冷季型草坪草抗热抗旱生理生化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与暖季型草坪草相比较,冷季型草坪草的绿期长、质地柔软、色泽嫩绿、外貌美观,因而深受人们喜爱。本文以巴润、诺德,塞博、凌志、猎狗和鳄鱼等6种冷季型草坪草(分属三属,四类)为材料,研究了它们的抗热抗旱生理生化机理。试验结果表明:
     (1)在干旱胁迫条件下,不同草坪草的抗旱性差异显著(1%的显著水平),各自的抗旱机理也有所不同。在供试的6个草坪草品种中,抗旱性最强的为草地早熟禾中的诺德,最弱的是粗茎早熟禾的塞博。在四类草坪草种中,草地早熟禾类的抗旱性最强,高羊茅类的抗旱性较弱,而抗旱性最差的为粗茎早熟禾类。对于同属于早熟禾属的巴润、诺德和塞博,其抗旱性差异也很显著。各品种的抗旱机理也有所不同,具有较高的绿叶率和较大的膜保护酶活性及较强的抗氧化能力,同时具有相对较低的质膜透性和较少的MDA含量的品种(诺德)的抗旱性最强。
     (2)在干旱胁迫条件下,供试的6个冷季型草坪草品种的绿叶率和叶绿素含量随处理时间的延长都逐渐下降,质膜透性则呈上升趋势,MDA含量也逐渐增大;三种膜保护酶活性都是先上升后下降,但6个品种的SOD、POD和CAT活性达到最高值的时间不同,多数品种的SOD、POD活性在处理6d后达最大值,少数品种的SOD活性在4d或8d后达最大;6个品种的CAT活性都在2d后达最高,以后随胁迫时间的延长其活性都逐渐下降,到处理的10d时,甚至低于对照。
     (3)在42℃高温胁迫下,6种冷季型草坪草的绿叶率持续下降,叶绿素含量也呈下降趋势;细胞膜透性和MDA含量呈持续上升趋势;脯氨酸含量和POD活性先明显上升,分别于2d和4~6d达最大值,然后逐渐下降;而SOD活性在处理时间内则几乎持续增加,除猎狗的CAT活性呈持续下降的趋势外,其它5个品种的CAT活性在胁迫初期逐步下降,2d后有所回升,然后又下降,巴润和诺德两个品种在回升时超出对照。
     (4)各草坪草的抗热性有差别(1%的显著水平),其抗热机理也有所不同。在供试的6个草坪草品种中,抗热性最强的为草地早熟禾中的诺德,最弱的是多年生黑麦
    
     冷季型草坪草杭热抗旱生理生化机理研究
    革(鳄鱼〔层越急的oA含量虽首 然 nL P0仇、C地捞物技}联摘调M鳄
    鱼的MDA含量比诺德低,但其三种酶活性却较低,Pro含量也较低。
     卜)草坪草抗逆性与抗氧化能力婊关系。在6种冷季型草坪草品种中,抗旱性
    和抗氧化能力最强的都是诺德,而塞博的抗旱性和抗氧化能力都最差。在42C高温胁
    迫下,6种冷季型草坪草品种中,诺德的抗热性和抗氧化能力都最强,而鳄鱼的却与
    之相反。因此,在逆境胁迫时,草坪植物的抗逆性与抗氧化能力基本一致。
     (6)高温和干旱胁迫下,草坪草的某些生理生化指标的变化趋势基本一致,如
    绿叶率、叶绿素含量都呈下降趋势,细胞膜透性和MDA含量都呈上升趋势,POD活性
    都先上升后下降。而革坪草的Pro含量、SOD和CAT活性在高温与干旱胁迫时的变化
    趋势不一样:在干旱胁迫下Pro的含量呈持续上升的趋势,而在高温胁迫下却是先上
    升后下降的趋势;SOD活性在于旱胁迫下呈先升后降的趋势,而在高温胁迫下几乎是
    持续上升;CAT活性在干旱胁迫下先上升后下降,而在高温胁迫下却先下降后回升,
    然后又下降。这说明高温与干旱这两种不利环境因子对草坪草的影响有相似之处,草
    坪草的抗热机理与抗旱机理有一定的联系,同时又存在一定的差异。
     (7)早熟禾(诺得)的抗热抗旱的综合指标都为最高,粗茎早熟禾(塞博)的
    抗旱综合指标最低,抗热指标较低;多年生黑麦草(鳄鱼)的抗热性综合指标最低,
    其抗旱指标偏低。因此,初步确定,在供试的6种草坪草中,草地早熟禾(诺德)在
    高温伏旱地区(如重庆等)具有较强的越夏能力,可能是一种较适宜于这些地区引种
    栽培的冷季型草坪革草种;而粗茎早熟禾(塞博)和多年生黑麦革(摸鱼)引种到这
    些地区则会出现越夏困难的问题。
Contrasting with the warm-season turfgrasses, the cool-season turfgrasses are more and more welcomed for their long-green periods, soft-qualities, brilliant-colors, and their good-lookings. The special climate characters ie high temperature and drought stress handicap the growth of the cool-season turfgrasses which would be inclined for cool and warm climate. Physiological and biochemical mechanisms of 6 different cool-season turfgrass cultivars( Baron, Node, Sabre, Barlexas, Houndog and Alligator ) under heat stress and drought stress were systemicaliy studied, green leaves were numbered, chlorophyll contents (including Chla and Chlb ),and electrolyte leakage(EL) ,contents of the lipid peroxidation product-malondialdehye (MDA), contents of proline(Pro),and activities of 3 major antioxidant enzymes ie superoxide dismutase(SOD), catalase(CAT), and peroxidase(POD) in fresh leaves were determined every other day during 20%-PEG drought stress or 42 heat stress, and the relationships between the antioxidation abilities and heat or drought-resistance were preliminarily studied. The main results and conclusions were as follows.
