OFDM系统非参数信道估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在以IMT2000标准为核心的第三代移动通信业务已经在全球全面铺开的同时,人们已经对新一代无线宽带多媒体通信系统做了大量的研究工作。新一代无线通信系统又称为超3代移动通信系统,简称B3G或4G系统。该系统的目标是在高速移动环境中支持最高约100Mbps的速率,因此新一代无线通信系统在传输速率和频谱利用率上需要有新的突破。
     正交频分复用(OFDM)是一种多载波数字通信调制技术,它具有频谱利用率高、可对抗多径时延扩展以及实现简单等特点,已经被确定为B3G移动通信系统中的核心技术之一。要在OFDM系统中进行高速率的数据传输,同时要保持较高的频谱利用率,OFDM系统需要使用密度更高的星座点进行符号映射并采用相干检测技术。在这种情况下,接收端必须知道精确的信道状态信息。同时,现代传输技术包括自适应调制、MIMO系统、波束成形、空时编码以及跨层自适应技术等都需要精确的信道状态信息。因此信道估计在OFDM系统中是不可或缺的。
     本论文在研究深入传统LS估计器,LMMSE估计器和基于DFT的变换域估计器的优缺点后,提出几种基于非参数函数估计的信道估计方法。这些方法不需要信道和传输数据的先验知识,在仅增加线性计算复杂度的前提下,大大提高了LS估计器的性能。
     论文首先讨论了衰落无线信道的特性,对信道的时域与频域特性作了简单的分析,详细介绍了常用的确定性衰落信道模型,并深入分析了它们的可微性、Lipschitz性及可逼近性等数学特性;并在简要介绍非参数函数估计方法的原理的基础上分析了将非参数方法用于衰落信道估计的可行性,为全文奠定了理论基础。
     接着我们提出一种基于局部线性回归的OFDM系统的信道估计方法,该方法明确提出将信道估计的插值过程和噪声消除过程进行分离:首先对估计出的导频处的信道估计值进行插值,然后对插值后的信道估计值进行局部线性回归以消除信道噪声和插值引入的误差。该方法不仅能够有效的抵抗线性插值所带来的误差,而且能有效的回避变换域方法受到附加矩形窗的影响,从而明显改善信道估计的性能。该方法不需要知道信道和数据的先验知识,因此具有很高的鲁棒性。算法的计算复杂度仅为O(N)。
     为了在不增加计算复杂度的前提下进一步提高估计精度,我们又提出了基于Saviztky-Golay平滑的OFDM频域信道估计算法,该算法实际上是一种局部多项式回归平滑算法,可以转化为卷积运算进行计算。利用通常Saviztky-Golay滤波器的抽头数远大于回归多项式阶数这一特点可以大大降低估计的计算复杂度,使得计算复杂度仅为O(N)。该方法具有局部线性回归估计算法的所有优点,且由于采用了局部多项式回归,估计精度比局部线性回归要高,同样不需要知道信道和数据的先验知识。
     对于块衰落信道,我们提出了基于二维核回归估计的OFDM系统信道估计方法。在核回归方法中,我们可以利用核函数来刻画信道复增益在时域频域上的相关性,因此估计性能比简单的局部回归要好。由于WSUSS信道的相关性可以进行时频分解,该算法可以分解为两个级联的一维核回归算法,复杂度大大降低。通过优化时域和频域核函数的支撑区间的长度,该算法的性能在低信噪比时甚至超过一维MMSE估计算法,而复杂度远低于一维MMSE估计算法,但比前两种算法的计算复杂度稍高一些,每点数据的算法复杂度与两个核函数长度和成正比。
     最后论文讨论了基于小波阈值估计的基本原理并提出了基于块阈值估计的小波阈值信道估计算法,该算法的性能优于基于传统的小波去噪信道估计算法,且在信道多径扩展大于CP长度时仍然具有较好的估计性能,且不存在模型失配问题,而计算复杂度仅为O(N)。
     通过全文的研究我们可以发现,非参数估计方法可以很好地在OFDM信道估计领域进行应用,并且可以在较低的计算复杂度下取得较好的估计性能。对基于非参数估计的信道估计方法,下一步的研究可以包括如何以较低的计算复杂度将这些算法推广到MIMO-OFDM系统中、算法的性能界的分析、估计窗长的选择、核函数的选择以及进一步降低二维核回归算法的计算量等方面。
Along with the extensive deployment of 3G wireless mobile communication systems, which are based on IMT2000 standard, the innovative B3G or 4G broadband multimedia communication techniques are widely investigated. To adapt to the need for multimedia services, the aim of the B3G/4G systems is achieving a transmission rate of 100Mbps in high-mobility environment and 1Gbps in low-mobility environment. So there must be some major progress in frequency efficiency and transmission rate in these systems.
