边界层参数化方案对城市空气质量模拟效果的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中尺度大气数值模式的建立及其与大气污染扩散模式的衔接是数值模拟的重要分支,也是目前城市空气污染问题的主要研究方法。边界层参数化是数值模式的一个重要组成部分,较真实的模拟边界层中的湍流运动,对于大气污染物的分布扩散及空气质量模式的运行效果具有重要意义。“乌鲁木齐市大气污染成因及防治对策研究”即是以乌鲁木齐市为研究对象,探讨乌鲁木齐市冬季重污染问题及其成因,了解地区污染的分布形成规律。本研究是该课题的组成部分,利用MM5中尺度气象模式和CALPUFF空气质量模式,采用不同的边界层参数化方案,模拟区域的流场和湍流运动,比较不同边界层参数化方案下大气污染物的浓度分布情况。主要结论如下:
     (1)Blackadar PBL方案、Eta PBL、MRF PBL和Gayno-Seaman PBL参数化方案水平风场模拟结果与监测站的实测资料吻合较好。夜间,不同方案间模拟结果相差较小,垂直剖面风矢量图中各高度层风向变换趋势大致相同。白天,4种方案模拟结果差别较大,主要体现在风速最大值出现的位置和影响范围不同。4种方案对于高空风场的模拟存在较大差异,表现在风向转换和风速两方面;
     (2)对于风速廓线的模拟,各方案间存在较大差异,但变化趋势大致相同。近地面至300m左右高度,风速值变化较小,从300m高度层开始,风速变化显著。在夜间层结稳定情况下,低高度处风速随高度先变小,随后快速增加,达到一定高度处风速达最大,在白天不稳定层结情况下,风速先变大,后变小,最后随高度趋于均匀。总体来看,风速变化不是很规则,这与该地区大气扰动较大有关;
     (3)各方案模拟的温度层结大体结构相同,但在对流层中低层却存在明显差异;无论白天、夜间,温度都随高度增加而升高较快,出现逆温,夜晚逆温强度强于白天,400m高度开始,温度递减,各方案模拟结果大致相似,与乌鲁木齐长期监测资料吻合;
     (4)三个监测站点的SO_2浓度值变化较大,早晨浓度最大,中午最小,傍晚介于两者之间;SO_2模拟值中午时段较高,而早晚较低,这是因为中午时段对流运动及垂直扩散的加强导致了高架源排放污染物向近地面层的下泄,而早晚稳定的大气层结不利于高空污染物向地面的转移;
     (5)PM_(10)模拟浓度值随路面机动车流量的变化而变化,并在上下班高峰期呈现峰值,各方案模拟浓度值白天均高于夜晚及凌晨时段;
     (6)4种方案对于SO_2和PM_(10)的模拟结果随时间的变化趋势大致相同。特别是夜晚及清晨模拟差异较小,但在15~18时往往存在较大差异,Gayon-Seaman PBL方案和Eta PBL方案对应的模拟值明显高于其他两种方案;
     (7)4种方案中,Eta PBL方案和Gayno-Seaman PBL方案模拟高空及近地面风速较小,各点源排放污染物在较大范围内均匀散布开来,仅在点源附近表现出较高浓度。Blackadar PBL方案和MRF PBL方案等值线密集,污染物在水平输送气流的影响下,常可导致下风向地区大范围高浓度值的出现;
     (8)采用MM5输出的气象场资料进行空气质量数值模拟,可以在一定程度上较好地反映重污染天气过程中,SO_2和PM_(10)等常规污染物的浓度变化特征,特别是日变化特征。但由于研究工作中考虑的源的数量、种类的局限性,模拟的浓度值与实测值相比偏低。
Establishment of mesoscale meteorological simulation system, as well as its linking up to the diffusion models of atmospheric pollution, is an important embranchment of numerical simulation. Furthermore, it’s also the way mostly used in dealing with urban air pollution. Atmospheric boundary layer parameterization which plays an important part in simulating the turbulence in the boundary layer truly is an essential part of the numerical model and plays a significant role in the effect of urban air quality model. Dealing with Urumchi city, the project -‘The major reasons and causes of air pollution in Urumchi as well as the ways and measures to prevent its pollution’investigates the main causes of the heavy pollution in winter time in Urumchi and the distributing and formation characteristics of regional pollution. As one component part of the subject, this study mainly simulates the meteorological field and the turbulence in Urumchi with different boundary layer parameterization schemes of MM5. Furthermore, with the help of CALPUFF, we also do some comparation between the distribution situation of concentration with different output from MM5. Main conclusions are as follows:
     (1)Blackadar PBL, Eta PBL, MRF PBL and Gayno-Seaman PBL of the MM5 are carried out to calculate the horizontal wind field. It shows that results from the four schemes tallies well with the actually measured data. At night, there is little difference between these schemes while in the day time, the location and incidence of maximum wind speed differ widely. Wind direction and wind speed are also different in upper air according to the four schemes.