    (1) Among the 6 cool-season turfgrass cultivars, different cultivars held different drought-resistance and their own physiological and biochemical mechanisms during the drought stress. Poa pratemis L. cv(Node) was the most resistant to drought stress, while Poa trivialis L. was weakest, and Festuca arundinacea Schreb was more resistant than Lolium prenne L. . Poa pralemis L. and Poa trivialis L. both belonging to the same genera had obviouse drought-resistances, the physiological and biochemical mechanisms of them were also different: more green leaves, more content of Pro, more activities of SOD, POD, CAT, and less content of MDA, or less leakage of electrolytes from cells occurred in Poa pratensi.s L. which had more resistance than Poa trivialis L. .
    (2) Green leaves, chlorophyll content decreased constantly, whereas EL, content of MDA and Pro increased constantly under drought stress in the 6 different cool-season turfgrass cultivars; The activities of SOD, POD and CAT firstly increased slowly then
    
    
    
    decreased under the drought stress in the 6 cool-season turfgrass cultivate: in most of the 6 cool-season turfgrass cultivars, the activities of SOD, POD reached maximum values in 6d, while others' activities of SOD reached the highest level in 4d or 8d; the activities of CAT reached the highest content in 2d then decreased constantly with the drought stress progressing, and down lower than the levels in 0d.
    (3) Green leaves, chlorophyll content decreased constantly, whereas EL, content of MDA increased constantly under heat stress in the 6 different cool-season turfgrass cultivars; and the content of Pro and the activities of POD firstly increased slowly then decreased under the heat stress, and reached their maximum values in 2d and 4-6d during heat stress respectively; the other two antioxidant enzymes ie SOD, CAT changed in difference respectively the activities of SOD increased constantly in all of the 6 cool-season turfgrass cultivars while in one of the 6 cultivars the activity of CAT decreased constantly but in other 5 of the 6 cool-season turfgrass cultivars the activity of CAT firstly decreased then increased and declined again at last, in both cultivars of Poa pratensis ,L, grew up above the control condition.
    (4) Among the 6 cool-season turfgrass cultivars, different cultivars held different heat-resistance and their own physiological and biochemical mechanisms during the heat stress. Poa pratensis L. cv(Node) was the.most resistant to drought stress, while Lolium prenne L. was weakest. Although the content of MDA was more in Poa pratensis L. cv(Node) than in Lolium prenne L. , it held the most or secondly most activities of the 3 antioxidant enzymes in all of the 6 cultivars and had.the secondly most content of Pro while Lolium prenne L. held the lest content of Pro and the:.lest activities of the 3 antioxidant enzymes. As for the Poa pratensis L, cv(Baron) and the F
引文
[1]王忠.植物生理学[M].北京:中国农业出版社,2000,5.第1版.
    [2]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459~465.
    [3]Delauney A L, Vema D P, Kishor P B. Cloning of omithine data amitransferas cDNA from vigan aconitifolia by transcomplementation in Escherichia coli and regulation of proline biosythesis[J].J-Bio-Chem, 1993, 286(25): 18672~18678.
    [4]Su Weiai,Mi Rongqin, Wang Wenying and Wang Hongchun. The influence of cold hardiness of Plant Stress Sensitivity[J]. Acta Phytophysiological Sinica, 1990, 16(3): 284~292.
    [5]Knneth B Marcum Cell memebrane thermostability and whole-plant heat tolerance of Kentucky Bluegrass [J]. Crop Sci.,1998,38(4)1214~1218.
