几种网络控制系统的故障检测与容错控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过通信网络实现地域上分布的系统部件之间的信息交互,形成闭环反馈的控制系统被称为网络控制系统(Networked Control System, NCS)。网络控制系统具有连线少、占用空间少、实现成本低、安装维护方便等优点,但网络本身的复杂性,给系统的分析和设计带来了困难,也使得网络控制系统在工程应用中对安全性、可靠性的要求更高。在含有时延和数据包丢失的网络环境下,本文以几种不同的网络控制系统为研究对象,研究了它们的故障检测与容错控制问题,以期提高NCS的安全性和可靠性,为其能更好的应用于工程实际做好理论铺垫。本文的主要研究成果如下:
     (1)针对包含时延且丢包率已知的网络控制系统,提出了一种基于观测器的故障检测方法。利用异步动态系统理论,给出了故障观测器指数稳定的充分条件及其设计方法。针对丢包率未知的NCS,将系统建模为含有四个模态的马尔可夫跳变系统,提出了一种鲁棒故障检测方法。利用马尔可夫跳变系统理论设计了故障检测滤波器,使得残差动态系统均方稳定且具有一定的扰动抑制水平。考虑参数不确定性和执行器连续增益故障的情况,给出了闭环故障系统均方稳定的充分条件和容错控制器的设计方法。
     (2)针对包含马尔可夫随机时延的NCS,提出了一种鲁棒故障检测方法和一种容错控制器设计方法。通过构造系统的残差发生器,将相应的故障检测问题转化为H∞滤波问题,给出了基于线性矩阵不等式形式的故障检测滤波器存在的充分条件及其设计方法。采用锥补线性化技术,给出了基于动态输出反馈的容错控制器的设计方法。
     (3)考虑丢包过程满足有限状态马尔可夫链性质,针对多执行器失效故障,提出了一种NCS主动容错控制策略。设计了系统的保性能被动容错控制器:在此基础上,为提高控制性能,分别针对不同的执行器失效模式,给出了丢包网络环境下系统的主动容错控制策略和设计方法。
     (4)针对包含时延和丢包的一种连续时间NCS,提出了一种保性能容错控制器和一种鲁棒H∞容错控制器的设计方法。通过引入积分不等式和松弛矩阵变量,给出了此种系统基于矩阵不等式表示的保性能容错控制器存在的充分条件及其设计方法;考虑系统具有参数不确定性,通过引入新的Lyapunov-Kraso vskii泛函,得到了保守性较小的故障系统鲁棒稳定性条件,并给出了使故障系统满足给定的扰动抑制性能指标的鲁棒H∞容错控制器的设计方法。
     (5)针对一种由T-S模糊模型描述的非线性NCS,研究了包含时延和丢包情况下系统的故障检测与容错控制问题。给出了系统故障观测器增益的设计方法,保证了残差信号对故障信号敏感且对干扰具有一定的鲁棒性;针对包含参数不确定性的非线性NCS,提出了一种鲁棒H∞模糊容错控制器设计方法。采用时滞依赖的分析方法,获得了系统鲁棒稳定条件。并引入锥补线性化方法,给出了求解控制器的迭代算法。
     最后,在总结全文工作的基础上,给出了本文后续需进一步探讨的一些问题。
The control systems that control loops are closed through communication network are called networked control systems (NCS). It aims to ensure data transmission and coordinating manipulation among spatially distributed components of the system. NCS have enormous advantages, such as less wire and volume, lower cost, easy installation and maintenance, etc. However, the complexity introduced by communication networks makes the analysis and design of the system complicated, and this kind of system has higher level of demands for safety and reliability. This dissertation focuses on the fault detection and fault-tolerant control problems for several kinds of NCS with network delay and data packet dropout. The model-based fault detection method and the fault-tolerant controller design method for the system are proposed so as to increase safety and reliability of the NCS and to provide a theoretical backbone for its engineering applications. The main contributions can be enumerated as follows:
     First, the observer-based fault detection method for NCS with networked introduced delay and fixed rate of data packet dropout is proposed. Based on the asynchronous dynamical system theory, the sufficient condition of exponential stable for the fault observer system is presented, and the fault observer design method is also provided. In addition, for the NCS with unknown rate of data packet dropout, the robust fault detection approach is provided. The system is modeled as Markovian jump system with four operation modes. The design method for fault detection filter is proposed to insure the mean-square stability for the residual generation system and attenuate the disturbance to a prescribed level. Furthermore, by considering parametric uncertainties and actuator continuous gain faults, the necessary and sufficient condition of mean-square stable for the closed loop faulty system is given and the fault-tolerant controller design method is proposed.