     (2)Profiles of wind speed differ widely from one another according to the four schemes, but all change in the similar trendency. The value of wind speed changes a little from the surface to the 300m level,but changes remarkably hyper-300m. In the evening, wind speed diminishes at first and then increases quickly in the low level. In the day time, it is quite the opposite. On the whole, changes of wind speed is not very regular,responsing to the turbulence in this area.
     (3)Simulated structures of the temperature layer are similar in the four schemes. The temperature increases quickly with the height all day long. That is to say, temperature inversion is frequent. The intension of inversion is stronger in the evening. The temperatuer begins to decrease at 400m level.
     (4)With its maximum value in the morning and minimum value at noon, the measured concentration of SO2 changes greatly. On the contrary, the simulated concentration of SO2 is highest. The reason is that with the intensification of convection and uprightness movements at noon, pollutants emitted from high chimneys are more easily to go down to the surface level.
     (5)The simulated concentration of PM10 varies with the runoff of vehicles on the road. The peak value appears at the up and off duty time. The simulated concentration in the day time is larger than that in the evening and that at the wee hours.
     (6)The simulated concentration of SO2 and PM10 all change in the similar trendency according to the four schemes, especially in the evening and at the wee hours. But the simulated concentration differs greatly from 15 to 18. Gayon-Seaman PBL and Eta PBL have a relative high value than the other two schemes.
     (7)The simulated values of wind speed in Eta PBL and Gayno-Seaman PBL are relatively smaller. Air pollutants emitted from emission sources spread equably within a large limits. Under the influence of horizontal transport currents, leeward districts often have a high concentration of air pollutants.
     (8)To a certain extent, numerical simulation of urban air quality with the meteorological output from MM5 can reflect the course of heavy pollution, as well as the changing characteristics of SO2 and PM10 concentration. But the simulated values in the study are on the low side owing to the lack of emission sources.
引文
[1] Seaman N L. Meteorological modelling for air-quality assessments[J]. Atmospheric Environment, 2000, 34: 2231~2259.
    [2] 丁爱军. 东亚地区低层空气污染物变化特征与输送规律研究[D]. 南京: 南京大学, 2004.
    [3] Pielke, Uliasz M. Use of meteorological models as input to regional and mesoscale air quality models-limitations and strengths[J]. Atmospheric Environment, 1998, 32(8): 1455~1466.
    [4] 胡泳涛. 区域空气质量及其影响因素研究[D]. 北京: 北京大学, 2000.
    [5] Schwarzhoff P J, Reid P D. Classification of meteorological patterns associated with the ozone categories in Kelowna,British Columbia[J]. Journal of Applied Meteorology, 2000, 39: 463~470.
    [6] Gaza R S. Mesoscale meteorology and high ozone in the Northeast United States[J]. Journal of Applied Meteorology, 1998, 37: 961~977.
    [7] Kassomenos P A, Flocas H A, Lykoudis S, et al. Spatal and temporal characteristics of the relationship between air quality status and mesoscale circulation over an urban Mediterranean basin[J]. The Science of the Total Environment, 1998, 217: 27~57.
    [8] Buchanan C M, Beverland I J, Heal M R. The influence of weather-type and long-range transport on airborne particle concentrations in Edinburgh UK[J]. Atmospheric Environment, 2002, 36: 5343~5354.
    [9] 袁美英, 周秀杰, 张桂华, 等. 天气形势对哈尔滨市空气质量影响的初步研究[J]. 气象, 2005, 31(1): 55~58.
    [10] 王宝鉴, 许东蓓, 蒲彦玲, 等. 兰州市冬季空气污染的天气成因分析及浓度预报[J]. 甘肃气象, 2001, 19(4): 18~21.
