大麦、水稻干旱可诱导LEA基因启动子的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱和缺水是农业生产面临全球性难题,选育和利用抗旱耐旱品种是节水农业和减缓旱灾最经济的途径。传统育种方法选育抗旱品种受到诸多因素的限制,干旱胁迫分子机制研究和基因工程科技术为品种抗旱性改良提供了新途径。研究干旱胁迫可诱导基因启动子对提高转基因分子育种的效率至关重要,尤其对启动子的评价、选筛、改造和利用子是不可缺少的环节。本研究应用分子克隆和基因瞬间表达等技术,开展了大麦和水稻干旱可诱导LEA基因启动子的分离、克隆和功能分析研究,得到如下结果:
     1.采用PCR技术,从大麦品种"Sahara"和水稻品种"Jarrah"中克隆到5个LEA基因启动子HVA1s、Dhn4s、Dhn8s、rab16Bj、wsi18j。序列分析表明,5个启动子与原报道的从大麦品种"Himalaya"和"Dicktoo"克隆的HVA1、Dhn4和Dhn8和从水稻品种"Toride"和‘"Josaeng Tongil"克隆的rab16B和wsi18启动子比较,有95.3%~99.8%序列同一性,不同来源的启动子均在序列差异。5个启动子均含数量和类型不同胁迫应答顺式作用。
     2.为了检测不同启动子及其突变体的瞬时表达水平,构建了15个表达载体。其中GFP表达载体5个,GUS表达载体5个,HVAls启动子ABRE序列碱基替换突变载体3个和DRE/CRT碱基替换突变载体1个,wsi18js启动子ABRE序列碱基替换突变载体1个。
     3.以大麦幼苗、愈伤组织、部分器官为基因枪转化受体进行基因瞬间表达最佳材料筛选,开展了启动子表达质卡粒基因DNA浓度、表达诱导因子及处理水平等研究,建立了快速检测启动r诱导表达水平和功能分析的定性检测和定量检测方法体系。
     4.采用干燥、ABA、NaCl、低温等诱导处理,检测对不同启动子瞬间表达的影响。结果显示:①Dhn8s启动子在干燥和ABA诱导及对照处理中,均呈现表达的非特异性,并且表达强度最高,表现为组成型的非特异性启动子。而Dhn4s、HVAls、rab16Bj和wsi18j启动子为诱导型启动子,但诱导表达的强度存在差异,ABA诱导表达强度为Dhn4s> HVA1s> wsi18j> rab16Bj,干燥诱导表达强度为Dhn4s>HVA1s> wsi18j> rab16Bj。②Dhn4s、HVA1s、rab16Bj和wsi18j启动子对低温和NaCl处理诱导的反应均较弱,但存在一定差异。其中HVAls最强,wsi18j较弱,Dhn4s反应弱,rab16Bj没有反应。
     5. HVAls启动子DRE/CRT序列碱基件换突变研究表明,DRE/CRT序列碱基替换后对ABA和干燥处理诱导的表达水平略有下降(分别降低7.7%和10.9%),而对低温处理诱导的表达水平下降明显,只相当于野生型的37.9%。说明DRE/CRT主要负责对低温胁迫的应答,但也被ABA和干旱所诱导。
     6. HVAls启动子中以ACGT为核心序列的ABA应答元件ABRE1、ABRE2和ABRE3序列逐步碱基替换突变研究表明,ABRE3突变后HVAls对ABA和干燥诱导表达水平下降40%-50%;ABRE2和ABRE3同时突变后表达水平下降89%~92%;ABRE1、ABRE2和ABRE3同时突变后表达水平基本同ABRE2和ABRE3同时突变的水平。证实HVAls中的3个ABRE元件中,只有ABRE2和ABRE3具有高效的ABA和干旱胁迫诱导功能,ABRE1不是真正的ABRE顺式调控元件。
     7. wsi18j启动子ABRE元件碱基替换突变研究显示,在对照中,野生型和突变型的质粒均不表达。经ABA处理后,两者都表达,但突变型启动子表达强度显著减弱,不到野生型的1/4。证实了Wsi18j启动子CE3-ABRE复合体对ABA的应答表达起主要作用。wsi18j与wsi18启动子应答元件分析农明,2个启动子含有的干旱、低温和ABA应答顺式元件的类型和数量完全相同,但对ABA诱导应答有本质的不同。由于碱基的缺失导致wsi18j与wsi18二个启动子的元件间距离改变。碱基差数占相应元件间最大趴离的百分比有明显的差异。CE3与ABRE间相对碱基差最大,为16.67%。Wsi18启动子对ABA反应不敏感,与其ABRE核心基序两侧缺失各1个C碱基并改变CE3-ABRE间的距离有关。
     8.本研究的创新和价值有:1)拓宽了瞬间表达快速检测干旱可诱导启动子特性方法的应用空间,建立的检测方法一是可应于转基因分子育种的高效启动子筛选;二是可应用于环境胁迫基因调控体系和路径中转录因子的关系和交互作用研究是;三是可应用于启动子顺式作用元件的功能和互作研究;四足可应用于生物信息学预测启动子功能推测的检验。2)在相同背景下客观地比较了LEA基因启动子特性和差异,并对其利用价值进行评价,为利用这些启动子提供了新的试验依据。3)发现LEA基因启动子存在属于非诱导型启动子Dhn8s。
Drought and water deficit are a globle problem for agricultural production. To breed and utilize crop varieties resistant or tolerant to drought is the most economical approach for water-saving farming and buffering drought disaster. It is very important and necessary to investigate the gene promoters drought-inducible for enhancing efficiency of molecular breeding through transgenic technology, especially in evaluation, screening, modification and application of promoter. In this thesis, the isolation, cloning and functional analyses of promoters belonging to LEA (late embryogensis abundant protein) gene have been carried out from barley (Horcleum vulgare L.) and rice (Orizy sativa L.) by using molecular cloning and transient expression technique. The results are as following:
     1. Five LEA gene promoters have been cloned from barley variety Sahara and rice variety Jarrah using PCR techonolgy, including HVAls、Dhn4s、Dhn8s、rabl6Bj、wsil8j. Sequencing analysis showed that there are95.3%~99.8%consensus identities between these five and those of HVA1、Dhn4and Dhn8gene from barley varieties "Himalaya" and "Dicktoo" as well as from rice varieties "Toride"and "Josaeng Tongil" reported previously. Sequence differences were found between those promoters from different varieties. These five promoters are various in their number and type of cis-acting elements stress-responsive.