     OFDM is a multi-carrier modulation or transmission technique. It has the advantages of high frequency, resistant to multipath delay spread and realization simplisity etc., therefore is chosen as one of the core techniques of B3G/4G communication system. To transmission in OFDM system with high data rates while reserving high frequency efficiency, big constelation mapping and coherent detection must be employed. In this situation, the receiver must know the channel state information. Otherwise, many transmission schemes such as adaptive modulation and coding, space time transmission, MIMO, beamforming and crosslayer processing, all have to know the CSI. So channel estimation is a essential part of OFDM systems.
     Our focus is on the nonparametric estimation based OFDM channel estimation algorithm. In the dissertation, the radio fading channel property and nonparametric estimation theory were firstly discussed, then some channel estimation algorithm based on nonparametric function estimation were proposed and analysed after the briefly intruducing of conventional LS estimator, LMMSE estimator and DFT base transform domain estimator. These algorithm do not neen the a priori information of the channel and transmitted data, and can highly improve estimation performance only at a cost of computation complexity O(N).
     In the first part, the properties of the radio fading channel were firstly discusseded, then the channel mode and its mathmatical characters were carefully analysed and the nonparametric estimation theory was introduced. Finally the conclusion was drawn that the radio fading channel can be estimated by nonparametric function estimation. Therefore a solid theorical basis is laid for the rest part of the dissertation.
     In the second part, a nonparametric frequecy domain channel estimation algorithm based on local linear regression was proposed. In this method, the interpolation processing and noise cancellatiod processing were seperated, the LS estimated channel gain at pilot tones were firstly interpolated by piece-wise constant or piece-wise linear interpolation and then smoothed by local linear regression. This method can efficiently suppress the channel and interpolation error as well as avoid the windowing effect of the DFT based algorithm, so the performance was improved greatly.
     To enhence the accuracy of the estimation while reserving the computational complexity, a nonparametric frequecy domain channel estimation algorithm based on Savitzky-Golay smoothing filter was proposed in the third part. Savitzky-Golay smoothing filter can be considered as a local polynomial estimator, and can be calculated by convolution. Because the filter length is always far more longer then the order of the regression polynomial, the computional complexty can be reduced greatly and only be O(N). It outperform the local linear regression algorithm and don't need a priori information either.
     For block fading channel a nonparametric frequecy domain channel estimation algorithm based on 2D kernel smoothing was proposed. According to that the frequency and time domain correlation can be seperated in WSSUS fading channel, a simplified 2D kernel smoothing filter using two cascaded 1D kernel smoothing filters in time domain and frequency domain respectely was adopted to reduce the computaion complexity. Because it can utilize the correlation of the channel gain in time and frequency domain, the estimation performance is better than the above two. If the adaptive kernel window size was employed, the performance can be improved further, and outperforms 1D LMMSE estimator in the low SNR area and the computational complexity is much mo lower.
     The last part introdused a wavelet block-thresholding channel estimation method. It outperforms the soft threshold wavelet estimator and hard thresholding wavelet estimator because it utilize the correlation of the wavelet detail coefficients. The proposed estimator maintains better performance even when the CP is shorter then the multipath delay spread and with no model mismatch. The computational complexity is only O(N).