    [11] 赵艳丽, 张慧萍, 石卫敏, 等. 气象条件对呼市初冬空气污染的影响[J]. 内蒙古气象, 2005, 2: 25~26.
    [12] Physick W L, Goudey R. Estimating an annual-average RSP concentration for Hong Kong using days characteristic of the dominant weather patterns[J]. Atmospheric Environment, 2001, 35: 2697~2705.
    [13] 孟燕军,程丛兰. 影响北京地区大气污染物的地面天气形势分析[J]. 气象, 2001, 28(4): 42~46.
    [14] 黄健, 颜鹏, Roland R D. 利用HYSPLIT_4模式分析珠海地面SO2浓度的变化规律[J]. 热带气象学报, 2002, 18(4): 407~413.
    [15] Lam K S, Wang T, J, Chan L Y, et al. Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong[J]. Atmospheric Environment, 2001, 35: 3121~3135.
    [16] Brankov E, Rao S T, Porter P S. A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants[J]. Atmospheric Environment, 1998, 32(9): 1525~1534.
    [17] Salop J, Maier G F. A study of ozone levels in a maritime and land environment[J]. Journal of the Air Pollution Control Association, 1979, 29(6): 639~642.
    [18] Yoshikado H, Tsuchida M. High levels of winter air pollution under the influence of the urban heat island along the shore of Tokyo Bay[J]. Journal of Applied Meteorology, 1996, 35: 1804~1813.
    [19] Hastie D R. Summertime NOx, NOy, and ozone at a site in rural Ontario[J]. Atmospheric Environment, 1996, 30(12): 2157~2165.
    [20] 胡小明, 刘树华, 梁福明, 等. 北京区域近地边界层特征数值模拟[J]. 北京大学学报(自然科学版), 2005, 41(4): 514~522.
    [21] 许丽人. 湍流参数化在尺度模式中的应用[D]. 南京: 南京大学, 2000. 198.
    [22] Black T L. The new NMC mesoscale Eta model: Description and forecast examples[J]. Wea Forecasting, 1994, 9: 265~278.
    [23] Mukut B M, Brill K F. Evolution of slantwise vertical motions in NCEP’s meso Eta model[J]. Mon. Wea. Rev., 1999, 127.
    [24] Pielke R A, Cotton W R,Walko R L, et al. A comprehensive meteorological modeling system-RAMS[J]. Meteor Atmos. Phys., 1992, 49: 69~91.
    [25] Bernardet L, Cotton W R. Multiscale evolution of a derecho-producingmesoscale convective system[J]. Mon. Wea. Rev., 1998, 126: 2991~3015.
    [26] Wang Z, Droegemeier K K, White L, et al. Application of a newadjointNewton algorithmtothe 3DARPS storm-scale model using simulated data[J]. Mon Wea Rev, 1997, 125: 2460~2478.
    [27] Hodur R M. The naval research laboratery’s coupled ocean/atmosphere mesoscale prediction system (COAMPS)[J]. Mon. Wea. Rev., 1993, 125: 1414~1430.
    [28] 程麟生. 中尺度大气数值模式和模拟[M]. 北京: 气象出版社, 1994. 530.
    [29] Benoit R, Desgagne M, Pellerin P, et al. The Canadian MC2: A semi-Lagrangian, semi-implicit wide band atmospheric model suited for finescale process studies and simulation[J]. Mon. Wea. Rev, 1997, 125: 2382~2415.
    [30] Belair S, P Lacarrere, J Noihan, et al. High-resolution of surface and turbulent fluxes, during HAPEX -MOBILHY[J]. Mon. Wea. Rev, 1998, 126: 2234~2253.
    [31] 程麟生. 中尺度大气数值模式发展现状和应用前景[J]. 高原气象, 1999, 18(3): 350~360.
    [32] 盛裴轩, 毛节泰. 东北亚地区污染物输送的等熵轨迹分析--周边国家对中国的影响[J]. 气象学报, 1997, 55(5): 588~601.
    [33] 羌宁. 城市空气质量管理与控制[M]. 科学出版社, 2003.