    [6]周人纲,樊志和,李晓芝.高温锻炼对小麦细胞膜热稳定性的作用[J].华北农学报,1993,8(3):33~37.
    [7]陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555~560.
    [8]李广敏,唐连顺,商振清,池书敏.渗透胁迫对玉米幼苗保护酶系统的影响及其与抗旱性的关系[J].河北农业大学学报,1994,17(2):1~5.
    [9]蒋明义,荆家海,王韶唐.渗透胁迫对水稻光合色素和膜脂过氧化的影响[J].西北农业大学学报,1991,19(1):79~83.
    [10]张敬贤,李俊明,崔四平,魏建昆.玉米保护酶活性对苗期干旱的反应[J].1990,(5)专刊:19~23.
    [11]朱抗申,黄丕生.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994,17(2):7~11.
    [12]陈辉蓉,吴振斌,贺锋,程旺元.植物抗逆性研究进展[J].环境污染治理技术与设备,2001,2(3):7~13.
    [13]卢少云,郭振飞,彭新湘.干旱条件下水稻幼苗的膜保护酶活性及其与耐旱性的关系[J].华南农业大学学报,1997,18(4):21~25.
    [14]王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶活性的影响[J].山东师范大学学报(自然科学版),1987,2(11):29~39.
    [15]陈毓荃.生物化学研究技术[M],北京:中国农业出版社,1993,12,第1版
    [16]Liu Xiaozhong, Huang Bingru。Heat Stress Injury in Relation to Memebrane Lipid
    
    Peroxidation in Creeping Bentgrass [J]。Crop Sci。2000, 40 (2): 503~510
    [17]孙本信.绿地草坪[M],北京:中国林业出版社,1999,第1版
    [18]胡中华,刘师汉.草地与地被植物[M],北京:中国林业出版社,1999,4.第1版.
    [19]Turgeon A J. Turfgrass Management[J].Illustrated by Floyd Giles. Printed in the United States of America. 1991.
    [20]何亚丽,沈剑,王惠林.冷地型草坪草抗热机理初探Ⅰ.草地早熟禾(Poa paratensis L.)在热胁迫下叶片叶绿素含量和POD酶活性的变化[J].上海农学院学报,1997,15(2):128~132.
    [21]何亚丽,王惠林,沈剑,祁军.冷地型草坪草耐热机理的研究Ⅱ.5种冷地型草坪草离体叶片在骤然高温干旱下细胞膜透性的变化及其抗性鉴定[J].上海农学院学报,1997,15(3):209~214.
    [22]黄承前,胡果生,彭信海,罗军,陶栋材,邱德英.冷季型草坪草耐干热性能研究[J].湖南农业大学学报,1998,24(2):113~118.
    [23]胡果生,黄承前,李轩.草坪草耐干热低温性能研究[J].中南林学院学报,1999,19(1):39~43
    [24]柳小妮,曹致中.几种早熟禾耐热性的研究[J].中国草地,2002,24(3):40~45
    [25]王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草业学报,1998,7(1):75~80
    [26]徐清,刘茂春,徐昌杰.草坪草生理生化研究进展[J].中国草地,1998(4):56~60.
    [27]Dimascio J A, PM Sweeney, T K Dannberger and J C Kamaly. Analysis of heat shock response in Perennial Ryegrass using maize heat shock protein clones[J]. Crop Science, 1994, 34(2): 788~804.
    [28]冉秀芝,杨成军,吴文彬.冷季型草坪草抗旱机理研究进展[J].中国草地,2002,24(5):62~64
    [29]高宁,高辉远.水分胁迫下两种草坪草渗透调节与抗旱性的关系[J].中国草地,1995,(4):44~48
    [30]高宁,高辉远,石定燧,阿不来提,王俊玲,张晓平.16种(品种)寒地型草坪草抗旱性及评定方法初探[J].八一农学院学报,1995,18(1):68~71
    [31]伍世平,王君健,于志熙.8种草坪草的抗逆性研究[J].武汉植物学研究,1995,13(1):78~80
    [32]蒋齐,徐荣,唐桦.冷地型草坪草耐旱能力研究[J].宁夏农林科技,1995,(1):17~19
    [33]李敏,徐琳,赵美琦.冷季型草草坪建植与管理指南[M].北京:中国林业出版社,2002,第1版.
    [34]梁慧敏,夏阳,杜峰,张普金.盐胁迫对两种草坪草抗旱生理生化指标影响的研究[J].中国草地,2001,23(5):27~30.
    [35]马一,王彩云.几种引进冷季型草坪草的生长及抗旱生理指标[J]草业科学,2001,18(2):57~61
    
    
    [36]Keeley S J, Koshi A J. Drought avoidance in the Kentucky Bluegrass[A]. Agronomy abstracts [C]. Madison. WI: 1995, 154.
