植物生长调节剂对几种灌木树种抗旱性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用盆栽模拟试验方法,通过对叶水势、叶片相对含水量、可溶性蛋白含量、脯氨酸含量、丙二醛含量、细胞质膜相对透性和气体交换参数等抗旱生理生化指标的测定,对不同浓度的Vc、水杨酸、多效唑叶面喷施处理的紫丁香、小叶锦鸡儿、乌苏里绣线菊和沙棘苗木的抗旱能力进行了分析和综合评价,研究结果表明:(1)Vc、水杨酸、多效唑均能通过不同途径提高四树种的抗旱能力。在干旱条件下,三种植物生长调节剂均能通过不同程度地延缓四树种的叶水势、叶片相对含水量、可溶性蛋白质含量、叶绿素含量和净光合作用的下降,提高叶片的脯氨酸含量,延缓植物在干旱条件下细胞膜脂过氧化作用和细胞质膜相对透性的发生,提高试验苗木的抗旱性。(2)提高四树种抗旱能力的适宜生长调节剂种类及浓度不同:紫丁香为5.5×10~(-3)-8.5×10~(-3)mol/L的VC和0.7×10~(-4)-1.0×10~(-4)mol/L的水杨酸;小叶锦鸡儿为8.5×10~(-3)mol/L的Vc和0.4×10~(-4)-0.7×10~(-4)mol/L的水杨酸;乌苏里绣线菊为1.53×10~(-3)-2.21×10~(-3)mol/L的多效唑;沙棘为0.4×10~(-4)-1.0×10~(-4)mol/L的水杨酸。其结果为抗旱苗木的定向培育和提高干旱、半干旱地区造林效果奠定了基础。
The changes of leaf water potential, relative water content, the content of soluble protein, proline and malondialdehyde, relative permeability of plasma membrance and gas exchange parameters were measured by means of the simulated pot experiments. The abilities of drought resistance of Syringa oblate, Caranana microphylla, Spiraea ussuriensis, Hippophae rhamnoides in the course of seedling were studied by spraying four contents of different plant growth regulators including ascorbic acid, salicylic acid and paclobutrazol. The results showed as foliowed.(1) The three kinds of plant growth regulators could increase the abilities of drought resistance of all the shrub seedlings via different ways. Under the condition of drought, all the plant growth regulators could effectively postpone the fall of leaf water potential, relative water content, the content soluble proteins and chlorophyll and net photosynthesis and the occurs of lipid peroxidation and membrance permeability to some extent. In addition, the content of proline in leaves was increased. (2) The most suited kind and content of the plant growth regulators in enhancing the abilities of drought resistance were different for the four kinds of shrub seedlings. 5.5x10-3 - 8.5x10-3mol/L ascorbic acid and 0.7x104 - 1.0x10-4 mol/L salicylic acid were the most appropriate for Syringa oblate, 8.5x10-3mol/L ascorbic acid and 0.4x10-4 - 0.7x10-4mol/L salicylic acid for Caranana microphylla, 1.53x10-3 - 2.21x10-3mol/L paclobutrazol for Spiraea ussuriensi and 0.4x10-4- 1.0x10-4mol/L salicylic acid for Hippophae rhamnoide. The results could establish a definite base for directional cultivating and afforestation in arid and semiarid areas.