     2. In order to determine the expressional levels of the cloned promoters and their mutants,15expression vector constructs have been constructed,5for GFP reporter,5for GUS reporter;3for ABRE sequence base-substitution mutation and reporter as well as1for DRE/CRT sequence base-substitution mutation and reporter of HVA1promoter;1for ABRE sequence base-substitution mutation and reporter of wsi18js promoter.
     3. Barley seedlings, cultured barley calli and some organs were used for gene-gun transformation receptor so as to select the best candidate material for transient experiment. Studies on DNA concentration of the promoter expression vector for transient experiment, factors and treatments for inducing expression have also been conducted. A methodology has been established for rapid test and determination of expression level of the promoters stress-inducible, based on qualitative and quantitative analyses.
     4. Dry, ABA, NaCl, cold as treatments for inducing the different promoter's transient expression and their effects have been investigated, the results indicated:1) Dhn8s showed non-specific and highest expression under dry, ABA and control treatments, which means it is a constitution promoter without specific requirement. Dhn4s、HVAls、rab16Bj and wsi18j promoters were induce-dependent and differed in their expression levels. Under ABA induction, their expression levels were in such an order: Dhn4s> HVAls> wsi18j> rabl6Bj. Response to dry treatment, they were in Dhn4s> HVAls> wsi18j> rab16Bj.2) HVA1s、Dhn4s、rab16Bj and wsi18j promoter being weak in response to cold and NaCl, they were different from each other. Comparatively, HVAls was strongest, wsi18j and Dhn4s weaker, and rabl6Bj without response to cold..
     5. DRE/CRT sequence base-substitution mutation of HVAls promoter showed that it was reduced in expression level (7.7%和10.9%down) under ABA and dry treatments. While under cold treatment, the mutant promoter expression level dropped to37.9%in comparison with the wild one, indicating the responsibility of DRE/CRT mainly for cold stress response. But DRE/CRT was still related to ABA and dry response.
     6. Base-substitution mutations on the responsive elements ABRE1、ABRE2和ABRE3sequences containing ACGT core motif in HVA1promoter showed that:the expression level of ABRE3mutant dropped by40%~50%under ABA and dry treatments; ABRE2+ABRE3mutant decreased by89%~92%; ABRE1+ABRE2+ABRE3mutant was the same as ABRE2+ABRE3mutant. These results proved that just ABRE2and/or ABRE3were high-efficient elements among the above three, ABRE1was not a real ABRE cis-acting element.
     7. Base-substitution mutation on the responsive element in wsi18j promoter showed that the wild and the mutant did not expressed under control treatment, while after ABA induction both of them expressed in way that the mutant was only1/4of the wild in expression level. This result proved that CE3-ABRE complex in Wsi18j played a major role in responsive expression. Analysis on responsive elements in wsi18j and wsi18promoters revealed that both have the same number and type of elements related to dry, cold and ABA response. Base deletion and distance change between CE3与ABRE elements in wsi18promoter may be the reason for why they are completely different in response to ABA. There is respectively one C base deletion flanking the ABRE sequence of CE3-ABRE complex.
     8. The innovation and usefulness on this research:1) The room of the methodology has been broadened for rapid test and determination of expression level of the promoters stress-inducible, which could be used for the efficient selection of promoters for transgenic molecular breeding. The method can be applied to study the relation and crosstalk between pathways in the transcription factor regulatory networks. It can also be utilized for investigate the function of and the interaction between sic-acting elements. Finally, it would be useful for confirmation of bioinformatic prediction on a promoter's function.2) The characteristics and differences of LEA gene promoters have objectively been compared under the same backgroud.3) It was found that there be promoter like Dhn8s not inducible by stress but constitutively expressional in LEA gene family.
引文
[1]陈荣林,梁运波,刘亚.水稻旱害及抗旱育种综述[J].中国农学通报,2005,21(6)220-222.
    [2]成福云.2002年全国旱灾及抗旱行动情况[J].防汛及抗旱.2003,(1):59-63.
    [3]董玉琛,郑殿升.中国小麦遗传资源[J].北京:中国农业出版社,2000:1-30.
    [4]胡荣海.农作物抗旱鉴定方法和指标[J].作物品种资源,1986,(4):36-38.
    [5]胡廷章,罗凯,甘丽萍,等.植物基因启动子的类型及其应用[J].湖北农业科学,2007,46(1):149-151.
    [6]黄占斌,山仑.论我国旱地农业建设的技术路线与途径.[J]干旱地区农业研究,2000,18(2):1-6.
    [7]贾永莹.世界干旱地区概貌[J].干旱地区农业研究,1995,13(1):121-126.
    [8]康书江 袁振东 张继新.小麦抗旱育种研究进展[J].北京农业科学,1999,17(4):17-19.
    [9]兰巨生,胡顺福,张景瑞.作物抗旱指数的概念和统计方法[J].华北农学报,1990,5(2):20-25.
    [10]雷廷武 邵明安 杨培岭.我国干旱地区农业持续发展战略探讨[J].农业工程学报,1999,15(4):1-5.
    [11]黎裕.作物抗旱鉴定方法与指标[J].干旱地区农业研究,1993,11(1):91-99.
    [12]刘良式.植物分子遗传学[M].北京:科学出版社,1998:214.
    [13]马世均.旱农作物品种和栽培技术[M].旱农学.农业出版社,1991:205-234.
    [14]山仑.节水农业与作物高效用水[J].河南大学学报(自然科学版).2003,33(1):1-5.
    [15]王韶唐.第五章 作物抗旱生理.作物抗逆生理[M](赵可夫 王韶唐编).北京:农业出版社,1990:145-225.
    [16]王旺田,张金文,刘玲玲,等.rcbS启动子的克隆及活性鉴定[J].甘肃农业大学学报,2004,39(3):255-260.
    [17]王一平,罗利军,余新桥,等.优质旱稻新品种中早3号的选育及栽培技术[J].中国种业,2003,6:17.
    [18]吴乃虎.基因工程原理(下)[M].北京:科学出版社,2001:74-75.
    [19]许迪,康绍忠.现代节水农业技术研究与发展趋势[J].高技术通讯,2002,12:103-108.
    [20]俞嘉宁,山仑.LEA蛋白与植物抗旱性[J].生物工程进展,2002,22(20):10-14
    [21]张苏林.21世纪干旱地区农业发展的出路:旱作农业+节水农业[J].防汛与抗旱,1999 (1):23-25,46
    [22]张宪银 薛庆中.水稻胚乳特异性启动子Gtl的克隆及其功能验证[J].作物学报,2002,28(1):110-114.