     Second, the robust fault detection method and fault-tolerant controller design approach is provided for NCS with Markovian delays. The residual generator is constructed so that the fault detection problem can be formulated as an H∞filtering problem. A sufficient condition to solve this problem is established in terms of the feasibility of certain linear matrix inequalities (LMI), and the fault detection filter gain design procedure is proposed. Based on the same NCS model, the dynamic output feedback fault-tolerant controller is designed by using cone complementary technology.
     Third, for multi-actuator failures, the fault-tolerant control strategy for NCS with Markovian packet dropout is given with stability guaranteed. The guaranteed cost passive fault-tolerant controller for the system is designed. Then, with consideration of control performance and different actuator failure model, the design procedure of the active fault-tolerant controller for NCS with packet dropout is proposed.
     Fourth, the design approach of guarantee cost fault-tolerant controller and robust H∞fault-tolerant controller is proposed for continuous-time NCS with time-delay and packet dropout. By introducing integral-inequality and slack variables methods, the sufficient condition for the existence of the guaranteed cost controller in terms of matrix inequalities is obtained and the guaranteed cost robust fault-tolerant controller is designed. Furthermore, by introducing new Lyapunov functional, the less conservative robust stability conditions for system with parametric uncertainties are obtained, and the robust H∞fault-tolerant controller that achieves the prescribed disturbance attenuation level is also designed.
     Fifth, based on a nonlinear NCS approximated by T-S fuzzy models, the fault detection and fault-tolerant control problems for a class of nonlinear NCS with time-delay and packet dropout are studied. The fault detection observer is designed such that the residual signal is sensitive to the fault but robust to exogenous disturbance for a certain level. Then, the fuzzy robust H∞fault-tolerant controller is designed for the nonlinear NCS with parametric uncertainties. The robust stability conditions are obtained based on delay-dependent approach. An algorithm is given to get a feasible solution to the fuzzy fault-tolerant controller gain by using a cone complementary technology.
     Finally, some open issues and the future work in fault detection and fault-tolerant control of NCS are discussed.
引文
[1]. Nilsson J. Real-time control systems with delays. Lund Institute of Technology, Sweden,1998.
    [2]. Zhang W. Stability analysis of networked control systems.Western Reserve University, United States,2001.
    [3]Chow M Y, Tipsuwan Y. Network-based control systems:a tutorial. IECON'01 on Industrial Electronics Society. Denver, USA:IEEE,2001(3).1593-1602.
    [4]Hespanha J P, Naghshtabrizi P, Xu Y G. A survey of recent results in networked control systems. Proceedings of the IEEE,2007,95(1):138-162.
    [5]Oboe, R. Web-interfaced, force-reflecting teleoperation systems. IEEE Trans. Industrial Electronics,2001,48(6):1257-1265.
    [6]黎善斌.网络控制系统的鲁棒控制算法研究.浙江大学,中国,2005.
    [7]Isermann, R., Model-based fault-detection and diagnosis-status and applications, Annual Reviews in Control,2005,29(1):71-85.
    [8]Levis A. Challenges to control:a collective view, Report of the Workshop held at the university of Santa Clara on September 18-19,1986. IEEE Transactions on Automatic Control,1987,32(4):275-285.
    [9]Isermann R., Balle P.. Trends in the application of Model-based Fault Detection and Diagnosis of Technical Processes. Proceedings of IFAC World Congress. San Francisco, US A.1996,1-12.
    [10]Patton R, Frank P M, Clark R, Fault diagnosis in dynamic systems, New York: Prentice Hall,1989.
    [11]叶银忠,潘日芳,蒋慰孙,动态系统故障检测及诊断方法.信息与控制,1985,14(6):27-34.
    [12]周东华,孙优贤.控制系统的故障检测与诊断技术.北京:清华大学出版社,1994.
    [13]Patton R J. Robustness issues in fault tolerant control. IEE Colloquium on Fault Diagnosis and Control System Reconfiguration, London UK, May 1993:1/1-1/25.
    [14]周东华,叶银忠.现代故障诊断与容错控制.北京:清华大学出版社,2000.
    [15]Beard R V, Failure Accommodation in Linear Systems through Self-reorganization. Cambridge, Massachusetts, USA, Man Vehicle Lab, MIT,1971.
