乌梁素海结冰过程中污染物迁移机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊是最重要的淡水资源之一,在国民经济发展中起到极为重要的作用。作为我国八大淡水湖之一的乌梁素海湖泊,是全球范围内半荒漠地区极为少见的具有很高生态效益的大型多功能湖泊。但是由于近年来气候变化和人类活动的干扰,使得乌梁素海污染日益严重,引起了社会的广泛关注,并开展了大量的研究。但这些研究大都在湖泊非冰封期进行的,而乌梁素海地处高纬度地区,冰封时间长,其污染特征必将有别于其他湖泊。该研究以乌梁素海为研究对象,紧扣乌梁素海冰封期长的特点,在对湖泊结冰过程中气象、水文等要素观测的基础上,研究湖泊结冰过程中污染物的迁移机理、效应及其在牧区饮水安全中的应用,得出如下结论:
     (1)研制了用于现场采集冰芯、水样和沉积物的成套仪器和室内模拟装置。在综合现有的采样方法的基础上,论述该套仪器的适应性和可行性:冰芯采集器采样方便,解决了进口采样器价格昂贵的“瓶颈”问题;水样和沉积物采集器配合冰芯采集器使用,可以采集湖泊冰-水界面等各部位的水样和无扰动的柱状沉积物。
     (2)通过分析野外观测数据可知:气温对冰下水温的影响不明显,而冰温随着气温的升高也有较明显的升高,且其随着冰层深度的增加温度逐渐升高;运用朱波夫半经验模型表达式FDD=0.002T2.0.2251T可以较好地描述负累积温度和冰厚度间的关系;湖冰生长期冰密度变化不明显,在消融期,冰密度随深度的增加有增大的趋势;随着冰的生长,冰体的层理结构逐渐变化;湖面水深及冰厚有呈良好的负相关关系,其相关系数为0.53;乌梁素海冰封期冰下水体几乎处于静止状态。
     (3)通过采集冰生长过程中不同冰厚度不同位置的冰样和水样,分析其污染物的含量,从结晶学理论和热力学理论角度探讨各结冰过程中污染物的迁移机理。
     绘制了TDS分布轮廓线,定性和定量地阐述结冰过程中TDS在冰-水-沉积物体系间的迁移机理和过程。结果表明,在冰生长过程,约有80%的TDS由冰层迁移至水层;在冰层内部,TDS的迁移只发生在冰的生长初期,而后几乎不再迁移:湖冰中TDS的含量随着冰厚度的增加而降低,两者呈负指数关系;在冰下水体内部,在浓度差的作用下,TDS由冰-水界面向水体迁移直至达到平衡:在水和沉积物之间,约有60440950kg(约为冰水迁移量的16.78%)的TDS由水体迁移至沉积物;冰-水界面和水-沉积物界面TDS的迁移通量与冰生长率之间呈较好的线性正相关关系。
     通过绘制pH值的轮廓线研究了结冰过程中pH值的变化。结果表明,由于碳酸盐体系对水体PH值得缓冲作用,导致在冰生长过程中pH值并没有明显的变化规律,即不能用湖冰的排TDS机理来解释pH值的变化。
     通过分析不同采样时间的上、中、下层冰及冰-水界面水、中层水、水-沉积物界面水中各形态氮、磷、叶绿素a, COD和BOD5的时空变化曲线,探讨各污染物在冰生长过程中的迁移机理。结果表明:冰生长过程对各污染物有不同的排斥效应,冰下污染物的浓度随着冰厚的增加而升高。冰下水体中TN、NO3-、NO2-、NH4+的浓度分别是对应冰体中的2.06、1.77、1.26、2.35倍;冰-水界面水中各形态氮的含量高于中层水、水-沉积物界面水中的,而中层水和水-沉积物界面水中各形态氮的含量相差不大;上层冰体各形态氮的含量高于中、下层冰体的,两者的差值随着冰厚的增加而减小,表明各形态氮在冰体内部发生了迁移。冰下水体中TP、DTP、PO43-的浓度分别是对应冰体中的1.50、1.57、1.82倍。冰下水体中叶绿素a的浓度是对应冰体中的1.64倍;冰-水界面水中叶绿素a的含量明显高于中层水、水-沉积物界面水中的;冰体中叶绿素a与TN、TP的变化并没有明显规律,而水体中三者变化规律基本一致。
     湖冰对有机物的排斥效应明显高于其对无机物的。冰下水体中COD是其对应冰体中的3.13倍:中层冰的COD均值略高于上、下层冰体的,水体的沉淀作用使得水体中的COD由上至下逐渐升高。冰下水体中BOD5是其对应冰体中的3.24倍;下层冰的BOD5均值略高于上、中层冰体的,水-沉积物界面水的BOD5高于中层和水-沉积物界面水的。冰下水体的PBOD5/PCOD高于冰融水的,表明冰下水体的可生化性较高;不同采样时间和不同采样位置上COD与BOD5均呈较好的正相关关系。
     (4)运用分形理论对乌梁素海湖泊结冰前、后的富营养化状态进行了评价,以探讨结冰过程的环境效应。结果表明,乌梁素海湖泊各采样点结冰前水体、结冰后冰体和水体的富营养状态分别为富营养、富营养和重富营养;结冰过程使得湖泊水体的富营养状态加重,而部分低营养状态的水被冻结在冰体中。针对湖泊冰封期的污染特征提出了可行的底泥疏浚、冷冻浓缩等湖泊富营养修复对策。
     由于结冰过程中平衡分凝系数的不确定性,采用加权马尔可夫链对结冰过程中冰下水体的TDS浓度进行预测。其预测精度较高,能够满足预测的要求,可为环保部门提前制定水环境保护措施提供数据参考。
     (5)针对我国牧区存在的饮水安全隐患及牧区丰富的自然冷能、太阳能和风能的优势条件,提出将结冰过程中污染物的迁移机理应用到牧区饮水中的构想,设计了牧区饮用水的处理流程,并在考察室内模拟方法可行性的基础上,对流程中的冰厚、冷冻温度、受冷面积与水深比、种冰的加入及冷冻级数等工艺参数进行优化。这可为保障牧区饮用水安全提供思路和参考。
Lake is one of the most important freshwater resources, which plays a very important role in national economic development. Ulansuhai Lake is one of the eight great freshwater lakes in China, is also a multi-function lake which is extremely rare in the semi-desert area in the whole world. Ulansuhai Lake is polluted more and more seriously recently because of the climate change and interference of human activities, which has attracted widespread attention of government and scholars. A large number of studies on Ulansuhai Lake have been carried out, most of which focused on ice-free period. But Ulansuhai Lake is located in high-latitude area, in which the ice season is longer and the characteristics of pollution must be different from the ice-free period. Focusing on longer ice season, Ulansuhai Lake is selected for study object to dicuss the migration mechanism and effect of pollutants in freezing process and its application in pastoral area for drinking water safety. The results could be concluded as follows:
     (1) A complete set of instruments for collecting ice samples, water samples, sediment samples, and simulating in laboratory is developed. Compared to the existing sampling method, the adaptability and feasibility of these instruments are described:the ice drill is easy to use, which solves the crucial high-price problem of imported instrument; water and sediment samplers well combined with ice drill can collect samples at every part consist of water nearby ice-water interface and water-sediment interface, water in sediment pores, and core sediments without disturbance.
     (2) The field observation data shows:The effect of temperature on the under-ice water temperature is not significant, while ice temperature significantly increases as temperature rises and as ice depth deepened. The empirical formula of Zubov model, that is, FDD=0.002T2-0.2251T, can well describe the relationship between cumulative freezing-degree-day and corresponding ice thickness. The ice density changes not significantly in freezing process, it increases as ice depth deepened. The bedding structure of ice changes gradually as ice thickness grows. There was a good negative correlation between water depth and ice thickness in Ulansuhai Lake, and its correlation coefficient is0.53. The under-ice water is almost still during the icebound season.
     (3) Ice samples and water samples at different depths were collected as ice thickness grows. The pollutant content of samples were analyzed to dicuss the migration mechanism in freezing process by means of crystallography and thermodynamic theory.
     TDS profiles are drawn to show the distribution of TDS and to describe TDS migration qualitatively and qualitatively. The results showed that between ice and water, about80%, that is360158400kg, TDS migrated from ice to water during-the whole growth period. Within ice layer, TDS migration only occurred during initial ice period, then stopped almost. The ice TDS decreased with increasing ice thickness, following a negative exponential-like trend. Within under-ice water, TDS migrated from ice-water interface to the entire water column under motive power of concentration difference until the water TDS was uniform. Between water and sediment,60440950kg (16.78%of360158400kg) TDS migrated from water to sediment. The fitting curves for transfer flux of both ice-water and water-sediment to growth rate displayed good linear positive correlation relation.
     pH profiles are also drawn to describe the change of pH value in freezing process. The results showed that it was not significantly that pH value as ice thickness grows because of buffer effect of carbonate system, which made the change of pH value different from TDS.