    [23]张裕繁.谈国外棉花抗旱育种[J].中国棉花,1994,21(1):29
    [24]赵殿轩,张青娈.玉米抗旱生物学特性及抗旱育种研究的几个问题[J].玉米科学,1998,增刊:27-30.
    [25]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell,2003,15:63-78.
    [26]Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. Plant Cell,1997,9: 1859-1868.
    [27]Abebe T, Guenzi AC, Martin B. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity[J]. Plant Physiol.,2003,131:1748-1755.
    [28]Altpeter F, Varshney A, Abderhalde O, et al. Stable expression of a defense-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance[J]. Plant Molecular Biology,2005,57:271-283.
    [29]Anabel RS, Concepci N, Almoguer A, et al. Selective activation of the developmentally regulated hah sp17.6 G1 promoter by heat stress transcription factors[J]. Plant Physiology, 2002,129:1207-1215.
    [30]Annadana S, Beekwilder MJ, Kuipers G, et al. Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema frandiflora[J]. Transgenic Res.,2002,11(4):437-445.
    [31]Anyia AO, Herzog H. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur. [J]. Agron.,2004,20:327-339.
    [32]Araus JL, Villegas D, Aparicio N, et al. Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions[J]. Crop Sci.,2003, 43:170-180.
    [33]Araus JL, Slafer GA, Reynolds MP, et al. Plant breeding and drought in C3 cereals:what should we breed for?[J] Ann. Bot.,2002,89:925-940.
    [34]Awinder KS, Jacqueline AP, Gareth IJ. The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis[J].Plant Molecular Biology,1999,41:75-87.
    [35]Babu CR., Nguyen BD., Chamarerk V, et al. Genetic analysis of drought resistance in rice by molecular markers:association between secondary traits and field performance[J]. Crop Sci., 2003,43:1457-1469.
    [36]Bahieldin A, Hesham HT, Eissa HF, et al. Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance[J]. Physiol. Plant,2005,123:421-427.
    [37]Baker SS, Wilhelm KS, Thomashow MF. The 50-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression[J]. Plant Mol. Biol.,1994,24:701-713.
    [38]Banziger M., Edmeades GO, Lafitte HR. Selection for drought tolerance increases maize yield across a range of nitrogen levels[J]. Crop Sci.,1999,39:1035-1040.
    [39]Barker T, Campos H, Cooper M, et al. Improving drought tolerance in maize[J]. Plant Breed. Rev.,2005,25:173-253.
    [40]Basu C, Kausch AP, Luo H, et al. Promoter analysis in transient assays using a GUS reporter gene construct in creeping bentgrass (Agrostis palustris)[J]. Journal of Plant Physiology, 2003,160:1233-1239.
    [41]Beavis W D, Keim P. Identification of quantitative trait loci that are affected by environment. In:Kang, M.S., Gauch, H.G. (Eds.), Genotype by-Environment Interaction[M]. CRC Press, Boca Raton, FL,1996:123-149.
    [42]Blum A, Improving wheat grain filling under stress by stem reserve mobilization[J]. Euphytica,1988,100,77-83.
    [43]Bolanos J, Edmeades GO, Eight cycles of selection for drought tolerance in lowland tropical maize.I. Responses in grain-yield, biomass, and radiation utilization[J]. Field Crops Res., 1993,31:233-252.
    [44]Bolanos J, Edmeades GO, The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize[J]. Field Crop Res.,1996,48:65-80.
    [45]Boyer JS, Westgate ME. Grain yields with limited water[J]. J. Exp. Bot.,2004,55: 2385-2394.
    [46]Bray E A. Plant responses to water deficit[J]. Trends in Plant Science,1997,2(2):48-54.
    [47]Bray E. Bailey-Serres J, Weretilnyk E, et al. Responses to abiotic stresses. In:Buchanan, B. et al., (eds), Biochemistry and Molecular Biology of Plants [M], American Society of Plant Physiologists,2000:1158-1203.
    [48]Brears T, Walker EL, Coruzzi GM. A promoter sequence involved in cell-specific expression of the pea glutamine synthetase GS3A gene in organs of transgenic tobacco and alfalfa[J]. Plant J.,1991,1 (2):235-44.
    [49]Buchanan CD, Lim S, Salzman RA, et al., Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA[J]. Plant Mol. Biol.,2005,58:699-720.
    [50]Buzeli RA, Cascardo JC, Rodrigues LA. Tissue-specific regulation of BiP genes:a cis-acting regulatory domain is required for BiP promoter activity in plant meristems[J]. Plant Mol. Biol.,2002,50(4-5):757-771.
    [51]Campos H, Cooper M, Habben JE, et al., Improving drought tolerance in maize:a view from industry[J]. Field Crop Res.,2004,90:19-34.
    [52]Casaretto J, Ho T-H D. The transcription factors HvABI5 and HvVPl are required for the abscisic acid induction of gene expression in barley aleurone cells[J]. Plant Cell,2003,15: 271-284.
    [53]Cattivelli L, Baldi P, Crosatti C, et al. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae[J]. Plant Mol. Biol.,2002,48:649-665.
    [54]Cattivelli L, Delogu G, Terzi V, et al. Progress in barley breeding. In:Slafer, G.A. (Ed.), Genetic Improvement of Field Crops[M]. Marcel Dekker, Inc., New York,1994:95-181.
    [55]Cattivelli L, Rizza F, Badeck FW, et al. Drought tolerance improvement in crop plants:An integrated view from breeding to genomics[J]. Field Crops Research,2008,105:1-14.
    [56]Ceccarelli S. Yield potential and drought tolerance of segregating populations of barley in contrasting environments[J]. Euphytica,1987,36:266-273.
    [57]Chaves MM., Maroco, JP, Pereira, JS, Understanding plant responses to drought-from genes to the whole plantfJ]. Funct. Plant Biol.,2003,30:239-264.
    [58]Chen SB, Tao LZ, Zeng LR, et al. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice[J]. Molecular Plant Pathology,2006,7(5):417-427.
    [59]Chinnusamy V, Ohta M, Kanrar S, et al. ICE 1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev.,2003,17:1043-1054.
    [60]Choi D W, Zhu B, Close T J. The barley (Hordeum vulgare L.) dehydration multigene family: sequences, allele types, chromosome assignments, and characteristics of 11 Dhn genes of cv. Dicktoo[J]. Theor Appl. Genet.,1999,98(8):1234-1247.