     Through the dissertation we can make a conclution that nonparametric estimation can be well adapted to channel estimation, the derived channel estimation algorithm has better performance while reserving low computational complexity. But there are still many problems, such as the estimation bounds of the estimators, the selection of the windows size of the estimators whitch more adapted to OFDM channel estimation, the smoothing kernel selection of the estimator and the generalization of the nonparametric channel estimation algorithm, to be solved.
引文
[1]Jamil Mohsin,Shaikh Shahan Parwaiz,Shahzad Mohsin,et al.4G:The future mobile technology.in:TENCON 2008 - 2008,TENCON 2008.IEEE Region 10 Conference.2008.1-6
    [2]张克平.LTE-B3G/4G移动通信系统无线技术.北京:电子工业出版社,2008.
    [3]GuangyiLiu,Jianhua Zhang,Ping Zhang,et al.Evolution map from TD-SCDMA to FuTUREB3G TDD.Communications Magazine,IEEE,2006,44(3):54-61
    [4]Xiao-Hu Yu,Guoan Chen,Ming Chen,et al.The FuTURE Project in China.Communications Magazine,IEEE,2005,43(1):70-75
    [5]张汉毅,粟欣.B3G的关键技术及其发展趋势.移动通信,2008,32(16):26-31
    [6]Krenik B.4G wireless technology:When will it happen? What does it offer? in:Solid-State Circuits Conference,2008.A-SSCC '08.IEEE Asian.2008.141-144
    [7]Govil J.4G Mobile Communication Systems:Turns,Trends and Transition.in:.International Conference on Convergence Information Technology,2007.13-18
    [8]Marcus L.Roberts,Michael A.Temple,Robert F.Mills,et al.Evolution of the air interface of cellular communications systems toward 4G realization.Communications Surveys & Tutorials,IEEE,2006,8(1):2-23
    [9]Hashimoto A.,Yoshino H.,Atarashi H.Roadmap of IMT-advanced development.Microwave Magazine,IEEE,2008,9(4):80-88
    [10]Young-June Choi,Kwang Bok Lee,Saewoong Bahk.All-IP 4G Network architecture for efficient mobility and resource management.Wireless Communications,IEEE,2007,14(2):42-46
    [11]Glisic S.,Makela J.P.Advanced Wireless Networks:4G Technologies.in:2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.2006.442-446
    [12]Govil J.An empirical feasibility study of 4G's key technologies.in:,2008.EIT 2008.IEEE International Conference on Electro/Information Technology.2008.267-270
    [13]Rouffet Denis,Sehier Philippe.Convergence and Competition on the Way Towards 4G.in:Radio and Wireless Symposium,2007 IEEE.2007.277-280
    [14]Brown L.D.,Cai T.T.,Zhou H.H.ROBUST NONPARAMETRIC ESTIMATION VIA WAVELET MEDIAN REGRESSION.Annals of Statistics,2008,36(5):2055-2084
    [15]佟学俭,罗涛.OFDM移动通信技术原理与应用.北京:人民邮电出版社,2003.
    [16]Fazel K.,Kaiser S.Multi-Carder and Spread Spectrum Systems:From OFDM and MC-CDMA to LTE and WiMAX.(2).Chichester:John Wiley & Sons,Ltd,2008.
    [17]Goldsmith Andrea.WIRELESS COMMUNICATIONS.Cambridge,England:Cambridge University Press,2005.
    [18]Tse David,Viswanath Pramod.Fundamentals of Wireless Communication.Cambridge:Cambridge University Press,2005.
    [19]Durgin Gregory D.Space-Time Wireless Channel.New Jersey:Prentice Hall PTR,2003.
    [20]Engels Marc.Wireless OFDM Systems:How to Make Them Work.Kluwer cademic Publish,2002.
    [21]Prasad Ramjee.OFDM for Wireless Communications Systems.Norwood:Artech House,Inc.,2004.
    [22]Wang Tiejun (Ronald).Mobile OFDM Communications:[Ph.D.thesis].Electrical Engineering (Communication Theory and Systems),UIVERSITY OF CALIFORNIA,SAN DIEGO,2006.