    [16]Mehra R. K., Peschon J.. An Innovation Approach to Fault Detection and Diagnosis in Dynamics. Automatica,1971,7:637-640.
    [17]Niederlinski A. A heuristic approach to the design of interacting multivariable systems. Automatica,1971,7:691-701
    [18]闻新,张洪钺,周露,控制系统的故障诊断和容错控制.北京:机械工业出版社,1998.
    [19]Zhang X J, Auxiliary signal design in fault detection and diagnosis, Berlin: Springer-Verlag,1991.
    [20]Bin Jiang, Marcel Staroswiecki and Vincent Cocquempot, Fault accommodation for a class of nonlinear systems, IEEE Transactions on Automatic Control,2002,75(11): 792-802.
    [21]Isermann R. Fault diagnosis of machines via parameter estimation and knowledge processing-tutorial paper. Automatica.1993,29(4):815-835.
    [22]张萍,王桂增,周东华.动态系统的故障诊断方法.控制理论与应用,2000.17(2):153-158.
    [23]岳东,彭晨.网络控制系统的分析与综合.北京:科学出版社,2007.
    [24]张庆灵,邱占芝.网络控制系统.北京:科学出版社,2007.
    [25]Fang H J, Ye H, Zhong M Y, Fault diagnosis of networked control systems. In:the 6th IFAC Symposium on Fault detection, Supervision and safety of technical process 2006,Beijing, China,1135-1140
    [26]Special Issue on networked control systems. IEEE Control Systems Magazine,2001, 21(1).
    [27]Special Issue on networked control systems. IEEE Transactions on Automatic Control, 2004,49(9).
    [28]Special Issue on technology of networked control systems. Proceedings of IEEE, 2007,95(1).
    [29]Special issue on networking, sensing and control for networked control systems: architectures, algorithms and applications. IEEE Transactions on Systems, Man and Cybernetics-Part C:Applications and Reviews,2007,37(2).
    [30]Special issue on networked embedded hybrid control systems. Asian Journal of Control,2008,10(1).
    [31]Tipsuwan Y, Chow M Y. Control methodologies in networked control systems. Control Engineering Practice.2003,11(10):1099-1111.
    [32]Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real time systems with random time delays. Automatics,1998,34(1):57-64.
    [33]Schedl A V. Design and simulation of clock synchronization in distributed systems.Vienna:Technique University Vienna,1996.
    [34]Cervin A, Henriksson D, Lincoln B, et al. How does control timing affect performance? Analysis and simulation of timing using jitterbug and true-time. IEEE Control Systems Magazine,2003,23(3):16-30.
    [35]于之训,陈辉堂,王月娟.时延网络控制系统的方指数稳定的研究.控制与决策,2000,15(3):278-281.
    [36]郭戈,贾二娜.网络化控制系统中的延时问题:分析与展望.控制与决策,2009,24(1):1-6.
    [37]Anderson D, Fire Wire system architecture. Reading, MA:Addison-Wesley,1998.
    [38]Feng L L, James M, Dawn T. Optimal controller design and evaluation for a class of networked control systems with distributed constant delay. Proc. of American Control Conf. Anchorage,2002:3009-3014.
    [39]Ho-Jun Yoo, Hee-Seob, Kyung-Sang Yoo, et. al,. Compensation of networked control systems using LMI-based delay-dependent optimization method. SICE, Osaka,2002, 364-369.
    [40]Battilotti S. Control over a communication channel with random noise and delays Automatica,2008,44(2):348-360.
    [41]Ray A. Out feedback control under randomly varying distributed delays. Measurement and Control,1994,17(4):701-711.
    [42]Hu S S, Zhu Q X. Stochastic optimal control and analysis of stability of network control systems with long delay. Automatica,2003,39(11):1877-1884.
    [43]Zhang L Q, Shi Y, Chen T W, Huang B. A new method for stabilization of networked control systems with random delays. IEEE Transactions on Automatic Control,2005, 50(8):1177-1181.
    [44]Liu G P, Xia Y Q, Chen J, Rees D, Hu W. Networked predictive control of systems with random network delays in both forward and feedback channel. IEEE Transactions on Industrial Electronics,2007,54(3):1282-1297.
    [45]Zhong M Y, Jia L, Wang J H. An LMI approach to H∞ control of networked control systems. Systems Science,2004,29(1):47-60.
    [46]余世明,杨马英,俞立.网络控制系统中随机传输时延的预测补偿研究.自动化 学报,2005,31(2):231-238.