     The space-time curve of N, P, Chlorophyll a, COD and BOD5were drawn to elaborate the migration mechanism and effect in freezing process based on analyzing the content of samples from upper ice, middle ice, lower ice, water at ice-water interface and water-sediment interface and middle water at different ice thickness. The results showed that exclusion effect of freezing process on N, P, Chlorophyll a, COD and BOD5was different, and the concentration of them in under-ice water increased as ice thickness grows. The concentration of TN, NO3-, NO2-, NH4+in under-ice water was respectively2.06,1.77,1.26,2.35times of that in ice. The concentration of TN, NO3-, NO2-, NH4+in water at ice-water interface was higer than that in middle water and at water-sediment interface, while the concentration of the latter two position was similar. The concentration of TN, NO3-, NO2-, NH4+in upper ice was higer than that in middle ice and lower ice. The difference between the two decreases with the increase of ice thickness, which revealed various forms of nitrogen migrated within the ice. The concentration of TP, DTP, PO43-and Chlorophyll a in under-ice water was respectively1.50,1.57,1.82and1.64times of that in ice. The concentration of Chlorophyll a in water at ice-water interface was higer than that in middle water and at water-sediment interface. There was no obvious rule among the concentration of Chlorophyll a, TN and TP in ice, but they were consistent in water.
     The exclusion effect of freezing process on organics was more obvious than that on inorganics. COD in under-ice water was3.13times of that in ice. COD in middle ice was higer than that in upper ice and lower ice while COD in water increased from top to bottom due to the sedimentary action. BOD5in under-ice water was3.24times of that in ice. BOD5in lower ice was higer than that in middle ice and upper ice. BOD5in water at water-sediment interface was higer than that in middle water and at ice-water interface. The PBOD5/PCOD in under-ice water was higher than that in ice, which revealed the biodegradability of under-ice water was better than that of ice. There was positive correlation between COD and BOD5in every sample.
     (4) The eutrophic state of Ulansuhai Lake before and after icing was assessed by mean of fractal theory to discuss the environmental effect of freeaing process. The results showed that the eutrophic state of water before icing, ice and under-ice water was respectively eutrophication, eutrophication and heavy eutrophication, that is, freeaing process made the eutrophic state of Ulansuhai Lake more heave because part of cleaner water was freezed in ice. The result can provide theoretical basis and data support for sediment dredging that is an effective nutritious repair countermeasure.
     The concentration of TDS in under-ice water in freezing process was forecasted by mean of weighted markov chain, which was accurate and able to meet the forecast requirements.
     (5) The idea that freeze purification process can be used easily and widely in that was rich in cold energy, wind energy and solar energy but existed drinking water safety hazard was proposed. Furthermore, the purification process was designed. The operating parameters in the purification process, that was ice thickness, freezing temperature, rate of area and depth of container, ice seed and freezing series, were optimizated based on that the feasibility of laboratory simulation was verified. The purification process can provide reference for drinking water safety in pastoral area.
引文
1董志勇.环境水力学[M].北京:科学出版社,2006:1.
    2王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998:1-11.
    3中国科学院南京地理与湖泊研究所.中国湖泊概论[M].北京:科学出版社,1989:1-3.
    4王树基.我国西北干旱区近四十年水土资源开发利用问题[J].干旱区地理学集刊,1989,31-35.
    5舒金华,黄文钰,吴延根.中国湖泊营养类型的分类研究[J].湖泊科学,1996,8(3):193-200.
    6王军.河冰形成和演变分析[M].合肥:合肥工业大学出版社,2004:4.
    7 P V Hobbs. Ice Physics[M]. Oxford, Clarendon Press,1974.
    8于涛,马军.冷冻浓缩吹处理工艺中冰晶纯度的影响因素分析[J].哈尔滨商业大学学报(自然科学版),2005,21(5):572-274,578.
    9华泽钊.低温生物医学与热物理[J].物理与工程,2001,11(6):1-5.
    10 Knight C A. Observations of the morphology of melting snow [J]. J Atmos Sci,1979, 36:1123-1130.
    11 Yen Y C. Review of thermal properties of snow, ice and sea ice [J]. Cold Regions Research and Engineering Laboratory Report 81-10, Hanover, New Hampshire,1981:1-27.
    12 Shen Hong-tao, Yapa P D. A unified degree-day method for river ice cover thickness simulation[J].Canadian Journal of Civil Engineering,1985,12(1):54-62.
    13 Lepparanta M, Uusikivi J. The Annual Cycle of the Lake Paajarvi Ice [R]. Lammi Notes 29,2002.
    14 Launiainen J, Cheng B. Modelling of ice thermodynamics in natural water bodies [J]. Cold Regions science and Teehnology,995,27(3):53-278.