    [23]Dahlman Erik,Parkvall Stefan,et al.3G Evolution:HSPA and LTE for Mobile Broadband.Oxford:Academic Press,2007.
    [24]Bisla Balvinder,Eline Roger,et al.RF System and Circuit Challenges for WiMAX.Intel Technology Journal,2004,8(3)
    [25]Andrews Jeffrey G,Ghosh Arunabha,Muhamed Rias.Fundamentals of WiMAX:Understanding Broadband Wireless Networking.Upper Saddle River,N J:Pearson Education,Inc,2007.
    [26]OZDEMIR MEHMET KEMAL,ARSLAN HUSEYIN.CHANNEL ESTIMATION FOR WIRELESS OFDM SYSTEMS.IEEE Communications Surveys & Tutorials,2007,9(2):31
    [27]Stuber G.L.,Barry J.R.,et al.Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE,2004,92(2):271-294
    [28]Auer G.,Cosovic I.,On pilot grid design for an OFDM air interface.in.Hong Kong,PEOPLES R CHINA.IEEE,2007.2174-2179
    [29]Tang Z.J.,Leus G.,Pilot schemes for time-varying channel estimation in OFDM systems.in.Helsinki,FINLAND.IEEE,2007.171-175
    [30]Henkel M.,Schilling C.,Schroer W.Comparison of Channel Estimation Methods for Pilot Aided OFDM Systems.in:Vehicular Technology Conference,2007.VTC2007-Spring.IEEE 65th.2007.1435-1439
    [31]Ozdemir M.K.,Arslan H.,Arvas E.Toward real-time adaptive low-rank LMMSE channel estimation of MIMO-OFDM systems.IEEE Transactions on Wireless Communications,2006,5(10):2675-2678
    [32]Edfors O.,Sandell M.,van de Beek J.J.,et al.OFDM channel estimation by singular value decomposition,IEEE Transactions on Communications,1998,46(7):931-939
    [33]Seung Joon Lee.On the training of MIMO-OFDM channels with least square channel estimation and linear interpolation.Communications Letters,IEEE,2008,12(2):100-102
    [34]An C.H.,Jang S.H.,et al.DFT-based channel estimation using CIR adaptation in OFDM systems.in.Phoenix Pk,SOUTH KOREA.IEEE,2007.23-26
    [35]Dong X.D.,Lu W.S.,et al.Linear interpolation in pilot symbol assisted channel estimation for OFDM.IEEE Transactions on Wireless Communications,2007,6(5):1910-1920
    [36]高群毅.OFDM系统中一种信道估计频域插值算法.清华大学学报(自然科学版),2006,46(10)
    [37]Dzyadyk Vladislav K.,et al.Theory of Uniform Approximation of Functions by Polynomials.Berlin:Walter de Gruyter GmbH & Co.KG,2008.