    [34] 张广普, 刘衍庆, 林影, 等. 利用三维流场预测大气污染物扩散的方法研究[J]. 烟台大学学报(自然科学与工程版), 2004, 17(4): 288~297.
    [35] 余兴. 复杂气流系统中的空气污染物输送与扩散的烟团轨迹模式研究--I:烟团轨迹模式介绍[J]. 陕西气象, 1998, (1): 12~15.
    [36] 张镭, 陈长和, 邱崇践. 利用烟团轨迹模式预测山区空气质量的研究[J]. 兰州大学学报(自然科学版), 1993, 29(3): 241~245.
    [37] 何文英. 海岸地区边界层模式及其扩散模式的研究[M]. 南京: 南京大学, 2000.
    [38] 谷德军. 对流边界层中粒子随机扩散模式和高斯模式的比较[J]. 热带气象学报, 2000, 16(2): 164~172.
    [39] Briggs G A. "Diffusion estimation for small emissions" USAEC report ATDL-106[R]. U.S. Atomic Energy Commission, Oak Ridge. TN, 1974
    [40] Blom J, Wartena L. The Influence of Changes in Surface Roughness on the Development of the Turbulent Boundary Layer in the Lower Layers of the atmosphere[J]. J.Atmos. Sci., 1969, 26: 255-265.
    [41] Londergan, R J, Minott D H, Wackter D J, et al. Evaluation of Rural Air Quality Simulation Models, EPA-450/4-83-003[R], U.S. Environmental Protection Agency, Research Triangle Park, NC, 1982.
    [42] Carruthers D J, Holroyd R J, Hunt J C R, et al. UK-ADMS: A new approach to modelling dispersion in the earths atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 52: 139-153.
    [43] Turbulence. Fluctuations and Averaging Times[R]. CERC Technical Note, December 1998
    [44] Clements W E. Experimental Design and Data of the April 1977 Multiracial Atmospheric Experiment at the Idaho National Engineering Laboratory, Los Alamos Scientific Laboratory Informal Report, LA-7795-MS/UC-11, Los Alamos, NM 87545[M], U.S.A., 1979.
    [45] 王自发, 谢付莹, 王喜全, 等. 嵌套网格空气质量预报模式系统的发展与应用[J]. 大气科学, 2006, 30(5): 778~790.
    [46] Lamb R G, Shu W R, Durran D R, et al. Continued research in mesoscale air pollution simulation modeling, volume VI: further studies in the modeling of microscale phenomena. Technical report[R]. U.S. EPA, 1984. EPA-600/3-84-095B.
    [47] Lamb R G. Continued research in mesoscale air pollution simulation modeling, volume iii: modeling of microscale phenomena. Technical report[R]. U.S. EPA, 1976. EPA-60-0/4-76-016c.
    [48] Byun D W, Hanna A, Air quality model prototype science and computational concept development, Transactions of Air Waste Management Association Specialty Conference on Regional Photochemical Measurement and Modeling Studies, 1993,197~212.
    [49] Carmichael G R, Chang Y S, Scire J S. CALGRID: A Mesoscale Photochemical Grid Model, Volume II: User’s Guide, 1989.
    [50] Kumar N, Lurmann F, Carter W P L. Development of the Flexible Chemical Mechanism Version of the Urban Air shed Model. Final Report STI-94470-1508-FR. PTSD[R], California Air Resources Board. Sacramento, CA 95814. August 30, 1995.
    [51] Morris R E, Meyers T C. User's Guide for the Urban Airshed Model, Volume I: User's Manual for UAM(CB-IV)[J]. U.S. Environmental Protection Agency, 1990, 10~40.
    [52] Olesen H R, Berkowicz R, An improved dispersion model for regulatory use: OML model, Air Pollution Modeling and its Applications[J], Plenum Press, 1992, 29~38
    [53] Chang J S, Middleton P B. A three-dimensional Eulerian acid deposition model: Physical concepts and formulation[J]. J. Geophy. Res., 1987, 92: 14681~14700
    [54] Lamb R Q. A Regional Scale Model of Photochemical Air Pollution, Part I: Theoretical Formulation[J]. U.S. Environmental Protection Agency, 1983, 10~40.
    [55] Lamb R Q. A Regional Scale Model of Photochemical Air Pollution, Part 2: Input Processor Network Design[J]. U.S. Environmental Protection Agency, 1983, 10~40.