    [61]Courtois B, Shen L, Petalcorin W, et al. Locating QTLs controlling constitutive root traits in the rice population IAC 165xCo39[J]. Euphytica,2003,134:335-345.
    [62]Cushman JC, Crasulacean acid metabolism. A plastic photosynthetic adaptation to arid environments[J]. Plant Physiol.,2001,127:1439-1448.
    [63]De Block M, Verduyn C, De Brouwer D, et al. Poly(AD-Pribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance[J]. Plant J.,2005,41:95-106.
    [64]Dekeyser RA, Claes B, De Rycke RMU, et al. Transient gene expression in intact and organized rice tissues [J]. Plant Cell,1990,2:591-602.
    [65]Dorion S, Lalonde S, Saini HS, Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers[J]. Plant Physiol.,1996,111:137-145.
    [66]Dubouzet JG, Sakuma Y, Ito Y. et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression[J]. Plant J.,2003.33,751-763.
    [67]Eberhart SA, Russell, WA, Stability parameters for comparing varieties[J]. Crop Sci.,1966,6, 36-40.
    [68]Edmeades GO, Bolanos J, Elings A, et al. The role and regulation of the anthesis-silking interval in maize. In:Westgate, M.E., Boote, K.J. (Eds.), Physiology and Modelling Kernel Set in Maize[M]. CSSA Special Publication No.29. CSSA, Madison, WI,2000:43-73.
    [69]Farquhar GD, Richards RA.. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Aust. J. Plant Physiol.,1984,11:39-552.
    [70]Finer JJ, Vain P, Jones MW, et al.Development of the particle inflow gun for DNA delivery to plant cell[J]. Plant Cell Rep.,1992,11:323-328.
    [71]Finlay KW, Wilkinson GN. The analysis of adaptation in a plant breeding programme[J]. Aust. J. Agric. Res.,1963,14:742-754.
    [72]Fischer RA, Maurer R. Drought resistance in spring wheat cultivars I. Grain yield responses[J]. Aust. J. Agri. Res.,1978,29:897-912.
    [73]Fischer RA, Maurer, R,. Drought resistance in spring wheat cultivars. I. Grain yield responsefJ]. Aust. J. Agric. Res.,1978,29,897-912.
    [74]Fischer RA, Rees, D, Sayre, KD, et al.1998. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate and cooler canopies[J]. Crop Sci.,38, 1467-1475.
    [75]Fischer RA, Wood JT. Drought resistance in spring wheat cultivars. Ⅲ. Yield association with morpho-physiological traits[J]. Aust. J. Agric. Res.,1979,30,1001-1020.
    [76]Forster BP, Ellis RP, Moir J, et at. Genotype and phenotype associations with drought tolerance in barley tested in North Africa[J]. Ann. Appl. Biol.,2004,144,157-168.
    [77]Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell,2002,14:1675-1690.
    [78]Francia E, Tacconi G, Crosatti C, et al. Marker assisted selection in crop plants[J]. Plant Cell Tissue Organ Cult.,2005,82,317-342.
    [79]Frederick JR, Woolley JT, Hesketh JD, et al. Water deficit development in old and new soybean cultivars[J]. Agron. J.,1991,82:76-81.
    [80]Frederick JR,Woolley JT, Hesketh JD, et al. Seed yield and agronomic traits of old and modern soybean cultivars under irrigation and soil water-deficit[J]. Field Crops Res.,1990, 27,71-82.
    [81]Fujita M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J.,2004,39,863-876.
    [82]Garg A, Kim J, Owens T, et al.. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses[J]. Proc. Natl. Acad. Sci. U.S.A.,2002,99,15898-15903.
    [83]Gaxiola RA, Li J, Undurraga S, et al. Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump[J]. Proc. Natl. Acad. Sci. U.S.A.,2001,98, 11444-11449.
    [84]Gilmour SJ, Zarka DG, Stockinger EJ, et al. Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in coldinduced COR gene expression[J]. Plant J.,1998,16,433-442.
    [85]Grossi M, Cattivelli L, Terzi V, et al. Modification of gene expression induced by ABA, in relation to drought and could stress in barley shoots[J]. Plant Physiol Biochem.,1992,30: 97-103.
    [86]Grossi M, Gulli M, Stanca A M, et al.Characterisation of two barley genes that respond rapidly to dehydration stress. Plant Sci.,1995,105:71-80.
    [87]Guiltinan MJ, Marcotte WR, Quatrano RS, et al. A plant leucine zipper protein that recognizes an abscisic acid response element[J]. Science,1990,250:267-271.
    [88]Gusmarol IG, Tonell IC,Mantovan IR. Regulation of novel members of the A rabidopsis thaliana CCAAT binding nuclear factor Y subunits[J]. Gene,2002,283(1-2):41-48.
    [89]Harris K, Subudhi PK, Borrel A, et al. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence.[J]. Exp. Bot.,2007,58,327-338.
    [90]Hattori T, Terada T, Hamasuna S, et al. (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1:analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1[J]. Plant J.,7,913-925.
    [91]Hazen SP, Pathan MS, Sanchez A, et al.. Expression profiling of ricesegregating for drought tolerance QTLs using a rice genome array[J]. Funct. Integr. Genomics,2005,5,104-116.
    [92]Himmelbach A, Hoffmann T, Leube M, et al. Homeodomain protein ATHB6 is a target of the protein phosphatase ABIl and regulates hormone responses in Arabidopsis[J]. EMBO J., 2002,21,3029-3038.
    [93]Hoad SP, Russell G, Lucas ME, et al. The management of wheat, barley and oat root systems[J]. Adv. Agron.,2001,74,193-246.
    [94]Hobo T, Asada M, Kowyama Y. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent[J]. Plant J.,1999,19:679-689.
    [95]Hobo T, Kowyama Y, Hattori T, et al. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription[J]. Proc. Natl. Acad. Sci. U.S.A.,1999,96: 15348-15353.
    [96]Hobo T, Kowyama Y, Hattori T, et al. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionallyequivalent. Plant J.,1999,19: 679-689.
    [97]Hong BM, Uknes, SJ, Ho, T-HD, et al.Cloning and characterization of a cDNA encoding an mRNA rapidly induced by ABA in barley aleurone layers[J]. Plant Molecular Bol.,1988,11: 495-506.
    [98]Hong B, Barg R, Ho T-HD. et al. Developmental and organ-specific expression of an ABA-and stress-induced protein in barley[J]. Plant Mol Biol.,1992,18:663-674.