    [47]樊卫华,蔡烨,胡维礼等.时延网络控制系统的稳定性.控制理论与应用,2004,21(6):880-884.
    [48]Lian F L, James M, Dawn T. Modeling and optimal controller design of networked control systems with multiple delays. International Journal of Control,2003,76(6): 591-606.
    [49]谢林柏,方华京,纪志成等.时延网络控制系统的H2/H∞合控制.控制理论与应用,2004,21(6):1020-1024.
    [50]姜培刚,姜偕富,李春文等.基于LMI方法的网络化控制系统的H∞鲁棒控制.控制与决策,2004,19(1):17-21.
    [51]Lian F L, Moyne J, Tilbury D. Analysis and modeling of networked control systems: MIMO case with multiple time delays. Proc. of the American Control Conference, Arlington, VA,2001,4306-4312.
    [52]Yue D, Han Q L, Peng C. State feedback controller design of networked control systems. IEEE Transactions Circuits and Systems-II:Express Briefs,2004, 51(1l):640-644.
    [53]Yue D, Han Q L, Lam J. Network-based robust H∞ control of systems with uncertainty. Automatica,2005,41(6):999-1007.
    [54]Yue D, Han Q L. Network-based robust H∞ filtering for uncertain linear systems IEEE Transactions on Signal Processing,2006,54(11):4293-4301.
    [55]Gao H J, Chen T W. Network-Based H∞ Output Tracking Control. IEEE Transactions on Automatic Control,2008,53(3):655-667.
    [56]Huang D, Sing Kiong Nguang, State feedback control of uncertain networked control systems with random time-delays, IEEE Transactions on Automatic Control,2008, 53(3):829-834.
    [57]Schenato L. Optimal Estimation in Networked Control Systems Subject to Random Delay and Packet Drop. IEEE Transactions on Automatic Control,2008,53(5): 1311-1317.
    [58]Huang D, Sing Kiong Nguang. Robust output feedback control for networked control systems with networke-introduced delays and packet drop-outs. Control and Decision Conference, China: IEEE,2008,717-722.
    [59]Gao H, Chen T W, Lam J, A new delay system approach to network-based control. Automatica,2008,44(1):39-52.
    [60]Vatanski N, Georges J P, Aubrun C, et al. Networked Control with Delay Measurement and Estimation. Control Engineering Practice,2009,17(2):231-244.
    [61]Zhivogiyadov P V, Middleton R H. Networked control design for linear systems. Automatica,2003,39(4):743-750.
    [62]Hassibi A, Boyd S P, How J P. Control of asynchronous dynamical systems with rate constraints on events. Proc. of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA:IEEE.1999,1345-1351.
    [63]Sun H Y, Hou C Z, Stability of networked control systems with data packet dropout and multiple-packet transmission. Control and Decision,2005,20(5):511-515.
    [64]Seiler P, Sengupta R. An H∞ approach to networked control. IEEE Transactions on Automatic Control,2005,50(3):356-364.
    [65]Yu M, Wang L, Chu T, et al. Stabilization of networked control systems with data packet dropout and network delays via switching system approach. In 43rd IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas.2004, 3539-3544.
    [66]Zhang W, Branicky M S, Phillips S. M. Stability of networked control systems. IEEE Control Systems Magazine,2001,21(1):84-99.
    [67]Xiong J L, Lam J, Stabilization of linear systems over networks with bounded packet loss. Automatica,2007,43(1):80-87.
    [68]王武,林琼斌,杨富文.具有数据丢失的网络控制系统的H∞输出反馈控制.信息与控制,2007,36(3):285-292.
    [69]Brockett R, Liberzon D, Quantized feedback stabilization of linear systems. IEEE Transactions on Automatic Control,2000,45(7):1279-1289.
    [70]Yue D, Peng C, Tang G Y. Guaranteed cost control of linear systems over networks with state and input quantizations, IEE Proceedings:Control Theory and Applications, 2006,153(6):658-664.
    [71]Tian E G, Yue D, Cheng P. Quantized output feedback control for networked control systems. Information Sciences,2008,178(12):2734-2749.
    [72]Branicky M S, Phillips S M, Zhang W. Scheduling and feedback co-design for networked control systems. Proceedings of the IEEE Conference on Decision and Control. Piscataway, NJ, USA:IEEE,2002.1211-1217.
    [73]Rehbinder H, Sanfridson M. Scheduling of a limited communication channel for optimal control. Proceedings of the IEEE Conference on Decision and Control. Piscataway, NJ, USA:IEEE,2000.1011-1016.