引文
1.鲍健寅.高温和干旱对白三叶生长发育及生理特性的影响.草业学报,1995,4(4):9-16
    2.边卫东,李兴明,胡为民等.PP333对油桃生长、生理和成花的影响.河北农业技术师范学院学报,1994,8(2):56-61
    3.曹仪植.水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用.植物生理学报,1985,11(1):9-16
    4.陈杰忠,赵红叶,叶自行.水分胁迫对芒果成花效应及内源激素变化的影响.热带作物学报,2000,21(2):74-79
    5.陈京,王稳地,李蓉涛等.甘薯水分关系的主分量分析.西南师范大学学报,1994,19(1):79-83
    6.陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90
    7.陈贻竹,B帕特森.低温对植物叶片超氧物歧化酶,过氧化氢酶和过氧化物酶水平的影响.植物生理学报,1988,14(4):323-328
    8.陈由强,活性氧.植物生理学通讯,1984,(3):71
    9.陈由强,叶冰莹,朱锦懋.渗透胁迫对花生幼叶活性氧伤害和膜脂过氧化作用的影响.中国油料作物学报,2000,22(1):53-56
    10.陈由强,植物体内单线态氧的产生及其猝灭.植物生理学通讯,1987,(1):1-5
    11.陈玉珍,张高英.多效唑对花生幼苗抗旱能力的影响.花生科技,1994,(4):11-12
    12.高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节与抗旱能力的关系.西北植物学报,1991,11(1):58-64
    13.韩德元植物生长调节剂-原理与应用.北京:北京科学技术出版社,1997
    14.胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望.林业科学,1998,34(2):77-89
    15.黄建昌,肖艳,赵春香.自由基清除剂对香蕉水分胁迫的保护作用.福建果树,1999,(4):1-3
    16.蒋明义,荆家海,王韶唐.渗透胁迫对水稻膜脂过氧化及体内保护酶系统的影响.植物生理学报,1991,17(1):80-84
    17.蒋明义.水分胁迫下植物体内·OH的产生与细胞的氧化损伤。植物学报,1999,41(3):229-234
    18.景蕊莲.作物抗旱研究的现状与思考干旱地区农业研究,1999,17(2):79-85
    19.康绍忠.西北地区农业节水与水资源持续利用.北京:中国农业出版社,1999
    20.李得红,潘瑞炽.水杨酸在植物体内的作用.植物生理学通讯,1995,31(2):144-149
    21.李合生.植物生理生化试验原理和技术.北京:高等教育出版社,2000
    22.李锦树,王洪春等.干旱对玉米叶片细胞透性及质膜的影响.植物生理学报,1983,9(30):223-228
    23.李良厚,贾志英,付祥健.土壤水分胁迫下苗木水分参数变化的研究.河南农业大学学报,1999,31(1):92-99
    
    
    24.李庆梅,徐化成.油松P-V曲线主要水分参数值随季节和种源的变化.植物生态学与植物地理学学报,1992,16(4):326-335
    25.梁建生,张建华.周期性土壤干旱和叶片水势对气孔响应木质部ABA灵敏度的影响.植物学报,1999,41:855-861
    26.刘富林,韩润林,张风瑞.Ca离子对小麦叶片保水能力及膜功能的影响.河北农业大学学报,1991,14(4):28-32
    27.刘学义.大豆抗旱能力评定方法探讨.中国油料,1986,(4):23-26
    28.刘友良.植物水分逆境生理.北京:农业出版社,1992
    29.刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994
    30.吕长平,石雪晖,杨国顺等.水分胁迫对草莓叶片SOD活性以及MDA和Vc含量的影响.湖南农业大学学报,1996,22(5):451-455
    31.倪郁,李睢.作物抗旱机制及其指标的研究进展与现状.甘肃农业大学学报,2001,36(1):14-22
    32.潘根生,骆耀平,钱利生.茶树叶水势、萎蔫系数与耐旱力的关系.茶叶,1999,25(3):147-149
    33.庞士铨.植物逆境生理学基础.东北林业大学出版社,1990
    34.邱全胜,李林,梁厚果等.水分胁迫对小麦根细胞质膜氧化还原系统的影响.植物生理学报,1994,20:145-151
    35.邱全胜.渗透胁迫对小麦根质膜膜脂物理状态的影响.植物学报,1999,42(2):161-165
    36.邱泽生.钙生理功能研究进展.植物生理学教学研究参考文集——理论进展及其在生产中的应用,1997,207-217
    37.饶力群,官春云.过氧化氢、水杨酸与植物抗病性关系的研究进展.湖南农业大学学报,2000,26(1):9-14
    38.石书兵,徐文修,张强.旱作春小麦品种高产抗旱特性的综合评价.干旱地区农业研究,2001,19(2):15-21
    39.孙昌祖.渗透胁迫对青杨叶片氧自由基伤害及膜脂过氧化的影响.林业科学,1993,29(2):104-109
    40.孙洪波.新型抗旱剂对大田作物基本生理及产量的影响(硕士论文).山东师范大学,2000
    41.汤章城.植物对水分胁迫的反应和适应性.植物生理学通讯,1983,(4):1-7
    42.陶宗娅,程水源.水杨酸在小麦幼苗渗透胁迫中的作用.西北植物学报,1999,19(2):296-302
    43.汪晓峰,张宪政.ASA提高小麦抗旱能力效应的研究.植物学通报,1998,15(3)48-50
    44.王爱国,邵从本,罗广华等.活性氧对大豆下胚轴线粒体结构与功能的损伤.植物生理学报,1990,16(1):13-18
    45.王彩云.几种引进冷季型草坪草的生长及抗旱生理指标.草业科学,2001,18(2):57-61
    46.王钦.草坪植物的逆境效应及质量评定标准研究.草业科学,1993,10(4):48-53
    
    
    47.王三根.植物生理生化.北京:中国农业出版社,2001
    48.王韶唐.植物抗旱的生理.植物生理生化进展,1983,(2):120-133