    [38]Teng Y.,Mori K.,Kobayashi H.Performance of DCT interpolation-based channel estimation method for MIMO-OFDM systems.in:ISCIT 2004.IEEE International Symposium on Communications and Information Technology,2004.vol.621,622-627
    [39]Jeong-Wook Seo,Jung-Wook Wee,et al.An Enhanced DFT-Based Channel Estimation Using Virtual Interpolation with Guard Bands Prediction for OFDM.in: Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on.2006. 1-5
    [40] Jiang B., Wang W. J., et al. Two dimensional DCT-based channel estimation for OFDM systems with virtual subcarriers in mobile wireless channels. in:. ICC '08. IEEE International Conference on Communications, 2008, Beijing, PEOPLES R. CHINA. IEEE, 2008. 3801-3806
    [41] Edfors O., Sandell M., Van De Beek J. J., et al. Analysis of DFT-based channel estimators for OFDM. Wireless Personal Communications, 2000,12(1): 55-70
    [42] Feng Shu, Shixin Cheng, Ming Chen. A Comparison of Two 2D Channel Estimators for OFDM System. Journal of Electronics(China), 2006,23(6): 6
    [43] Ribeiro Carlos, Gameiro Atilio. 2D Wiener channel estimation performance analysis with diamond-shaped pilot-symbol pattern in MC-CDMA systems, in: The 6th Conference on Telecommunications, Conftele 2007. Peniche, Portugal. 2007,4
    [44] Ito M., Suyama S., Fukawa K., et al. An OFDM receiver with decision-directed channel estimation for the scattered pilot scheme in fast fading environments. in: Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual.2003. vol.361, 368-372
    [45] Ran J., Grunheid R., Rohling H., et al. Decision-directed channel estimation method for OFDM systems with high velocities. in: Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual. 2003, 2358-2361 vol.2354
    [46] Wan P., McGuire M. An iterative decision feedback algorithm using the Cholesky update for OFDM with fast fading. in: PacRim 2007. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2007, Victoria, CANADA. IEEE, 2007. 522 - 525
    [47] Shiu-Hui Lee, Chien-Chun Cheng, Dah-Chung Chang. Modified decision feedback methods for OFDM channel tracking. in: ICCCAS 2008. International Conference on Communications, Circuits and Systems, 2008. 268-272
    [48] Jung-Hyun Park, Mi-Kyung Oh, Dong-Jo Park. New Channel Estimation Exploiting Reliable Decision-Feedback Symbols for OFDM Systems. in: Communications, 2006. IEEE International Conference on Communications, 2006., 2006. 3046-3051
    [49] Zhang Y., Liu H. P. Decision-feedback receiver for quasi-orthogonal space-time coded OFDM using correlative coding over fast fading channels. IEEE Transactions on Wireless Communications, 2006, 5(11): 3017-3022
    [50] Kim W. J., Lee Y. J., Kim H. N., et al. Coded decision-directed channel estimation for coherent detection in terrestrial DMB receivers. IEEE Transactions on Consumer Electronics, 2007, 53(2): 319-326
    [51] Gao F. F., Zeng Y. H., Nallanathan A., et al. Robust subspace blind channel estimation for cyclic prefixed MIMO OFDM systems: Algorithm, identifiability and performance analysis. IEEE Journal on Selected Areas in Communications, 2008, 26(2): 378-388
    [52] Li C. Y, Roy S. Subspace-based blind channel estimation for OFDM by exploiting virtual carriers. in. San Antonio, Texas. IEEE-Inst Electrical Electronics Engineers Inc,2001. 141-150
    [53] Muquet B., de Courville M., Duhamel P. Subspace-based blind and semi-blind channel estimation for OFDM systems. IEEE Transactions on Signal Processing, 2002, 50(7): 1699-1712
    [54] Cai T. T., Levine M., Wang L. Variance function estimation in multivariate nonparametric regression with fixed design. Journal of Multivariate Analysis, 2009, 100(1): 126-136
    [55] Chotikakamthorn N., Suzuki H. On identifiability of OFDM blind channel estimation. in: Vehicular Technology Conference, 1999. VTC 1999 - Fall. IEEE VTS 50th.1999. vol.2354, 2358-2361
    [56] Giannakis Georgios B., Hu Yingbo, Stoica Petre, et al., Trends in Channel Estimation and Equalization, in Signal Processing Advances in Wireless and Mobile Communications, Giannakis, Georgios B., Hu, Yingbo, Stoica, Petre and Tong, Lang, Editor (?) Editors. 2002, Prentice Hall PTR: New Jersey.