    [99]Hsieh TH, Lee JT, Charng YY, et al.Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress[J]. Plant Physiol.,2002,130:618-626.
    [100]Hu H., Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc. Natl. Acad. Sci. U.S.A., 2006,103:12987-12992.
    [101]Huang B, Jin LG, Liu JY. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum)[J]. Journal of plant Physiology,2008,165:214-223.
    [102]Haake V, Cook D, Riechmann JL, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiol.,130:639-648.
    [103]Idso SB, Reginato R, Reicosky D, et al. Determining soilinduced plant water potential depression in alfalfa by means of infrared thermometer[J]. Agron. J.,1981,73:826-830.
    [104]Ito Y, Katsura K, Maruyama K, et al.. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant Cell Physiol.,2006,47:1-13.
    [105]Jaglo-Ottosen K.R, Gilmour SJ, Zarka DG, et al. () Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance[J]. Science,1998,280:104-106.
    [106]James VA, Neibaur I, Altpeter F. Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance[J]. Transgenic Research,2008,17:93-104.
    [107]Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus[J]. Plant Mol. Biol.,1996,30:679-684.
    [108]Jiang GH, He YQ, Xu CG, et al. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross[J]. Theor. Appl. Genet.,2004,108:688-698.
    [109]Johnson RR, Wagner RL, Verhey SD, et al. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences[J]. Plant Physiol.,2002,130:837-846.
    [110]Johnson WC, Jackson LE, Ochoa O, et al.. A shallow-rooted crop and its wild progenitor differ at loci determining root architecture and deep soil water extraction[J]. Theor. Appl. Genet.,2000,101:1066-1073.
    [111]Jones H.G. Monitoring plant and soil water status:established and novel methods revisited and their relevance to studies of drought tolerance[J]. Exp. Bot.,2007,58:119-130.
    [112]Jones HG, Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces[J]. Plant Cell Environ.,1999,22:1043-1055.
    [113]Jorda L, Vera P. Local and systemic induction of two defense-related subtilisin-like protease promoters in transgenic Arabidopsis plants. Luciferin induction of PR gene exp ression[J]. Plant Physiol.,2000,124(3):1049-1058.
    [114]Joshee N, Kisaka H, Kitagawa Y. Isolation and characterization of a water stress-specific genomic gene, pwsi18, from rice[J]. Plant Cell Physiol.,1998,38(1):64-72.
    [115]Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes[J]. Nucleic. Acids Res.,1987,15:6643-6653.
    [116]Juenger, TE, Mckay, JK, Hausmann, N, et al.. Identification and characterization of QTL underlying whole plant physiology in Arabidopsis thaliana:d13C, stomatal conductance and transpiration efficiency [J]. Plant Cell Environ.,2005,28:697-708.
    [117]Kang JY, Choi HI, Im MY, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J]. Plant Cell,2002,14:343-357
    [118]Karamanos AJ, Papatheohari AY. Assessment of drought resistance of crop genotypes by means of the Water Potential Index[J]. Crop Sci.1999,39:1792-1797.
    [119]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription[J]. Nat Biotechnol.,1999,17(3): 287-91.
    [120]Kavi Kishor PB, Hong Z, Miao, GH, et al. Over-expression of d-pyrroline-5-carboxylate synthetase increases praline production and confers osmotolerance in transgenic plants[J]. Plant Physiol.,1995,25:1387-1394.
    [121]Kerstiens G,. Cuticular water permeability and its physiological significance[J]. J. Exp. Bot., 1996,47:1813-1832.
    [122]Kim S. Kang J, Cho DI, et al. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance[J]. Plant J.,2004,40:75-87.
    [123]Kizis D, Pages M, Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway[J]. Plant J., 2002,30:679-689.
    [124]Koike M, Kato H, Imai R. Diversification of the barley and wheat blt101/wpi6 promoters by the Xumet element without affecting stress responsiveness[J]. Mol. Genet. Genomics, 2008,280:41-47.
    [125]Kollipara KP, Saab I.N, Wych RD, et al. Expression profiling of reciprocal maize hybrids divergent for cold germination and desiccation tolerance[J]. Plant Physiol.,2002,129: 974-992.
    [126]Lafitte HR, Courtois B, Interpreting cultivar-environment interactions for yield in upland rice assigning value to drought-adaptive traits[J]. Crop Sci.,2002,42:1409-1420.
    [127]Lamppa G, Nagy F, Chua N H. Light-regulated and o rgan-specific expression of a wheat Cab gene in transgenic tobacco [J]. Nature,1985,316:750-752.
    [128]Lanceras JC, Pantuwan G, Jongdee B, et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice[J]. Plant Physiol.,2004,135:384-399.
    [129]Laporte MM, Shen B, Tarczynski MC. Engineering for drought avoidance:expression of maize NADP-malic enzyme in tobacco results in altered stomatal function[J]. Exp. Bot., 2002,53:699-705.
    [130]Lawlor DW, Comic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant Cell Environ.,2002,25:275-294.
    [131]Levitt J. Responses of plants to environmental stresses[M]. New York and London,1972: 697.
    [132]Leyva A, Liang X, Pintor-Toro J. Cis-element combinations determine phenylalanine ammonia-lyase gene tissue-specific expression pattems[J]. Plant Cell,1992,4(3):263-71.
    [133]Li XP, Tain AG, Luo GZ, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses[J]. Theor. Appl. Genet.,2005,110:1355-1362.
    [134]Lightfoot DA, Mungur R, Ameziane R, et al. Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli[J]. Euphytica, 2007,156:103-116.
    [135]Lin CS, Binn MR.. A superiority measure of cultivar performance for cultivar_ location data[J]. Can. J. Plant Sci.1988,68,193-198.
    [136]Liu Q, Kasuga Y, Abe H, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperatureresponsive gene expression, respectively, in Arabidopsis[J]. Plant Cell,1998,10:1391-1406.
    [137]Loopstra CA, Sederoff RR. Xylem-specific gene expression in loblolly pine[J]. Plant Mol. Biol.,1995,27(2):277-291.
    [138]Lorenzo O, Chico JM, Sanchez-Serrano JJ, et al. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell,2004,16:1938-1950.
    [139]Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38:a new transcription factor involved in cold-and drought-response in barley[J]. Plant Mol. Biol.,2004,55:399-416.
    [140]Marian IC, Debeuckeleer M, Truettner J. Induction of male sterility in plants by a chimaeric ribonuclease gene[J]. Nature,1990,347:737-741.