    [74]Hong S H. Scheduling algorithm of data sampling times in the integrated communication and control systems. IEEE Transactions on Control Systems Technology,1995,3(2):225-230.
    [75]Walsh G C, Ye H. Scheduling of networked control systems. IEEE Control System Magazine,2001:57-65
    [76]Otanez P, Moyne J, Tilbury D. Using deadbands to reduce communication in networked control systems. Proceeding of the American control conference, Anchorage, USA,2002:615-619.
    [77]Lian F.L, Analysis, design, modeling and control of networked control systems. University of Michigan,2001.
    [78]Ye H., Walsh G., Bushnell L. Real-Time Mixed-Traffic Wireless Networks. Transactions on Industrial Electronics.2001,48(51):883-890.
    [79]Halevi Y, Ray A, Integrated communication and control systems:Part I-analysis Journal of Dynamic Systems, Measurement, and Control,1988,110(4):367-373.
    [80]Ray A, Halevi Y, Integrated communication and control systems:Part II-design considerations. Transactions of ASME,1988,110(4):374-381. Luck R, Ray A. An Observer-based Compensator for distributed delays. Automatica,1990, 26(5):903-908.
    [81]Luck R, Ray A. An Observer-based Compensator for distributed delays. Automatica, 1990,26(5):903-908.
    [82]Nillsson J, Bernhardsson B, Analysis of real time control systems with time delays. Proceeding of the 35th IEEE CDC, Kobe, Japan: IEEE,1996:3173-3178.
    [83]Nillsson J, Bernhardsson B, LQG control over a Markov communication network. Proceeding of the 36th IEEE CDC, San Diego, California, USA:IEEE 1997: 4586-4591.
    [84]Hu S S, Zhu Q X. Stochastic optimal control and analysis of stability of networked control systems with long delay. Automatica,2003,39(11):1877-1884.
    [85]Lin Xiao, Hassibi A, How J P. Control with random communication delays via a discrete-time jump system approach. Proc. of the American Control Conference, Chicago, Illinois, USA:IEEE.2000,2199-2204.
    [86]Walsh G C, Ye H, Bushnell L G, Stability analysis of networked control Systems. IEEE Transactions Control Systems Technology,2002,10(3):438-446. Rabello A, Bhaya A, Stability of asynchronous dynamical systems with rate constraints and applications. IEE Proc Control Theory Application,2003,150(5):546-550.
    [87]Rabello A, Bhaya A, Stability of asynchronous dynamical systems with rate constraints and applications. IEE Proc Control Theory Application,2003,150(5): 546-550.
    [88]于之训,陈辉堂,王月娟.基于Markov延迟特性的网络系统的控制研究.控制理论与应用,2002,19(2):263-267.
    [89]朱其新,胡寿松.网络控制系统的随机状态反馈控制.南京航空航天大学学报,2003,35(6):616-620.
    [90]朱其新,胡寿松.网络控制系统的随机输出反馈控制.应用科学学报,2004,22(1):71-75.
    [91]朱其新,胡寿松,候霞.长时滞网络控制系统的随机稳定性研究.东南大学学报,2003,33(3):368-371.
    [92]Goktas F. Distributed control of systems over communication networks. Department of Electrical and Computer, University of Pennsylvania, USA,2000.
    [93]Seder P, Sengupta R. Analysis of Communication Losses in Vehicle Control Problems. Proc. of the American Control Conference, Arlington, VA,2001(2):1491-1496.
    [94]于之训,陈辉堂,王月娟.基于H∞和μ综合的闭环网络控制系统的设计.同济大学学报,2001,29(3):307-311.
    [95]黄剑,关治洪,王仲东.不确定网络控制系统具有H∞性能界的鲁棒控制.控制与决策.2005,20(9):1002-1005.
    [96]谢林柏,方华京,纪志成,郑英.时延网络化控制系统的H2/H∞合控制.控制理论与应用,2004,21(6):1020-1024.
    [97]Zhang H G, Li M, Yang J, et al. Fuzzy model-based robust networked control for a class of nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,2009,39(2):437-447.
    [98]Almutairi N B, Chow M Y, Tipsuwan Y. Network-based controlled DC motor with fuzzy compensation. The 27th Annual Conference of the IEEE Industrial Electronics Society, NewYork, USA:IEEE.2001(3):1844-1849.