    [56] Venkatram A K, Karamchandani P K, The ADOM II Scavenging Module, ENSR Consulting and Engineering Report[R], 1998.
    [57] Pielke R A. Mesoscale Meteorological Modeling[M]. Academic Press, New York, 1984.
    [58] Nenes A, Pandis S N, Pilinis C. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models[J]. Atmospheric Environment, 1999, 33(10): 1553-1560.
    [59] Byun D W, Ching J K S. Development and Implementation of the EPA's Models-3 Initial Operating Version: Community Multi-scale Air Quality Model, Air Pollution Modeling and its Application[R], Plenum Publishing Coorp, 1998, 357~368.
    [60] Byun D W, Yong J. Description of the Models-3 Community Multiscale Air Quality Model, Proceedings of the American Meteorological Society 78thAnnual Meeting Phoenix, 1998, 264~268
    [61] Zannetti P. Air pollution modeling[M]. Van Nostrand Reinhold, New York, 1990. 185~222.
    [62] 周维, 王雪松, 张远航, 等. 我国NOx污染状况与环境效应及综合控制策略[J]. 北京大学学报(自然科学版),2008,(2): 11~17.
    [63] 杨菁. 光化学烟雾的形成机理及防治措施[J]. 安阳师范学院学报,2007,(5): 34~38.
    [64] 崔际刚, 许铁磊, 田健丽. 空气中机动车尾气及其二次污染物浓度的初探[J]. 环境与健康杂志,2007,(5): 78~84.
    [65] 胡泳涛, 张远航, 谢绍东, 等. 利用轨迹模式模拟近地层臭氧日变化[J]. 环境科学学报, 1999, 19(4): 345~350.
    [66] 陈炯, 王建捷. 边界层参数化方案对降水预报的影响[J]. 应用气象学报, 2006, 17(增刊): 11~17.
    [67] 肖子牛, 张万诚, 段玮, 等. 中尺度数值模式在低纬高原地区的应用研究[M]. 北京: 气象出版社, 2005. 237.
    [68] Stull R B. 边界层气象学导论[M]. 青岛: 青岛海洋大学出版社, 1991. 457.
    [69] 孙爱东, 徐玉貌. 湍流动能参数化在中尺度模式中的应用研究[J]. 北京大学学报(自然科学版), 2001, 37(1): 55~66.
    [70] 孙爱东, 徐玉貌. 中尺度模式湍流参数化的比较研究[J]. 北京大学学报(自然科学版), 2000, 36(3): 405~413.
    [71] Stull R B, Driedonks A G M. Applications of the transilient turbulence parameterization to atmospheric boundary-layer simulations[J]. Boundary-Layer Met., 1987, 40: 209~239.
    [72] Fiedler B H, moengC H. A practical integral closure model for mean bertical transport of a scalar in a convective boundary layer[J]. J. Atoms. Sci., 1985, 42: 359~363.
    [73] Blackadar A K. High Resolution Models of the Planetary Boundary Layer. In: Pfafflin and Ziegler,eds. Advances in Environmental Science and Engineerin[M]. New York: Gordon and Breach Sci, 1979.
    [74] 刘小红, 洪钟祥. 非均匀网格过渡湍流理论及其在大气边界层数值模拟中的应用[J]. 大气科学, 1995, 19: 347~358.
    [75] 蒋维楣, 牟礼凤. 复杂下垫面模拟域大气边界层非局地闭合模拟研究[J]. 大气科学, 1999, 23: 25~33.
    [76] Deardorff J W. Theoretical expression for the countergradient vertical heat flux[J]. J Geophys Res., 1972, 77: 5900~5904.
    [77] Mailh T J, Benoit R. A finite-element model of the atmospheric boundary layer suitable for use with numerical weather prediction models[J]. J Atmos Sci., 1982, 39: 2249~2266.
    [78] Troen I, Mahrt L. A simple model of the atmospheric boundary layer, sensitivity to surface evaporation.Bound Layer[J]. Bound Layer Meteor, 1986, 37: 129~148.
    [79] Hong S Y, pan H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon. Wea. Rev., 1996, 124: 2322~2339.
    [80] 俎铁林. 空气质量模式--在法规中的应用[M]. 北京: 中国标准出版社, 2005. 267.