    [57] Shengli Zhou, Giannakis G B. Finite-alphabet based channel estimation for OFDM and related multicarrier systems. Communications, IEEE Transactions on, 2001, 49(8): 1402-1414
    [58] Farhang-Boroujeny B. Pilot-based channel identification: proposal for semi-blind identification of communication channels. Electronics Letters, 1995, 31(13): 1044-1046
    [59] Meng X., Tugnait J. K. Performance analysis of semi-blind channel estimation using superimposed training. in: 2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications.2005. 32-36
    [60] Tugnait J. K., Weilin Luo. On channel estimation using superimposed training and first-order statistics. Communications Letters, IEEE, 2003, 7(9): 413-415
    [61] Jun Tao, Luxi Yang. A first-order statistical method for time-variant MIMO channel estimation. in 2004. 209-212
    [62] Tugnait J. K., Shuangchi He. Performance analysis of an mimo channel esimator based on superimposed training and first-order statistics. 2005, 1336-1341
    [63] Lidong Wang, Dongmin Lim. Pilot embedded scheme for time-variant channel estimation in OFDM systems. in: ICACT 2006. The 8th International Conference on Advanced Communication Technology, 2006. 2006, 5
    [64] Ghogho M. Channel and DC-offset estimation using data-dependant superimposed training. in: The 2nd IEE/EURASIP Conference on DSP enabled Radio, 2005 (Ref. No. 2005/11086)2005. 5
    [65] Tugnait J. K., He S. Doubly-Selective Channel Estimation Using Data-Dependent Superimposed Training and Exponential Basis Models. IEEE Transactions on Wireless Communications, 2007, 6(11): 3877-3883
    [66] Shouyin Liu, Jinjing Zhan, Wenwu Xie, et al. Channel Estimation Using Frequency-domain Superimposed Pilot Time-Domain Correlation Method for OFDM Systems. 2006. 1-4
    [67] Parsons J. D. The Mobile Radio Propagation Channel. Chichester, England: John Wiley & Sons Ltd., 2000.
    [68] Patzold Matthias. MOBILE FADING CHANNELS. Chichester: John Wiley & Sons Ltd, 2002.
    [69] Liu S. Y., Wang F. F, Zhang R., et al. A Simplified Parametric Channel Estimation Scheme for OFDM Systems. IEEE Transactions on Wireless Communications, 2008, 7(12): 5082-5090
    [70] Simon Marvin K., Alouini Mohamed-Slim. Digital Communication over Fading Channels. (2). New Jersey: John Wiley & Sons, Inc., 2005.
    [71] Martinez Wendy L., Martinez Angel R. Computational Statistics Handbook with MATLAB. Boca Raton: Chapman & Hall/CRC, 2002.
    [72] Dent P., Bottomley G E., Croft T. Jakes fading model revisited. Electronics Letters, 1993,29(13): 1162-1163
    [73] Jakes William C, Microwave Mobile Communications , 1994, Wiley-IEEE Press: New York.
    [74] Jeruchim Michel C, Balaban Philip, Shanmugan K. Sam. Simulation of Communication Systems: Methodology, Modeling, and Techniques. (2). New York: KLUWER ACADEMIC PUBLISHERS, 2002.
    [75] Wasserman Larry. All of Nonparametric Statistics. New York: Springer Science+Business Media, Inc., 2006.
    [76] Gy(?)rfi L(?)szl(?) , Kohler Michael, Krzyzak Adam , et al. A Distribution-Free Theory of Nonparametric Regression. New York: Springer-Verlag New York, Inc, 2002.
    [77] Takezawa Kunio. INTRODUCTION TO NONPARAMETRIC REGRESSION. Hoboken, New Jersey.: John Wiley & Sons, Inc., 2006.
    [78] CHATTEFUEE SAMPRIT, HADI ALI S. Regression Analysis by Example. (4). Hoboken, New Jersey.: John Wiley & Sons, Inc., 2006.
    [79] Loader Clive. Local Regression and Likelihood. New York: Springer-Verlag New York, Inc., 1999.
    [80] Simonoff Jeffrey S. Smoothing Methods in Statistics. New York: Springer-Verlag New York, Inc., 1996.
    [81] Hardle Wolfgang. Applied Nonparametric Regression. Cambridge: Cambridge University Press, 1992.
    [82] Tsybakov Alexandre B. Introduction to Nonparametric Estimation. New York: Springer Science+Business Media, LLC, 2009.
    [83] Nemirovski Arkadi. Topics in Non-Parametric Statistics. New York: Springer, 2000.