    [99]Almutairi N B, Chow M Y. PI Parameterization using adaptive fuzzy modulation (AFM) for networked control systems-Part I:Partial Adaptation. IEEE Proc. Of IECON 2002, Sevilla, Spain,2002:3152-3157.
    [100]Lee K C, Lee S. Remote controller design of networked control system using genetic algorithm. Proc. of IEEE Int. Symposium on Industrial Electronics. Pusan, Korea, 2001(3):1845-1850.
    [101]Tipsuwan Y and Chow M. On the gain scheduling for networked PI controller over IP network. ASME Transactions on Mechatronics,2004,9(3):491-498.
    [102]熊远生,俞立,余世明.网络控制系统的滑模多步预估控制.控制理论与应用,2005,22(2):301-306.
    [103]Wang Q, Yi J Q, Zhao D B, et al. Time delay compensation for networked control system based on SMC. Proc. of the 2004 IEEE Intelligent Transportation Systems Conference, Washington, D.C., USA,2004:831-835.
    [104]Wong, W. S. and Brockett, R. W. Systems with finite communication bandwidth constraints-Part I:state estimation problems. IEEE Transactions on Automatic Control,1997,42(9):1294-1299.
    [105]Tatikonda, S. Control under communication constraints. Ph.D. thesis, Massachusetts Institute of Technology.2000.
    [106]Tipsuwan Y, Chow M Y. Gain scheduler middleware:a methodology to enable existing controllers for networked control and teleoperation part I:networked control. IEEE Transactions on Industrial Electronics,2004,51(6):1218-1226.
    [107]Chow M, Tipsuwan Y. Gain adaptation of networked DC motor controllers based on QoS variations, IEEE Transactions on Industry Electronics,2003,50(5):936-943.
    [108]Lee K C, Lee S, Lee M H. QoS-based remote control of networked control systems via profibus token passing protocol. IEEE Transactions on Industrial Informatics, 2005,1(3):183-191.
    [109]叶银忠,潘日芳,蒋慰孙.控制系统的容错技术:回顾与展望,化工进展,1989,2:38-43.
    [110]葛建华,孙优贤.容错控制系统的分析与综合.杭州:浙江大学出版社,1994.
    [111]张育林,李东旭.动态系统故障诊断理论与应用.长沙:国防科技大学出版社,1997.
    [112]王福利,张颖伟.容错控制.沈阳:东北大学出版社,2003.
    [113]王仲生.智能故障诊断与容错控制.西安:西北工业大学出版社,2005.
    [114]Garcia E A., Frank P M. On the relationship between observer and parameter identification basedapproaches to fault diagnosis. Proc. of IFAC World Congress, San Francisco, USA,1996,25-29.
    [115]Gertler J. Diagnosis parametric faults:from parameter estimation to parity relations.
    American Control Conference, Seattle, USA,1995,1615-1620.
    [116]Clark R N, Fosth D C, Walton V M. Detecting systems instrument malfunctions in control. IEEE Transactions on Aerospace&Electronic Systems,1975,11:465-473.
    [117]Edwards C, Spurgeon S K, Patton R J. Sliding mode observers for fault detection and isolation.Automatica,2000,36(3):541-553.
    [118]Tan C P; Edwards C. Sliding mode observers for detection and reconstruction of sensor faults. Automatica,2002,38(10):1815-1821.
    [119]Chen J, Patton R J, Zhong H. Design of unknown input observers and robust detection filters. International Journal of Control,1996,63(1):85-10.
    [120]Duan G R, Howe D, Patton R J. Robust fault detection in descriptor linear systems via generalized unknown input observers. Proceedings of the IFAC 14th world Congress, Beijing China,1999,43-48.
    [121]Wang H, Dalev S. Actuator fault diagnosis:an adaptive observer-based technique. IEEE Transactions on Automatic Control,1996,41(7):1073-1078.
    [122]Wang H, Huang Z J, Dalev S. On the use of adaptive updating rules for actuator and sensor fault diagnosis. Automatica,1997,33(2):217-225.
    [123]Chen J, Lopez-Toribio C J, Patton R J. Non-linear dynamic systems fault detection and isolation using fuzzy observers. Proc. Instn. Mech. Engrs.1999,213(16): 467-476.
    [124]Persis C D. A necessary condition and a backstepping observer for nonlinear fault detection. Proceedings of the IFAC 14th world Congress, Beijing China,1999, 2896-2901.
