):424-426.
    [128]Wang Z D, Yao K, Deng B, Ding K Q. Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals [J]. NDT&E International.2010,43(4):354-359.
    [129]Wang Z D, Yao K, Deng B, Ding K Q. Quantitative study of metal magnetic memory signal versus local stress concentration [J]. NDT&E International.2010,43(6):513-518.
    [130]徐敏强,李建伟,冷建成,徐明秀.金属磁记忆检测技术机理模型[J].哈尔滨工业大学学报.2010,42(1):348-351.
    [131]宋凯,任吉林,任尚坤,唐继红.基于磁畴聚合模型的磁记忆效应机理研究[J].无损检测.2007,29(6):312-314,361.
    [132]任吉林,林俊明.金属磁记忆检测技术[M].中国电力出版社.2000,8-24.
    [133]任尚坤,周莉,付任珍.铁磁试件应力磁化过程中的磁化反转效应[J].钢铁研究学报.2010,22(12):48-52.
    [134]任尚坤,李新蕾,任吉林,肖清云.金属磁记忆检测技术的物理机理[J].南昌航空大学学报.2008,22(2):11-17.
    [135]亢一澜,王娟,林雪慧.基于实验的反演识别方法及其在材料力学性能研究中的应用[J].固体力学学报.2010,31(5):468-480.
    [136]孟成.45号钢概况及热处理方法[J].中国新技术产品.2011,09:124-125.
    [137]汪滨波,廖昌荣,骆静等.金属磁记忆检测技术的研究现状及发展[J].无损检测.2010,32(6):467-474.
    [138]王文江,戴光.疲劳断裂试件磁记忆检测结果及分析[J].大庆石油学院学报.2005,29(4):83-85.
    [139]周仲荣,Vincent L.微动磨损[M].科学出版社.2002.
    [140]Farris T N, Murthy H, Matlik J F. Fretting Fatigue [M]. Elsevier,2003
    [141]姚凯,王正道,邓博,丁克勤.金属磁记忆技术的数值研究[J].工程力学.2011,28(9):218-222
    [142]Yao K, Wang Z D, Deng B, Shen K. Experimental research on metal magnetic memory method [J]. Experimental Mechanics.2012,52(3):305-314.
    [143]Gladwell G M L经典弹性理论中的接触问题[M].北京理工大学出版社.1991
    [144]Johnson K L著.徐秉业译.接触力学[M].高等教育出版社.1992
    [145]Degauque J. Soft Magnetic Materials:Microstructure and Properties [J]. Solid State Phenomena,1993,35-36,335-352.
    [146]董丽虹,徐滨士,董世运.金属磁记忆技术检测低碳钢静载拉伸破坏的实验研究[J].材料工程.2006,(3):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700