    15 Reid A, Crout N. A thermodynamic model of fresh water Antarctic lake ice [J]. Ecological Modelling,2008,210:231-241.
    16肖建民,金龙海,谢永刚,霍跃东.寒区水库冰盖形成与消融机理分析[J].水利学报,2004,(6): 80-85.
    17贾青,李志军,梁景江,李士森.红旗泡水库不同重现期冰厚度的推算[J].水力学与水利信息学进展,2009,2:525-529.
    18雷瑞波.冰层热力学生消过程现场观测和关键参数研究[D].大连理工大学(博士学位论文),2009,12-13.
    19 Addison, J R. Impurity concentrations in sea ice [J]. J. Glaciol.,1977,18(78), 117-127.
    20 Anderson, L G and E P Jones. Measurements of total alkalinity, calcium, and sulphate in natural sea ice [J]. J. Geophys. Res.,1985,90(C5),9194-9198.
    21 Dieckmann, C.S. and 7 others. Calcium carbonate as ikaite crystals in Antarctic sea ice [J]. Geophys. Res. Lett.,2008,35(8), L08501. (10.1029/2008GL033540.)
    22 Granskog, MA, K Virkkunen, D N Thomas, J Ehn, H Kola and T Martma. Chemical properties of brackish water ice in the Bothnian Bay, the Baltic Sea [J]. J. Glaciol.,2004, 50(169),292-302.
    23 Maus S. and 9 others. Synchroton-based X-ray tomography:insights into sea ice microstructure [J]. Rep. Ser. Geophys.2010,61,28-45.
    24戴芳芳,王自磐,EAllhusen, G Dieckmann南极威德尔海冬季海冰叶绿素及其生态意义[J].极地研究,2009,20(3):248-257.
    25 Eicken H. The role of sea ice in structuring Antarctic ecosystems [J]. Polar Biol, 1992,12:3-13.
    26黄继国,傅鑫廷,王雪松,刘宁,杜春山,刘大为.湖水冰封期营养盐及浮游植物的分布特征[J].环境科学学报,2009,29(8):1678-1683.
    27黄继国,彭祥捷,俞双,孟玉丽,傅鑫廷,刘大为.水体结冰期营养盐和叶绿素a的分布特征[J].吉林大学学报(理学版),2008,46(6):1231-1236.
    28傅鑫廷.低温及冰封条件下富营养化水体藻类分布规律研究[D].吉林大学(硕士学位论文),2009,18-28.
    29姜慧琴.乌梁素海营养盐在冰体中的空间分布及其在冻融过程中释放规律的试验研究[D].内蒙古农业大学(硕士学位论文),2011,52-54.
    30 WELCH, H. E., AND M. A. BERGMANN. Water circulation in small Arctic Lakes in winter [J]. Can. J. Fish. Aquat. Sci.1985,42:506-520.
    31 WELCH, H. E., AND M. A. BERGMANN. Effects of snow and ice on the annual cycles of heat and light in aqvaqjuac lakes [J]. Can. J. Fish. Aquat. Sci.1987,44:1451-1461.
    32 CATALAN, J. Evolution of dissolved and particulate matter during the ice-covered period in a deep, igh-mountain lake [J]. Can. J. Fish. Aquat. Sci.1992,49:945-955.
    33 Matti Lepparanta and Pekka Kosloff. The Structure and Thickness of Lake Paajarvi Ice [J]. Geophysica,2000,36(1-2):233-248.
    34 Claude Belzile, John A. E. Gibson, and Warwick F. Vincent. Colored dissolved organic matter and dissolved organic carbon exclusion from lake ice:Implications for irradiance transmission and carbon cycling [J]. Limnol. Oceanogr.,2002,47(5): 1283-1293.
    35-Roger Pieters, and Gregory A. Lawrence. Effect of salt exclusion from lake ice on seasonal circulation [J]. Limnol. Oceanogr.,2009,54(2):401-412.
    36李畅游,刘廷玺,高瑞忠等.乌梁素海富营养化主控因子年季变化分析及综合评价[J].水文,2004,24(3):14-24.
    37李畅游,史小红.干旱半干旱地区湖泊二维水动力学模型[J].水利学报,2007,38(12):1482-1488.
    38于瑞宏,李畅游,刘廷玺等.乌梁素海湿地环境的演变[J].地理学报,2004,59(6):948-955.
    39李畅游,于瑞宏,王丽等.乌梁素海遥感影像的水体提取方法与分析[J].内蒙古农业大学学报,2004,25(1):1-4.
    40于瑞宏,刘廷玺,李畅游等.干旱区草型湖泊悬浮固体浓度及水深的遥感与分析[J].水利学报,2005,36(7):853-862.