    [125]Patton R J, Chen J. A review of parity space approaches to fault diagnosis. Proceedings of IFAC Fault Detection, Supervision and Safety for Technical Processes, Baden, Germany,1991:65-81.
    [126]Wang D S, Chang S K, Hsu P L. A practical design for a robust fault detection and isolation system. International Journal of Systems Science,1997,28(3):265-275.
    [127]Yu D. Fault diagnoses for hydraulic drive systems using a parameter estimation method. Control Engineering Practice,1997,5(9):1283-1291.
    [128]Demetriou M A, Polvcarpou M M. Incipient fault diagnosis of dnamical systems using online approximator.1998,43(11):1612-1617.
    [129]周东华,孙优贤,席裕庚等.一类非线性系统参数偏差型故障的实时检测与诊断.自动化学报,1993,19(2):184-189.
    [130]周东华.一类非线性系统的传感器故障检测与诊断新方法闭.自动化学报,1995,21(3):362-365.
    [131]李渭华,萧德云,方崇智.基于δ算子的格形故障检测滤波器.自动化学报,1994,20(4):413-419.
    [132]李渭华,萧德云,方崇智.一种基于自适应滑动窗格形滤波算法的故障检测器.自动化学报,1996,22(2):251-253.
    [133]叶昊,王桂增,方崇智.基于脉冲响应函数的正交小波变换系数的故障检测方法.控制理论与应用,1999,16(1):6-9.
    [134]Zhao Z, Gu X, Jiang W. Fault detection based on wavearx neural network. Proc. of 14th IFAC World Congress, Beijing, China,1999,145150.
    [135]马林立,孙尧.基于信息融合的控制系统故障诊断.红外与激光工程,2002,31(1):36-40.
    [136]Kumamaru K, et al. Robust fault detection using index of Kullback discrimination information. Proc. of 13th IFAC World Congress, San Francisco, USA,1996; 205-210.
    [137]Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J.1998,44(7):1596-1610.
    [138]Rotem Y, Wachs A, Lewin D R. Ethylene compressor monitoring using model-based PCA. AIChE J.2000,46(9):1825-1836.
    [139]丁海庆,庄志洪,祝龙石等.混沌、分形和小波理论在被动信号特征提取中的应用闭.声学学报,1999,24(2):197-203.
    [140]Isermann R, Ayoubi M. Neuro-fuzzy systems for diagnosis. Fuzzy Sets and Systems. 1997,89:289-307.
    [141]Akhmetov D F, Dote Y, Ovaska S J. Fuzzy neural network with general parameter adaptation for modeling of nonlinear time-series. IEEE Transactions on Neural Networks,2001,12(1):148-152.
    [142]Zhong N, Dong J, Ohsuga S. Using Rough Sets with Heuristics for Feature Selection. Journal of Intelligent Information Systems.2001,16(2):199-214.
    [143]Roy A, Pal S K. Fuzzy discretization of feature space for a rough set classifier. Pattern Recognition Letters,2003,24(6):895-902.
    [144]Manders E J, et al. Signal interpretation for monitoring and diagnosis-a cooling system tested. IEEE Transactions on Instru. and Measur.2000,49(3):503-508.
    [145]王文辉,周东华.基于定性和半定性方法的故障检测与诊断技术.控制理论与 应用,2002,19(5):653-659.
    [146]Wu H N, Zhang H Y. Reliable mixed 12/H∞ fuzzy static output feedback control for nonlinear systems with sensor faults. Automatica,2005,41(11):1925-1932.
    [147]葛建华,孙优贤,周春辉.故障系统容错能力判别的研究.信息与控制,1989,18(4):8-11.
    [148]Gao J, Huang B, Wang Z, Fisher D. Robust reliable control for a class of uncertain nonlinear systems with time-varying multi-state time delays. International Journal of Systems Science,2001,32(7):817-824.
    [149]Yang G H, Wang J L, Soh Y C. Reliable H∞, controller design for linear systems. Automatica,2001,37(4):717-725.
    [150]Yu L. An LMI approach to reliable guaranteed cost control of discrete-time systems with actuator failure. Applied Mathematics and Computation,2005,162:1325-1331
    [151]Pujol G, Rodellar J, Rossell J M, Pozo F. Decentralised reliable guaranteed cost control of uncertain systems:an LMI design. IET Control Theory Application,2007, 1(3):779-785.
    [152]Gao Z, Antsaklis P J. Stability of the Pdeudo-inverse method for reconfigurable control systems. International Journal of Control.1991,53(3):711-729.