    [37]Huang B R, Gao Hongwen.Root physiological characteristics associate with drought resistance in tall rescue cultivars[J].Crop Science; 2000, 40(1): 193~203
    [38]Leafe E L, Jones M B, Stiles W. The physiological effects of water stress on prerennial ryegrass in field[A].Wojahn, Thons H. Proceeding of the Ⅷ international grassland congress, Leipzig, 1977, Vol. 1[C], Berlin: Akzdemiie-Verlag, 1980,253~260.
    [39]Perdomo P, Murphy J A, Berkowiz G A. Physiological changes associated with performance of Kentucky Bluegrass cultivars during summer stress [J]. Hort Science, 1996, 31(7): 1182~1186.
    [40]Huang B R, Gao Hongwen. Physiological responses of diverse tall rescue cultivars to drought stress [J]. Bort Science, 1999, 34(5):897~901.
    [41]White R H,M C Engelke, S J Morton and B A Ruemmele. Competitive turgor maintenance in Tall Fescue [J]. Crop Sci., 1992, 32(1): 251~256
    [42]Qian Y L,J D Fry and W S Uphan. Rooting and drought avoidance of warmseason turfgrasses and Tall Fescue in Kansas [J]. Crop Sci., 1997, 37(3): 905~910
    [43]Carrow R N Drought resistance aspects of turfgrass in the southeast: Evapotranspiration and Crop coeffiecients [J]. Crop Sci., 1995, 35(6):1685~1690
    [44]Salaiz F A,R C Sbearman, T P Riordan and E J Kinbacher. Creeping bentgrass cuktivar water use and routing responses[J] Crop Sci., 1991, 31(5): 1331~1334
    [45]Zhao Yuguang, George C J Fernandez, Ganiel C Bowman, Robert S Nowak. Selection criteria for drought-resistance breeding in turfgrass[J].J. Amer. Soc. Hort. Sci.,1994, 119(6): 1317~1324.
    [46]孙吉雄.草坪学[M].北京:中国农业出版社,1995,第1版,2002,4,第6次印刷.
    [47]何亚丽,刘友良,陈权,卞爱华.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系[J].植物生理与分子生物学学报,2002,28(2):89~95
    [48]白宝璋.植物生理学测试技术[M].北京:中国科学技术出版社,1993,第1版
    [49]皱琦.植物生理学实验指导[M].北京:中国农业出版社,2000,8,第1版
    [50]Dhindsa R S, and W Matowe. Drought tolerance in two mosses:Correlated with enzymatic defense against lipid peroxidation[J]. Exp. BOT., 1981, 32:79-91
    [51]Zhang J X, and M B Kirkham. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species [J]., Plant Cell
    
    Physiol., 1997, 35(2): 785~791
    [52]李合生.植物生理生化实验原理合技术[M].北京:高等教育出版社,2000,164~165
    [53]朱利泉.基础生物化学实验原理与方法[M].成都:成都科技大学出版社.1997,181~182
    [54]宋洪元,雷建军,李成琼.植物热胁迫反应及抗热性鉴定与评价[J].中国蔬菜,1998,(1):48~50
    [55]沈剑明,邱泽生.植物抗性生理(一)[J].生物学通报,1997,32(5):14~17
    [56]裴英杰,郑家玲,廖红.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(1):31~35
    [57]孙存普,张建中,段绍瑾.自由基生物学导论[M].合肥:中国科学技术大学出版社,1999,48~59
    [58]Dat J F,H Lopez-Delgado, C H Foyer, I M Scott. Parallel changes in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J].Plant Physiol.,1998,116:1351~1357
    [59]Chowdhury S R,M A Choudhuri. Hydrogen peroxide metabolism as an index of water stress tolerance in jute[J]. Plant Physiol., 1985, 65:503~507
    [60]蒋明义,郭绍川,张学明.氧化胁迫下水稻幼苗体内积累的脯胺酸的抗氧化作用[J].植物生理学报,1997,23(4):347~352
    [61]王茅雁,邵世勤,张建华.水分胁迫对玉米保护酶系活力及膜系统结构的影响[J].华北农学报,1995,10(2):43~49
    [62]陈才夫,梁祖铎,王槐三.多年生黑麦草对高温、干旱的生理反应[J].南京农业大学学报,1998,11(2):87~92
    [63]王钦.高温对草坪草细胞的伤害[J].草业科学,1993,10(4):66~68
    [64]陈立松,刘星辉.植物抗性指标的种类[J].干旱地区农业研究,1997,15(4):73~74
    [65]马德华,庞金安,霍振荣,李淑菊.黄瓜对不同温度逆境的抗性研究[J].中国农业科学,1999,32(5):28~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700