    41尚士友.乌梁素海富营养化及其防治研究[J].内蒙古农业大学学报,2003,24(4):6-12.
    42尚士友,杜健民.草型富营养化湖泊生态恢复工程技术的研究[J].生态学杂志,2003,22(6): 57-62.
    43尚士友,杜建民.草型湖泊富营养化适度控制技术的研究[J].内蒙古农牧学院学报,1995,16(2): 87-90.
    44吴利斌,尚士友,乌云塔娜,等.湖泊富营养化综合评价模糊神经网络专家系统的研究[J].内蒙古农业大学学报,2002,23(3):80-84.
    45乌云塔娜,尚士友.乌梁素海总磷控制模型的研究[J].内蒙古农业大学学报,2002,23(4):81-83.
    46王丽敏.水草收割工程对乌梁素海氮元素转移过程的研究[D].内蒙古:内蒙古农业大学,2004:1-33.
    47尚士友,杜健民,李旭英,等.乌梁素海富营养化适度控制的研究[J].内蒙古大学学报(自然科学版),2003,34(5):588-592.
    48孙惠民.乌梁素海富营养化及其机制研究[D].内蒙古:内蒙古大学,2006:1-75.
    49孙惠民,何江,吕昌伟,等.乌梁素海沉积物中有机质和全氮含量分布特征[J].应用生态学报,2006,17(4):620-624.
    50段晓男,王效科,欧阳志云.乌梁素海湿地生态系统服务功能及价值评估[J].资源科学,2005,27(2):110-115.
    51段晓男,王效科,冯兆忠等.乌梁素海野生芦苇光合和蒸腾特性研究[J].干旱区地理,2004,27(4):637-641.
    52段晓男,王效科,欧阳志云,等.乌梁素海野生芦苇群落生物量及影响因子分析[J].植物生态学报,2004,28(2):246-251.
    53王效科,赵同谦,欧阳志云.乌梁素海保护的生态需水量评估[J].生态学报,2004,24(10):2124-2129.
    54内蒙古自治区环境科学研究所.内蒙古乌梁素海综合整治研究项目报告[M].内蒙古:环境科学研究所,2005:1-98.
    55李亚威.大型植物过量生长富营养化-乌梁素海[J].内蒙古环境保护,2002,14(2):3-6.
    56杨贵生,邢莲莲,颜重威,等.乌梁素海湿地鸟类新记录[J].内蒙古大学学报(自然科学版),1999,30(6):739-741.
    57陶黎,叶俊峰,李晓霞,等.乌梁素海鱼类种群变化的研究[J].内蒙古环境保护,2002,14(3):16-17.
    58赵军.乌梁素海芦苇资源的生产现状与展望[J].内蒙古草业,2001,2:147-48.
    59 Lu P, Li Z, Cheng B, et al. Sea ice surface features in Arctic summer 2008:Aerial observations [J]. Remote Sensing of Envieonment,2010,114:693-699.
    60 Belzile C, Gibson J A E, Vincent W F. Colored dissolved organic matter and dissolved organic carbon exclusion from lake ice:Implication for irradiance transmission and carbon cycling [J]. Limnol. Oceanogr.,2002,47(5):1283-1293.
    61 Beier N, Sego D, Donahue R, et al. Trickle-freeze separation of contaminants from saline waste water [J]. Int. J. Min. Reclam. Environ.,2007,21(2):144-156.
    62 Beier N, Sego D, Donahue R. Laboratory investigation on freeze separation of saline mine waste water [J]. Cold Reg. Sci. Technol.,2007,48(3):239-247.
    63于涛,马军.冷冻浓缩-RO空间站尿处理系统与试验研究[J].哈尔滨商业大学学报,2007,3(3):298-302.
    64张宁,苏营营,王新亭,等.浓海水冷冻脱盐技术研究[J].海洋通报,2009,28(2):97-102.
    65 Gao W, Smith DW. Natural freezing as a wastewater treatment method:E. coli inactivation capacity [J]. Water Res.,2006,40(12):2321-2326
    66高锋,孙洁心,张永忠.冷冻浓缩法处理大豆乳清废水的研究初探[J].食品研究与开发,2005,26(4):25-27.
    67 WAKISAKA M, SHIRAI Y, SAKASHITA S. Ice crystallization in a Pilot-scale freeze waste water treatment system [J]. Chemical Engineering and Processing,2001,40:201-208.
    68 Gao W, Smith DW, Sego D C. Release of contaminants from melting spray ice of industrial wastewaters [J]. Journal of Cold Regions Engineering,2004,18(1):35-51.