    49.王万里.压力室在植物水分状况研究中的应用.植物生理学通讯,1984,(3):52-57
    50.王中英.果树抗旱生理.北京:中国农业出版社,2000
    51.尉庆丰,张英利,曹秀华等.旱地农业种综合保水技术的抗旱增产效应.土壤通报,1995,26(3):108-110
    52.魏宇昆,梁宗锁,李丽霞等.抗氧化剂对渗透胁迫下沙棘叶片膜脂过氧化的保护作用.西北林学院学报,2001,16(1):5-8
    53.武维华.植物生理学.北京:科学出版社,2003
    54.谢寅峰,沈惠娟,罗爱珍等.南方7个造林树种幼苗抗旱生理指标的比镜南京林业大学学报,1999,23(4):13-16
    55.徐世昌.玉米旱害机制及抗旱应变措施的研究.沈阳农业大学博士生论文,1993
    56.许长城,邹琦.大豆叶片旱促衰老及其与膜质过氧化的关系.山东农业大学学报,1993,19(4):359-364
    57.许明丽,孙晓艳,文江祁.水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用.植物生理学通讯,2000,36(1):35-36
    58.许兴,郑国琦,邓西平等.水分和盐分胁迫下春小麦幼苗渗透调节物质积累的比较研究.干旱地区农业研究,2000,20(1):52-56
    59.许育彬.作物水分利用效率研究进展.陕西农业科学,1998(4):13-19
    60.严景华,蔡永萍.多效唑、ABA对番茄叶片膜脂过氧化的影响.安徽农业科学,1994,22(3):232-234
    61.杨朝选,焦国利,王新峰等.干旱过程中桃树茎和叶水势的变化果树科学,1999,16(4):267-271
    62.杨德光,沈秀瑛,赵天宏等.外源活性氧清除剂在玉米上的抗旱效应.北京农业科学,2001,(5):25-27
    63.郁俊谊,任仲博.多效唑对桃树的生长控制及生理效应.西北农业学报,1994,3(1):76-78
    64.袁清昌.钙提高植物抗旱能力的研究进展.山东农业大学学报,1999,30(3):302-306
    65.张立军.小麦幼苗干旱逆境蛋白与抗旱能力关系的研究.沈阳农业大学学报,1998,29(2):106-109
    66.张晓燕.水杨酸诱导植物抗病性机制的研究进展.河北林果研究,2000,15(3):288—291
    67.张志鸿.膜生物物理学.北京:高等教育出版社,1987
    68.周海燕.中国东北科尔沁沙地两种建群植物的抗旱机理.植物研究,2002,22(1):51-55
    69.周瑞莲,张承烈等.水分胁迫下紫花苜蓿叶片含水量、质膜透性、SOD、CAT活性变化与抗旱能力关系的研究.中国草地,1991,58(2):20-24
    
    
    70.朱蕙香,张宗俭,陈虎保等.常用植物生长调节剂应用指南.北京:化学工业出版社,2002
    71. Battels D. Nelson D. Approaches to improve stress tolerance-using molecular genetics. Plant, Cell and Enwironment, 1994, 17: 659-667
    72. Bhagsari A Set al. Effect of moisture stress on photosymthresis and some related physiological characteristics in peanut. Crop Sci. 1976,16(5): 712-715
    73. Bohnert H J., Jensen R G. Stratigiesfor engineering water stress tolerance in plants, Trends in Biotechmology, 1996, 14:89-97
    74. Bray A E, Molecular response to water deficit. Plant Physiol. 1993, 103:1035-1040
    75. Cramer GR. Is an increase in ABA concentration the cause of growth inhibition in salt-stressed plants? Plant Physiol, 1994, 105:71
    76. Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidationand decreased levels of superoxide dismutase and catalase. J Exp Bot, 1981, 32:93-97
    77. Dickman DI et al. Photosynthesis water relation and growth of two hybrid populus genotypes during a severe drought. Can J for Res, 1992, 22(8):1094-1106
    78. Dodd IC, Davies WJ. The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone. J Exp Bot, 1996,45:1471-1478
    79. Durner J, Shah J, Klessig DF. Salicylic acid and disease resistance in plant. Trends in Plant Science, 1997, 2:266-274
    80. Ebercon A et al. A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop Sci, 1977,17:179-183
    81. El-Hafid R, Smith DH, KarrouM, et al. Physiological responses of spring durumwheat cultivars to early-season drought in a Mediterranean environment[J]. Annals of Botany, 1998, 81(2): 363-370