    [141]Martin B, Nienhuis J, King G, et al. Restriction fragment length polymorphism associated with water use efficiency in tomato[J]. Science,1989,243:1725-1728.
    [142]Maruyama K. Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J.,2004,38:982-993.
    [143]Mary E, Williams RF, Chua NH. Sequences Flanking the Hexameric G-Box Core CACGTG Affect the Specificity of Protein Binding[J]. The Plant Cell,1992,4:485-496.
    [144]Masle J, Gilmore SR, Farquhar, GD. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J]. Nature,2005,436:866-870.
    [145]Massari ME, Murre C. Helix-loop-helix proteins:regulators of transcription in eukaryotic organisms[J]. Mol. Cell. Biol.,2000,20:429-440.
    [1461 McKersie BD, Bowley SR, Harjanto E, et al. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase[J]. Plant Physiol.,1996,111: 1177-1181.
    [147]Menkes AE, Schindler U, Cashmore AR. The G-box:a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins[J]. Trends Biochem. S.ci.1995,20: 506-510.
    [148]Mitsutaka Tan Iguch I, Katsura Izawa, Maur Ice SB. The Promoter for the maize C4 Pyruvate, orthopho sphate dikinase gene directs cell-and tissue-specific transcription in transgenic maize plants[J]. Plant Cell Physiol.,2000,41 (1):42-48.
    [149]Moinuddin A, Fischer RA., Sayre KD, et al. Osmotic adjustment in wheat in relation to grain yield under water deficit environments[J]. Agron. J.2005,97:1062-1071.
    [150]Morgan JM. Osmoregulation as a selection criterion for drought tolerance in wheat[J]. Aust. J. Agric. Res.1983,34:607-614.
    [151]Morgan JM., Tan MK. Chromosomal location of a wheat osmoregulation gene using RFLP analysis[J]. Aust. J. Plant Physiol.,1996,23:803-806.
    [152]Morgan JM.. Increases in grain yield of wheat by breeding for an osmoregulation gene: relationship to water supplies and evaporative demand[J]. Aust. J. Agric. Res.2000,51: 971-978.
    [153]Motzo R, Giunta F, Deidda M, Factors affecting the genotype x environment interaction in spring triticale grown in a Mediterranean environment[J]. Euphyitica,2001,121:317-324.
    [154]Mundy J, Yamaguchi-Shinozaki K, Chua N. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. U. S. A.,1990, 87,1406-1410.
    [155]Mustilli AC, Merlot S, Vavasseur A. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell,2002,14:3089-3099.
    [156]Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, et al. A nuclear gene encoding a chloroplast targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally upregulated during senescence in Arabidopsis thaliana[J]. Plant J.,1997,12:851-861.
    [157]Nakashima K, Shinwari ZK, Sakuma K et al.Organization and expression of two Arabidopsis DREB2 gene encoding DRE-binding protein involved in dehydration-and high-salinity-rsponsive gene expression [J]. Plant Mol. Biology,2000,42:657-665.
    [158]Nakashima K., Yamaguchi-Shinozaki K. Regulations involved in osmotic stress-responsive and cold stress-responsive gene expression in plants[J]. Physiologia Plantarum,2006,126: 62-71.
    [159]Nguyen TT, Klueva N, Chamareck V, et al. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice[J]. Mol. Gen. Genomics,2004,272:35-46.
    [160]Niu XP, Helentjaris T, Bate NJ. Maize AB14 binds coupling element 1 in abscisic acid and sugar response genes[J]. Plant Cell,2002,14:2565-2576.
    [161]Njau PN, Kinyua MG, Kimurto PK, et al. Drought tolerant wheat varieties developed through mutation breeding technique[J]. Journal of Agriculture, Science and Technology, 2005,7(1):18-29.
    [162]Ober, ES, Clark, CJA., Le Bloa, M, et al. Assessing the genetic resources to improve drought tolerance in sugar beet:agronomic traits of diverse genotypes under droughted and irrigated conditions[J]. Field Crop Res.,2004,90:213-234.
    [163]Oh SJ, Song, SI., Kim, YS, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiol.,2005,138: 341-351.
    [164]Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, et al. Yield response of rice (Oryza sativa L) genotypes to different types of drought under rainfed lowlands. Part1. Grain yield and yield components[J]. Field Crop Res.,2002,73:153-168.
    [165]Park MR, Baek S-H, de los Reyes BG, et al. Overexpression of a high-afinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants[J]. Plant Soil,2007,292:259-269.
    [166]Park S., Li J., Pittman JK. et al. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc[J]. Natl. Acad. Sci. U.S.A.,2005,102: 18830-18835.
    [167]Patel M, Johoson JS, Brttell RI, et al. Transgenic barley expression a fungal xylanase gene in the endosperm of the developing grains[J]. Molecular Breeding,2000,6(1):113-123.
    [168]Peleman JD., Van der Voort JR.,. Breeding by design[J]. Trends Plant Sci.,2003,8: 330-334.
    [169]Pellegrineschi A, Reynolds M, Pacheco M, et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J]. Genome,2004,47:493-500.
    [170]Pidgeon JD., Ober ES., Qi A, et al. Using multi-environment sugar beet variety trails to screen for drought tolerance[J]. Field Crop Res.,2006,95:268-279.
    [171]Piepho H.P.. A mixture-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data[J]. Genetics,2000,156:2043-2050.
    [172]Podlich DW, Winkler CR., Cooper M. Mapping as you go:an effective approach for marker-assisted selection of complex traits[J]. Crop Sci.,2004,44:1560-1571.
    [173]Rajaram S, Mann CF, Oritiz-Fferrara G, et al. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT[C] wheats. Proceedings 6th International Wheat Genetics Symposium, Kyoto, Japan,1983:613-621.
    [174]Rajcan I., Tollenaar M. Source-sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during the grain-filling period[J]. Field Crop Res.,1999,90: 245-253.
    [175]Ramanjulu S, Bartels D. Drought-and desiccation-induced modulation of gene expression in plants[J]. Plant Cell Environ,2002,25:141-151.
    [176]Rebetzke, GJ, Condon, AG, Richards, RA, et al. Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat[J]. Crop Sci., 2002,42:739-745.
    [177]Reddy AR, Chaitanya K.V, Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. J. Plant Physiol.,2004,161:1189-1202.
    [178]Reymond M, Muller B, Leopardi A, et al. Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit[J]. Plant Physiol.,2003,131:664-675.