    [84] Sendov Blagovest, Andreev Andrei. Approximation and Interpolation Theory. AMSTERDAM: Elsevier Science Publishers B. V, 1994.
    [85] Meyer Carl D. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.
    [86] Shin Wonjae, Noh Minseok, Park Hyuncheol, A Low Complexity LMMSE Channel Estimation for OFDM Systems in International Technical Conferences on Circuit/Systems, Computer and Communications (ITC-CSCC 2005), 2005: Jeju, Korea.
    [87] Baoguo Yang, Zhigang Cao, Letaief K. B. Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM systems. IEEE Transactions on Communications, 2001,49(11): 1977-1987
    [88] Minn H., Bhargava V. K. An investigation into time-domain approach for OFDM channel estimation. IEEE Transactions on Broadcasting, 2000,46(4): 240-248
    [89] Meng-Han Hsieh, Che-Ho Wei. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels. IEEE Transactions on Consumer Electronics, 1998,44(1): 217-225
    [90] Gai Y. B., Li H. Y, He Z. Q., et al. DHT-based channel estimation for MIMO-OFDM systems. in. Marina Bay, SINGAPORE. IEEE, 2008. 883-887
    [91] Masry Elias, Mielniczuk Jan. Local linear regression estimation for time series with long-range dependence. Stochastic Processes and their Applications, 1999, 82(2): 173-193
    [92] Xiujuan Chai, Shiguang Shan, Xilin Chen, et al. Local Linear Regression (LLR) for Pose Invariant Face Recognition. in: FGR 2006. 7th International Conference on Automatic Face and Gesture Recognition, 2006. 631-636
    [93] Ferraty Frederic, Vieu Philippe. Nonparametric Functional Data Analysis: Theory and Practice. New York: Springer Science+Business Media, Inc, 2006.
    [94] Friedman J. A variable span smoother, Technical report Ics5. Department of Statistics, Stanford University, Stanford, CA., 1984,
    [95] 魏木生.广义最小二乘问题的理论和计算.北京:科学出版社,2006.
    [96] Haykin Simon. Adaptive Filter Theory. (4). New Jersey: Prentice Hall, 2001.
    [97] 802.16e~(TM)-2005 IEEE Std. IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands Corrigendum 1IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands Corrigendum 1. IEEE, 2005
    [98]ITU-R.Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000.ITU RECOMMENDATION,ITU-R M.1225,1997
    [99]Dong Li,Feng Guo,Guosong Li,et al.Enhanced DFT Interpolation-based Channel Estimation for OFDM Systems with Virtual Subcarriers.in:Vehicular Technology Conference,2006.VTC 2006-Spring.IEEE 63rd.2006.1580-1584
    [100]Gui(?)n Jos(?) Luis,Ortega Emma,Garc(?)a-Ant(?)n Jos(?),et al.,Moving Average and Savitzki-Golay Smoothing Filters Using Mathcad,in International Conference on Engineering and Education 2007,University of Coimbra,Portugal.
    [101]SAVITZKY ABRAHAM,GOLAY MARCEL J.E.Smoothing and Differentiation of Data by Simplified Least Squares Procedures.Analytical Chemistry,1964,36(8):1627-1639
    [102]Bromba Manfred U.A.,Ziegler Horst.Digital filter for computationally efficient smoothing of noisy spectra.Analytical Chemistry,1983,55(8):1299-1302
    [103]Bromba M.U.A.,Ziegler Horst.Efficient computation of polynomial smoothing digital filters.Analytical Chemistry,1979,51 (11):1760-1762
    [104]Bromba Manfired U.A.,Ziegler Horst.Application hints for Savitzky-Golay digital smoothing filters.Analytical Chemistry,1981,53(11):1583-1586
    [105]胡蝶.OFDM系统中基于导频的时变信道估计.电子与信息学报,2004,26(9)
    [106]Hoeher P.,Kaiser S.,Robertson P.Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering.in:ICASSP-97.,1997 IEEE International Conference on Acoustics,Speech,and Signal Processing,1997.vol.1843,1845-1848
    [107]Ji-Woong Choi,Yong-Hwan Lee.Design of 2-D channel estimation filters for OFDM systems.in:ICC 2005.IEEE International Conference on Communications,2005.Vol.2564,2568-2572
    [108]Chang M.X.,Su Y.T.2D regression channel estimation for equalizing OFDM signals.in:Vehicular Technology Conference Proceedings,2000.VTC 2000-Spring Tokyo.2000 IEEE 51 st.2000.vol.241,240-244
    [109]Seller O.Low complexity 2D projection-based channel estimators for MC-CDMA.in:PIMRC 2004.15th IEEE International Symposium on Personal,Indoor and Mobile Radio Communications,2004.Vol.2283,2283-2288
    [110]Mallat Stephane.A Wavelet Tour of Signal Processing.(2).New York:Academic Press, 1999.