    69 Rodriguez A. Application of freezing crystallization phenomena in wastewater treatment:Removal of nitrates, phosphates, surfactants and alcohols [J].CHISA 2004-16th International Congress of Chemical and Process Engineering,2004:7295-7303.
    70陈智晖,陈集,周小燕,等.用冷冻法浓缩分离废水中氯离子的试验[J].内蒙古石油化工,2005,(10):1-2.
    71.于涛,马军.制冷在废水处理与再生领域中的应用研究[J].制冷学报,2008,29(4):47-50.
    72王双合,罗从双,陈颂平,等.苦咸水冷冻淡化实验成果分析及实用方法研究[J].水资源保护,2009,25(1):70-73.
    73郝利娜,张维佳.自然冷冻法处理生活污水的研究初探[J].中国科技信息,2007(23):18-19.
    74张宁,苏营营,王新亭,等.浓海水冷冻脱盐技术研究[J].海洋通报,2009,28(2):97-102.
    75高锋,孙洁心,张永忠.冷冻浓缩法处理大豆乳清废水的研究初探[J].食品研究与开发,2005,26(4):25-27.
    76 Silke L, Rene K. Preconcentration of wastewater through the ni.ro freeze concentration process [J]. Chem. Eng. Technol.,2001,24(5):485-488.
    77 Turtoi D, Untea I. Chromium (Ⅲ) separation from tannery wastewaters by partial freezing [J]. J. Soc. Leather Technol. Chem.,2004,88(4):150-153.
    78 Gao W, Smith D W, Sego D C. Ice nucleation in industrial wastewater [J]. Cold Reg. Sci. Technol.,1999,29(2):121-133.
    79 Gao W, Smith D W. Treatment of pulp mill and oil sands industrial wastewaters by the partial spray freezing process [J]. Water Res.,2004,38(3):579-584.
    80 Gao W, Smith DW, Sego D C. Freezing behavior of freely suspended industrial wastewater droplets [J]. Cold Reg. Sci. Technol.,2000,31(1):13-26.
    81 Gao W, Smith D W, Sego D C. Freezing temperatures of freely falling industrial wastewater Droplets[J]. J. Cold Reg. Eng.,2000,14(3):101-118.
    82李志军,贾青,黄文峰,等.水库淡水冰的晶体和气泡及密度特征分析[J].水利学报,2009,40(11):1333-1338.
    83 Matti Lepparanta, Pekka Kosloff. The structure and thickness of Lake Paajarvi ice [J]. Geophysica,2000,36(1-2):233-248.
    84 Ashton G D. River ice [J]. Annual review of fluid mechanics,1978,10:369-392.
    85 Beltaos S. Progress in the study and management of river ice jams [J]. Cold Regions Science and Technology,2008,51(1):2-19.
    86 Beltaos S. Threshold between mechanical and thermal breakup of river ice cover [J]. Cold Regions Science and Technology,2003,37(1):1-13.
    87茅泽育,吴剑疆,张磊,等.天然河道冰塞演变发展的数值模拟[J].水科学进展,2003,14(6):700-705.
    88王军,高月霞,尹运基,等.弯槽段冰塞形成及其厚度分布的试验研究[J].冰川冻土,2007,29(5):764-766.
    89李志军,杨宇,彭旭明,王国志,卢永超.黑龙江红旗泡水库冰生长过程现场观测数据的剖析[J].西安理工大学学报,2009,25(3):270-274.
    90 JI Shun-wen, ZHU Yue-ming, QIANG Sheng. Forecast of water temperature in reservoir based on analytical solution [J]. Journal of Hydrodynamics, Ser. B,2008,20(4): 507-513.
    91 WANG Jun. Incipient motion of non-chesive sediment under ice cover-an experiment study [J]. Journal of Hydrodynamics, Ser. B,2008,20(1):117-124.
    92 AN Rui-dong, CHEN Ming-qian, LI Ran. Numerical simulation of ice control effect of solar energy on Tibetan channels [J]. Journal of Hydrodynamics Ser. B,2007,19(3): 342-348.
    93邓云,李嘉,罗麟.河道型深水库的温度分层模拟[J].水动力学研究与进展,A辑,2004,19(5): 604-609.
    94 FANG Xing, STEFAN H G. Simulated climate change effects on dissolved oxygen characteristics in ice-covered lakes [J]. Ecological Modeling,1997,103:209-229.
    95 Lepparanta M. A review of analytical models of sea-ice growth [J]. Atmosphere-ocean, 1993,31(1):123-138.
    96 Andeson D L. Growth rate of sea ice [J]. Journal of glaciology,1961(3):1170-1172.
    97 White K D. Method to estimate river ice thickness based on meteorological data [R]. Hanover:Cold regions research and engineering laboratory,2004.