    82. Elster E F. Oxygen activation and oxygen toxicity. Ann PlantPhysiol, 1982, 33:73-86
    83. Fridovich I. Superoxide dismutase. Ann Rev Biochem, 1975,44:147-159.
    84. He Jilin, L iu Hongxian. The relationship between the changes of endogenous hormone content and the droughtresistance in leaves of wheat during drought. Journal of Tropical and Subtropical Botany, 1998, 6(4): 341-346
    85. Henson I E, Jensen C R, Tumer N C. Leaf gas exchange and water relations of lupinsandwheat Ⅲ. ABA and Drought-induced stomatal closure. Aust J Plant Physiol, 1989, 16:429-442
    86. Johnson R C. Osmotic adjustment and solute accumulation in two wheat genotypes differing
    
    in drought resistance. Crop Science, 1984, 24:957-966.
    87. Kameliand L. Growth and sugar accumulation in durum wheat plants under water stress. New Phytol, 1996, 132:57-62
    88. Kishor P B R, Hong Z, Miao G H. et al. Overexpression of △-Pyrroline-5-Carboxylate symthetase incrase proline production and confers os motolerance in Transgenic plants. Plant Physiol. 1995, 108:1387-1394
    89. Kramer PJ, Turner NC. Adaptation of Plants to Water and High Temperature Stress. John Wiley and Sons, inc. 1980.87-403
    90. L ery D. Water deficit enhancemert of proline and amino nitrogen accumulation in potato plants and its associa-tion with susceptibility to drought. Physiol. Plant. 1983, 57:169-173
    91. L ery D. Water deficit enhancemert of proline and amino nitrogen accumulation in potato plants and its associa-tion with susceptibility to drought. Physiol. Plant. 1983, 57:169-173
    92. L rigoyen JJ, Em erich DW. Water stress induced changes in concentrations of proline and total soluble sugars innodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum. 1992, 84:55-60
    93. Liang J, Zhang J, Wong MH. How do roots control xylem sap ABA concentration in response to soil drying? Plant Cell Physiol, 1997, 38:10-16
    94. Loveys B R, Diurnal changes inwater relations and abscisic acid in field-grownVitis vinifero cultivars Ⅲ. The influence of xylem-derived abscisic acid on leaf gas exchange. New Phytol, 1984, 98:563-573
    95. Loveys B R, Robinson S P, Downton W J S, Seasonal and diumal changes in abscisic acidand water relations of apricot leaves. New Phytol, 1987, 107:15-27
    96. Malamy J, Carr J P, Klessig D F, et al. Salicylic acid-alikely endogenous dignal in the resistance respons of tobaccoto veral infection. Science, 1990, 250:1001-1004
    97. McDonald AJS, Davies WJ. Keeping in touch: Responses of the whole plant to deficits in water and nitrogen supply. Adv Bot Res, 1996, 22:230-300
    98. Morgan JM. Osmoregulationand water stress in higher plants. Annal Review Plant Physiology, 1984, 35:299-319
    99. Morgan JM. Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Australian Journal of Plant Physiology, 1992, 19(1):67-76
    100. Munns R, Sharp RE. Involvement of abscisic acid in controlling plant growth in soils of low water potential. Aust J Plant Physiol, 1993, 20:425-437
    
    
    101. Trejo CL, Davies WJ. Drought-induced closure of Phaseolusvulgaris L. Stomata precedes leaf water deficit and any increase in xylem ABA concentration. J Exp Bot, 1991, 42:1508-1515
    102. Turmer N C. Drought resistance and adaptation to water deficits in crop plant. New York. John Wiley and Sons. 1997, 343-372
    103. Turner N C, Jones M M. A review and evaluatio. New York: Wiley, 1980, 87-103
    104. Vernooi J B, Friedric H L, Morse A, et al. Salicylic acid is mot the translocated signal responsible for inducing systemic acquired resistance but is required in sifnal transduction. Plant Cell, 1994, 6:957-968
    105. Vieira Das. Water and Plant Life, Berlin: Springer Verlag. 1976, 224-227
    106. Zhang JX, Kirham M B. Drought stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology, 1994, 35(5): 785-791

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700