    [179]Ribaut JM.Drought Adaptation in Cereals[M]. Food Production Press, An Imprint of the Haworth Press, Inc. Newyork, London, Oxford,2006:1-642.
    [180]Ribaut, JM, Ragot, M. Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives[J]. J. Exp. Bot.,2007.58: 351-360.
    [181]Richards RA, Physiological traits used in the breeding of new cultivars for water-scarce environments[J]. Agric. Water Manage.,2006,80:197-211.
    [182]Rizza F, Badeck FW, Cattivelli L, et al. Use of a water stress index to identify barley genotypes adapted torainfed and irrigated conditions[J]. Crop Sci.,2004,44:2127-2137.
    [183]Robin S, Pathan MS, Courtois B, et al. Mapping osmotic adjustment in an advanced back-cross inbred population of rice[J]. Theor. Appl. Genet.,2003,107:1288-1296.
    [184]Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant J.,2000,23: 319-327.
    [185]Saini HS, Westgate ME, Reproductive development in grain crops during drought[J]. Adv. Agron. J.,2000,68:59-96.
    [186]Saito T, Tadakuma K, Takahashi N. Two cytosolic cyclophilin genes of Arabidopsis thaliana differently regulated in temporal-and organ-specific expression[J]. Biosci Biotechnol Biochem,1999,63(4):632-637.
    [187]Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought-, cold-and high-salinity-stress conditions. Plant Physiol.,2004,136:2734-2746.
    [188]Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. Plant Cell, 2006,18:1292-1309.
    [189]Sanchez AC, Subudhi PK., Rosenow DT, et al. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L Moench)[J]. Plant Mol. Biol.2002,8:713-726.
    [190]Saranga Y, Jiang CX, Wright RJ, et al. Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity[J]. Plant Cell Environ.,2004, 27:263-277.
    [191]Sawkind MC, DeMeyer J, Ribaut JM. Drought Adaptation in Maize. In:Ribaut J-M (ed.) Drought Adaptation in Cereals[M]. Food Production Press, An Imprint of the Haworth Press, Inc. Newyork, London, Oxford 2006:259-287.
    [192]Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses using a full-length cDNA microarray[J]. Plant Cell, 2001,13:61-72.
    [193]Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, andhigh-salinity stresses using a full-length cDNA microarray[J]. Plant J.,2002,31:279-292.
    [194]Seki M, Umezawa T, Urano K, et al. Regulatory metabolic networks in drought stress responses[J]. Current Opinion in Plant Biology,2007,10:296-302.
    [195]Serraj R, Hash CT, Rizvi SM, et al. Recent advances in marker-assisted selection for drought tolerance in pearl millet[J]. Plant. Prod. Sci.,2005,8:334-337.
    [196]Serraj R, Sinclair TR. Osmolyte accumulation:can it really increase crop yield under drought conditions? Plant Cell Environ.,2002,25:333-341.
    [197]Sharp RE., Poroyko V, Hejlek LG, et al. Root growth maintenance during water deficits: physiology to functional genomics[J]. J. Exp. Bot.,2004,55:2343-2351.
    [198]Shen Q X, Ho DT-H. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element[J]. Plant Cell,1995,7:295-307.
    [199]Shen Q X, Zhang P N, Ho T-H D. Modular Nature of Abscisic Acid (ABA) Response Complexes:Composite Promoter Units That Are Necessary and Sufficient for ABA Induction of Gene Expression in barley[J]. Plant Cell,1996,8:1107-1119.
    [200]Shen YG, Zhang WK, He SJ, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress[J]. Theor. Appl. Genet.,2003,106:923-930.
    [201]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr. Opin. Plant Biol.,2003,6:410-417.
    [202]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Curr. Opin. Plant Biol.,2000,3:217-223.
    [203]Shinwari Z K, Nakashima K, Miura S, et al. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun.1998,250:161-170.
    [204]Siddique KHM, Tennant D, Perry M W, et al. Water use and water use efficiency of old and modern wheat cultivars in a Mediterraneantype environment[J]. Aust. J. Agric. Res.,1990, 41:431-447.
    [205]Simpson S, Nakashima K, Narusaka Y, et al. Two different novel cis-acting elements of erdl, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence[J]. Plant J.,2003,33:259-270.
    [206]Sinclair TR, Muchow RC. System analysis of plant traits to increase grain yield on limited water supplies. Agron. J.,2001,93:263-270.
    [207]Slafer GA, Araus JL, Royo C, et al. Promising ecophysiological traits for genetic improvement of cereal yields in Mediterranean environments[J]. Ann. Appl. Biol.,2005,146: 61-70.
    [208]Slafer, G.A., Whitechurch, E.M. Manipulating wheat development to improve adaptation and to search for alternative opportunities to increase yield potential. In:Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A. (Eds.), Application of Physiology on Plant Breeding. CYMMIT, Mexico, DF,2001:160-170.
    [209]Soika RE., Stolzy LH., Fischer RA, Seasonal drought response of selected wheat cultivars[J]. Agron. J.,1981,73:838-845.
    [210]Sreenivasulu N, Sopory SK, Kavi Kishor PB. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches[J]. Gene,2007,388:1-13.
    [211]Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc. Natl. Acad. Sci. U. S. A.,1997,94:1035-1040.
    [212]Straub PF, Shen QX, Ho T-HD. Structure and promoter analysis of an ABA-and stress-regulated barley gene, HVA1 [J]. Plant Mol. Biol.,1994,26:617-630.
    [213]Sullivan CY Ross WM.抗旱及抗热高粱的选育[M].作物抗性生理学(H.马塞尔R.C.斯特普尔斯编)北京:科学出版社,北京:科·学出版社,1985:148-158.
    [214]Syvanen AC. Toward genome-wide SNP genotyping[J]. Nat. Genet.,2005,37:5-10.
    [215]Takahashi R, Joshee N, Kitagawa Y. Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress regulation genes[J]. Plant Mol. Boil., 1994,26:39-352.
    [216]Tambussi EA., Nogues S, Ferrio P, et al. Does higher yield potential improve barley performance in Mediterranean conditions? A case of study[J]. Field Crop Res.,2005,91: 149-160.
    [217]Teulat B., This D., Khairallah M, et al. Several QTLs involved in osmotic adjustment trait variation in barley (Hordeum vulgare L)[J]. Theor. Appl. Genet.,1998,96:688-698.
    [218]Thomashow MF, Stochinger EJ, Jaglo-Ottosen KR, et al. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annu. Rev. Plant Physiol. Mol.Biol.,1999,50: 571-599.