    98 Vuyovich C M, White K D. Assessment of the effectiveness of the Israel River Ice Control structure, Lancaster, NH, U.S [R]. Hanover:Army engineer research and development center,2006.
    99 Li Z J, Riska K. Index for estimating physical and mechanical parameters of model ice [J]. Journal of Cold Regions Engineering,2002,16(2):72-82.
    100 Matti L, Pekka K.2000. The structure and thickness of Lake Paajarvi ice [J]. Geophysica,36(1-2):233-248.
    101 Roger P, Gregory A L.2009. Effect of salt exclusion from lake ice on seasonal circulation [J]. Limnology and Oceanography,54(2):401-412.
    102 Wang Y J, Sun Z D. Lakes in the arid areas in China [J]. Arid Zone Research,2007, 24(4):422-427.
    103 Tao X D, Shi P J, Li M J. Study on ecological environment rebuilding and utilization of water resources in arid area of northwest China [J]. Arid Zone Research,2001, 18(1):18-22.
    104 Gupta S K, Deshpande R D.2003. Dissolved helium and TDS in groundwater from Bhavanagar in Gujarat:Unrelated to seismic events between August 2000 and January 2001 [J]. Proc Indian Acad Sci (Earth Planet Sci),112:51-60.
    105 Han T D, Ye B S, Li X Y, et al. Variations of conductivity and TDS of the runoff at the headwaters of the Br mqi River, Tianshan Mountains [J]. Journal of Glaciology and Geocryology,2009,31(4):759-765.
    106 Weeks, W F, Ackley S F.1989. The growth, structure and properties of sea ice [J]. In The Geophysics of sea ice (N. Untersteiner, Ed.). New York and London:Plenum Press, p.9-164.
    107 Weeks, W F and Lee 0 S. Observation on the physical properties of sea i'ce at Hopedale, Labrador [J]. Arctic,1958,11(3):135-155.
    108 Nakawo, M, Sinha N K. Growth rate and salinity profile of first-sea ice in the high Arctic [J]. Journal of Glaciology,1981,27(96):315-330.
    109 Burke, A K.1940. Morskie L'dy. Leningrad:Izdatel'stvo Glavsevmorputi. (English translation, Steffanson Collection, Dartmouth College, Hanover, New Hampshire.)
    110 Makshtas, A P.1984. The heat balance of Arctic ice in winter. Leningrad: Gidrometeoizdat.
    111 Maykut, G A.1986. The surface heat and mass balance. In The Geophysics of sea ice (N. Untersteiner, Ed.). New York:Plenum Press, p.395-463.
    112 Olivier L, Pascal T, Eugenie B, et al. Potential of freezing in wastewater treatment: soluble pollutant application [J]. Water Research,2001,2 (35):541-547.
    113 Cox G F N, Weeks W F. Numerical simulations of the profile properties of undeformed first-year sea ice during the growth season [J]. Journal of Geophysical Research, 1988,93:12449-12460.
    114 Kawamura T, Shirasawa K, Ishikawa N, et al. Time series observations of the structure and properties of brackish ice in the Gulf of Finland, the Baltic Sea [J]. Annals of Glaciology,2001,33:1-4.
    115 Thomas D N, Dieckmann G S. Biogeochemistry of Antarctic sea ice [J]. Oceanography and Marine Biology:an Annual Review,2002,40:143-169.
    116 Vincent WF, Howard-Williams C. Life on snowball Earth [J]. Science,2000,287:2421.
    117 Belzile C, Gibson J A E, Vincent W F. Colored dissolved organic matter and dissolved organic carbon exclusion from lake ice:Implication for irradiance transmission and carbon cycling [J]. Limnol. Oceanogr.,2002,47(5):1283-1293.
    118 Price P B.2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci., USA 97:1247-1251.
    119 Fedotov, V I.1973. Studies of Antarctic fast ice. In Studies in Ice Physics and Ice Engineering(G N Iakovlev, Ed.), Proceedings Vol.300, Arctic and Antarctic Scientific Research Institute (English translation, Hardin R.),95-111.
    120 Martin S. A field study of brine drainage and oil entrainment in first-year sea ice. Journal of Glaciology,1979,22(88):473-502.
    121 Lu P, Li Z, Cheng B, et al. Sea ice surface features in Arctic summer 2008:Aerial observations. Remote Sensing of Envieonment,2010,114:693-699.