    [111]Percival Donald B., Walden Andrew T. Wavelet Methods for Time Series Analysis. Cambridge, England: Cambridge University Press, 2000.
    [112]Cai Tony. On Block Thresholding in Wavelet Regression: Adaptivity, Block Size, And Threshold Level Statistica Sinica, 2002,12: 1241-1273
    [113]Cai Tony, Low Mark. Nonparametric Function Estimation Over Shrinking Neighborhoods: Superefficiency And Adaptation. The Annals of Statistics, 2005, 33: 184-213
    [114]Jun Sun, Dongfeng Yuan. Wavelet de-noising joint channel estimation in OFDM system. in: Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing, 2005. 231-232
    [115]Qi Y. H., Kobayashi H. A wavelet-based approach to channel estimation. in: Beaulieu, N. C. Hesselink L., editor. Banff, CANADA. Acta Press, 2002.255-260
    [116]Ribas C. H. H., Bermudez J. C. M., Bershad N. J. Low-complexity robust sparse channel identification using partial block wavelet transforms-analysis and implementation. in: ICASSP 2008. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. 3281-3284
    [117] Shark L. K., Yu C. Denoising by optimal fuzzy thresholding in wavelet domain. Electronics Letters, 2000,36(6): 581-582
    [118]Bekara M., Knockaert L., Seghouane A. K., et al. Seismic signal denoising using model selection. in: ISSPIT 2003. Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology, 2003. 235-238
    [119]Jia X., Gao Z. B. EEG signal denoising based on wavelet transform. in: Qi, J. and Cui, J. P., editors. Beijing, PEOPLES R CHINA. World Publishing Corporation, 2006. 506-509
    [120]Donoho D. L., Johnstone I. M. Threshold selection for wavelet shrinkage of noisy data. in: Engineering in Medicine and Biology Society, 1994. Engineering Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual International Conference of the IEEE. 1994. vol.21, A24-A25
    [121]Li Junli, Hou Yanqin, Wei Ping, et al. A Novel Method for the Determination of the Wavelet Denoising Threshold. in: ICBBE 2007. The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007. 713-716
    [122]Ma J. R, Wang H. K., Zhang X. Y. A new threshold selecting method in wavelet denoising algorithm. in: Li, J. P., Jaffard, S., Suen, C. Y., Daugman, J., Wickerhauser, V., Torresani, B., Yen, J., Zhong, N. and Pal, S. K., editors. Chongqing, PEOPLES R CHINA. World Scientific Publ Co Pte Ltd, 2004. 818-821
    [123]Hall Peter, Penev Spiridon, Kerkyacharian Gerard, et al. Numerical performance of block thresholded wavelet estimators. Statistics and Computing, 1997, 7(2): 115-124
    [124]Cai Tony. Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach The Annals of Statistics, 1999,27: 898-924
    [125]Cai Tony, Silverman Bernard W. Incorporate Information on Neighboring Coefficients into Wavelet Estimation Sankhya, 2001, 63: 127-148
    [126]Cai Tony, Zhou Harrison. A Data-Driven Block Thresholding Approach To Wavelet Estimation The Annals of Statistics, 2009,37: 569-595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700