    [219]Tiwari BS, Belenghi B, Levine A, Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death[J]. Proc. Natl. Acad. Sci. U.S.A.,2002,128: 1271-1281.
    [220]Tollenar M, Wu J, Yield in temperate maize is attributable to greater stress tolerance[J]. Crop Sci.,1999,39:1604-1897.
    [221]Tollenaar M., Lee EA. Yield stability and stress tolerance in maize[J]. Field Crop Res., 2002,75:161-169.
    [222]Tran LSP, Nakashima K, Fujita Y, et al. Functional analysis of Arabidopsis NAC transcription factors controlling expression of erdl gene under drought stress[J]. Plant Cell, 2004,16:2482-2498.
    [223]Trethowan RM, van Ginkel M, Rajaram S, Progress in breeding wheat for yield and adaptation in global drought affected environments[J]. Crop Sci.,2002,42:1441-1446.
    [224]Tuberosa R., Salvi S, Genomics-based approaches to improve drought tolerance of crops[J]. Trends Plant Sci.,2006,11:405-412.
    [225]Turner NC, Abbo S, Berger JD, et al. Osmotic adjustment in chickpea (Cicer arietinum L) results in no yield benefit under terminal drought[J]. J. Exp. Bot.2007,58:187-194.
    [226]Tyerman SD., Niemietz CM., Bramley H. Plant aquaporins:multifunctional water and solute channels with expanding roles[J]. Plant Cell Environ.,2002,25:173-194.
    [227]Umezawal T, Fujita M, Fujita Y, et al. Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future[J]. Current Opinion in Biotechnology,2006,17: 113-122.
    [228]Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proc. Natl. Acad. Sci. U. S. A.,2000,97:11632-11637.
    [229]van Ginkel M, Calhoun DS., Gebeyehu G, et al. Plant traits related to yield of wheat in early, late, or continuous drought conditions[J]. Euphytica,1998,100:109-121.
    [230]Verma V, Foulkes MJ, Worland AJ., et al. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica,2004.135:255-263.
    [231]Vincent TC,Uirika Egertsdotter DP. A promoter from the loblolly pine PtN IP1; 1 gene directs expression in an early-embryogenesis and suspensor-specific fashion [J]. Planta, 2002,215:694-698.
    [232]Voltas J, Lopez-Corcoles H., Borras G. Use of biplot analysis and factorial regression for the investigation of superior genotypes in multienvironment trials[J]. Eur. J. Agron.,2005,22: 309-324.
    [233]Wade MJ. A gene's eye view of epistasis, selection and speciation[J]. J. Evol. Biol.,2002, 15:337-346.
    [234]Walter A, Shurr U. Dynamics of leaf and root growth:endogenous control versus environmental impact[J]. Ann. Bot.,2005,95:891-900.
    [235]Wang W, Vinocur B, Altman A. Plant response to drought, salinity and extreme temperatures:toward genetic engineering for stress tolerance[J]. Planta,2003,218:1-14.
    [236]Wang Y, Ying J, Kuzma M, et al. Molecular tailoring of farnesylation for plant drought tolerance and yield protection[J]. Plant J.,2005,43:413-424.
    [237]Weaver RW. Molecular Biology[M].北京:科学出版社(影印版),2002:279-293.
    [238]Weising K, Kahl G. Towards an understanding of plant gene regulation-the action of nuclear facto rs[J]. Z. Naturforsch. C.,1991,46:1-11.
    [239]Wien H C Littleton E J Ayanaba A.热带条件下豇豆及大豆的干旱逆境.作物抗性生理学(H.马塞尔 R.C.斯特普斯编)北京:科学出版社,1985:159-168.
    [240]Xiao B, Huang Y, Tang N, et al. Over-expression of a LEA gene in rice improves drought resistance under the field conditions[J]. Theor. Appl. Genet.,2007,115:35-46.
    [241]Xue GP, Loveridge CW. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element[J]. The Plant J.,2004,37:326-339.
    [242]Xue GP, Patel M, Johnson JS, et al. Development of a gene expression system for the efficient production of recombinant proteins in barley endosperm during maturation[M]. In: Larking P J (ed) Agricultural biotechnology:laboratory, field and market. Proc 4th Asian-Pacific Conf Agric Biotechnol. UTC, Canberra,1998:240-242.
    [243]Xue GP. An AP2 domain transcription factor HvCBF1 activate expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif[J]. Biochim. Biophys. Acta,2002,1577:63-72.
    [244]Xue GP. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature[J]. The Plant J.,2003,33:373-383.
    [245]Yadav OP, Bhatnagar SK. Evaluation of indices for identification of pearl millet cultivars adapted to stress and non-stress conditions[J]. Field Crop Res.,2001,70:201-208.
    [246]Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress[J]. Plant Cell, 1994,6:251-264.
    [247]Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters [J]. Trends in Plant Science,2005,10(2): 88-94.
    [248]Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends in Plant Science,2005,10(2): 88-94.
    [249]Yamaguchi-Shinozaki K, Shinozaki K:Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annu. Rev. Plant Biol.,2006,57: 781-803.
    [250]Yamaguchi-Shinozki K, Mundy J, Chua N-H. Four tightly rab gene are differentially expressed in rice[J]. Plant Mol Biol.,1989,14:29-39.
    [251]Yan J, He C,Wang J, et al. Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype and improves stress tolerance under moderate drought conditions[J]. Plant Cell Physiol,2004,45:1007-1014.
    [252]Yoshida R, Hobo T, Ichimura K, et al. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis [J]. Plant Cell Physiol.,2002,43:1473-1483.
    [253]Zarka DG., Vogel.IT, Cook D, et al. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature[J]. Plant Physiol.,2003,133:910-918.
    [254]Zhang J, Zheng HG, Aarti A., et al. Locating genomic regions associated with components of drought resistance in rice:comparative mapping within and across species[J]. Theor. Appl. Genet.,2001,103:19-29.
    [255]Zhu BC., Su J, Chan MC, et al. Overexpression of a d-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt-stress in transgenic rice[J]. Plant Sci., 1998,139:41-48.
    [256]Zhu JK. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol.,2002, 53:247-273.
    [257]Zinselmeier C., Jeong BR., Boyer JS. Starch and the control of kernel number in maize at low water potentials[J]. Plant Physiol.,1999,121:25-35.
    [258]Zinselmeier C., Westgate ME, Schussler JR, et al. Low water potential disrupts carbohydrate metabolism in maize (Zea mais L) varies[J]. Plant Physiol.,1995,107: 385-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700