    122吴丰昌,万国江,黄荣贵.湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应Ⅰ.界面氮循环及其环境效应[J].矿物学报,1996,16(4):403-409.
    123范成新,张路,秦伯强.太湖沉积物-水界面生源要素迁移机制及定量化-1.铵态氮释放速率的空间差异及源-汇通量[J].湖泊科学,2004,16(1):11-20.
    124高红杰,康春莉,张歌珊,等.问甲酚在冰相中分布和释放规律的室内模拟研究[J].科学技术与工程,2008,8(10):2731-2735.
    125王自磐,Dieckmann G, Gradinger R.南极威德尔海新生期海冰生态结构:Ⅰ.叶绿素a与营养盐[J].极地研究,1997,9(1):9-17.
    126陈永川,汤利.沉积物-水体界面氮磷的迁移转化规律研究进展[J].云南农业大学学报,2005,20(4):527-533.
    127王宪恩,董德明,赵文晋,等.冰封期河流中有机污染物削减模式[J].吉林大学学报(理学版),2003,7(3):392-395.
    128宋在兰.浅论COD与BOD5相关关系模式的建立[J].四川环境,2000,19(2):53-57.
    129谢平.基于贝叶斯公式的湖泊富营养化随机评价方法及其验证[J].长江流域资源与环境,2005,3(2):224-227.
    130陈守熠.湖库水体富营养化评价级别特征值与识别模型[J],黑龙江水专学报,1999,26(1):1-8.
    131韩涛,李怀恩,彭文启.基于MATLAB的神经网络在湖泊富营养化评价中的应用[J].水资源保护,2005,21(1):24-26.
    132胡著邦,徐建民,全为民.模糊评价法在湖泊富营养化评价中的应用[J].农业环境科学学报,2002,21(6):535-536,539.
    133高世荣,潘力军,孙凤英,等.用水生生物评价环境水体的污染和富营养化[J].环境科学与管理,2006,31(6):174-176.
    134李畅游,高瑞忠,刘廷玺,等.乌梁素海水质富营养化评价及其年季动态变化特征[J].水资源与水工程学报,2005,16(2):11-15.
    135彭芳,任春涛,王丽,等.基于模糊模式识别理论的乌梁素海水质评价[J].灌溉排水学报,2007,26(2):69-72.
    136徐晓民,李畅游,刘延玺,等.灰色关联分析在湖泊水环境评价中的应用研究[J].内蒙古农业大学学报(自然科学版),2006,27(4):118-121.
    137武国正,李畅游,张生,等.PCA-SOM耦合模型在湖泊水质评价中的应用[J].环境科学与技术,2009,32(3):173-177.
    138宋君,张生,李畅游,等.乌梁素海夏季水质污染现状研究[J].安徽农业科学,2010,38(30):16984-16985.
    139刘光萍,杜萍,王琨.分形理论在湖泊富营养化评价中的应用[J].江西农业大学学报,2005,27(6):925-929.
    140申维.分形混沌与矿产预测[M].北京:地质出版社,2002.
    141冯玉国.湖泊富营养化灰色评价模型及应用[J].系统工程理论与实践,1996,(8):43-47.
    142汪荣鑫.随机过程[M].西安:西安交通大学出版社,1987.
    143李志强,王世俊.灰色马尔科夫模型在地表水体DO浓度预测中的应用[J].重庆环境科学,2002,24(3):35-37.
    144王佳秋,张向华,赵淑莹.长江水质预测数学模型[J].煤炭技术,2005,24(12):92-93.
    145孙才志,林学钰.降水预测的模糊权马尔可夫模型及应用[J].系统工程学报,2003,18(4):294-299.
    146 Fedotov, Ⅵ. Studies of Antarctic fast ice. In Studies in Ice Physics and Ice Engineering (GN Iakovlev, Ed), Proceedings Vol 300, Arctic and Antarctic Scientific Research Institute (English translation, R Hardin),1973:95-111.
    147 Olivier Lorain, Pascal Thiebaud, Eugenie Badorc, et al. Potential of freezing in wastewater treatment:soluble pollutant application [J]. Water Research,2001,2 (35):541-547.
    148宋玫峰,刘道平,邬志敏.雪晶成核和生长机理研究[J].制冷学报,2004,(3):46-50.
    149费学宁,杜国银,刘晓平,等.自然冷能处理溴氨酸水溶液方法的初步研究[J].化工进展,2008,27(7):1074-1079.
    150 SHIRAI Y, WAKISKA M, MIYAWAKI O, et al. Effect of seed ice on formation of tube ice with high purity for a freeze waste water treatment system with a bubble-flow circulator[J]. Water Research,1999,33(5):1325-1329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700