    [81] 朱蓉, 徐大海. 中尺度数值模拟中的边界层多尺度湍流参数化方案[J]. 应用气象学报, 2004, 15(5): 543~555.
    [82] Seaman N L. Meteorological modelling for air-quality assessments[J]. Atmospheric Environment, 2000, 34: 2231~2259.
    [83] 程麟生, 丑纪范. 大气数值模拟[M]. 北京: 气象出版社, 1991.
    [84] 佟华, 陈仲良, 桑建国. 城市边界层数值模式研究以及在香港地区复杂地形下的应用[J]. 大气科学, 2004, 28(6): 957~978.
    [85] 缪国军, 张镭, 舒红. 利用WRF对兰州冬季大气边界层的数值模拟[J]. 气象科学, 2007, 27(2): 169~175.
    [86] 王学远, 蒋维楣, 刘红年, 等. 南京市重点工业源对城市空气质量影响的数值模拟[J]. 环境科学研究, 2007, 20(3): 33~43.
    [87] 江勇, 赵鸣, 汤剑平, 等. MM5中新边界层方案的引入和对比试验[J]. 气象科学, 2002, 22(3): 253~263.
    [88] 蔡蕊, 王和权, 王伟良, 等. 不同边界层参数化方案在暴雨数值模拟中的对比研究[J]. 广东气象, 2005, 1: 6~8.
    [89] 蔡芗宁, 寿绍文, 钟青. 边界层参数化方案对暴雨数值模拟的影响[J]. 南京气象学院学报, 2006, 29(3): 364~370.
    [90] 蒋维楣, 曹文俊, 蒋瑞宾. 空气污染气象学教程[M]. 北京: 气象出版社, 1993.
    [91] Pasquill F, Atmospheric dispersion parameters in gaussian plume modeling part II possible requirements for change in the turner workbook values[S]. EPA publication No. EPA-600/4-76-030b. U.S. Environmental Protection Agency, Research Triangle Park, NC 1976.
    [92] Irwin J S , A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability[J]. Atmospheric Environment, 1979, 13: 191~194.
    [93] Briggs G A, Plume Rise Predictions. Lectures on Air Pollution and Environmental Impact Analyses[M]. American Meteorological Society, Boston, MA 1975.
    [94] Sehmel G A Particle and gas dry deposition[J].A Review. Atmos. Environ., 1980, 14: 983~1011.
    [95] Barrie L A, Bottenheim J W, Schnell R C, et al, Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere[J]. Nature, 1978, 334: 138~141.
    [96] 吴志伟, 李建平, 何金海, 等. 大尺度大气环流异常与长江中下游夏季长周期旱涝急转[J]. 科学通报, 2006, 51(14): 1717~1724.
    [97] 吴兑, 邓雪娇. 环境气象学与特种气象预报[M]. 北京: 气象出版社, 2001. 297
    [98] 新疆维吾尔自治区环保局, 乌鲁木齐市人民政府. 乌鲁木齐市冬季大气污染治理方案控制目标[J]. 新疆环境保护,1999 ,21 (4):19.
    [99] 张杰, 刘雪玲, 任朝霞, 等. 乌鲁木齐市大气污染成因分析及防治对策[J]. 新疆环境保护, 2000, 22(2): 65~70.
    [100] 岳战林, 房听, 朱江等. 试谈乌鲁木齐市城市环境保护对策[J ]. 干旱环境监测, 2006, 20(3): 171~174.
    [101] 阿依古丽, 克力玛. 乌鲁木齐市空气质量变化趋势分析[J]. 新疆环境保护, 2007, 29(2): 33~36
    [102] 布海丽且木·买买提明. 乌鲁木齐市气象条件与TSP浓度的关系[J]. 干旱环境监测, 1999, 13(3): 169~172.
    [103] 王涛. 乌鲁木齐市供暖锅炉污染状况分析[J]. 干旱环境监测, 2005, 19(4): 237~239.
    [104] 张家宝, 史玉光, 等著. 新疆气候变化及短期气候预测研究[M]. 北京: 气象出版社, 2002. 37~62.
    [105] 姜逢清, 胡汝骥, 李珍. 新疆主要城市的采暖与制冷度日数: 空间变化特征[J]. 干旱区地理, 2006, 29(6): 773~778

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700