    [153]Bao G, Liu G, Jiang J, Lam C. Active fault-tolerant control system design for a two-engine bleed air system of aircraft. The 23rd Congress of The International Council of the Aeronautical Sciences, Canada,2002:6102.1-6.
    [154]Li W, Xu W Z, Wang J. Active fault tolerant control using BP network application in the temperature control of 3-layer PE steel pipe producing. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangahou, China,2004, 1525-1529.
    [155]Huang C Y, Stengel R F. Restructurable control using proportional-integral implicit model following. Journal of Guidance Control and Dynamics,1990,13(2),303-309.
    [156]Morse W D, Ossman K A. Model following reconfigurable flight control systems for the AFTI/F-16. Journal of Guidance Control and Dynamics,1990,13(6),969-976.
    [157]Jiang J. Design of reconfigurable control systems using eigenstructure assignments. International Journal of Control,1994,59(2):394-410.
    [158]Jiang J, Zhao Q. Fault tolerant control system synthesis using imprecise fault identification and reconfigurable control. Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference, Gainthersburg, MD,1998:169-174.
    [159]Jiang J, Zhao Q. Reliable state feedback control system design against actuator failures. Automatica,1998,34(10):1267-1272.
    [160]Maybeck P S. Application of multiple model adaptive algorithms to reconfigurable flight control. Control and Dynamic Systems,1992,52:291-320.
    [161]Narendra K S, Balakrishnan J. Adaptive control using multiple models. IEEE Trans. on AC,1997,42(1):171-187.
    [162]Srichander R, Walker B K. Stochastic Stability analysis for continuous-time fault tolerant control systems. Internal Journal of Control,1993,57 (3):433-452.
    [163]Doman D B, Ngo A D. Dynamic inversion-based adaptive/reconfigurable control of the X-33 on ascent. Journal of Guidance Control and Dynamics,2002,25(2): 275-284.
    [164]Kale M M, Chipperfield A J. Stabilized mpc formulations for robust reconfigurable flight control. Control Engineering Practice,2005,13(6):771-788.
    [165]Hess R A, Wells S R. Sliding mode control applied to reconfigurable flight control design. Journal of Guidance Control and Dynamics,2003,26(3):452-462.
    [166]Ocampo M C, Puig V, Quevedo J. Actuator fault-tolerance evaluation of constrained nonlinear MPC using constraints satisfaction.6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing China, Aug. 2006:1489-1495.
    [167]Thomas S, Chang B C, Kwatny H G. Controller reconfiguration for nonlinear systems using composite observer. Proceedings of the American Control Conference, 2003:4779-4784.
    [168]潘晓宁,胡寿松.基于神经网络非线性时滞系统的鲁棒可靠控制器设计.南京航空航天大学学报,2003,35(2):208-211.
    [169]Wang Y, Liu L, Zhou D H. Reliable memory feedback design for a class of nonlinear fuzzy systems with time-varying delay.6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Beijing China, Aug.2006, pp.799-804.
    [170]孙金生,李军,王执拴.不确定离散系统的D稳定鲁棒容错控制.控制理论与应用,1998,15(4):636-64.
    [171]周玉国,张颖伟,王福利.线性不确定系统的容错控制.东北大学学报(自然科学版),2001,22(5):473-476.
    [172]周东华,Ding X.容错控制理论及其应用.自动化学报,2000,26(6):788-797.
    [173]Belfore L A, Arkadan A. A methodology for characterizing fault tolerant switched reluctance motors using neurogenetically derived models. IEEE Transactions Energy Conversion,2002,17(3):380-384.
    [174]Gary G Y, DeLima P G. Improving the performance of globalized dual heuristic programming for fault tolerant control through an online learning supervisor, IEEE Transactions on Automation Science and Engineering,2005,2(2):121-131.
    [175]Zhou D H, Frank P M. Fault diagnostics and fault tolerant control. IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):420-427.
    [176]Zhang G, Yang Y L, Wang Z Q. Adaptive Fault tolerant control system design for nonlinear systems with actuator failures. Proceedings of the 4th International Conference on Machine Learning and Cybernetics,2005:499-505.
    [177]Yang H, Mao Z, Jiang B. Model-based fault tolerant control for Hybrid dynamic systems with sensor faults. Acta Automatica Sinica,2006,32(5):680-685.
    [178]Zhang D F, Wang Z Q, Hu S S. Robust satisfactory fault-tolerant control of uncertain linear discrete-time systems:an LMI approach. International Journal of Systems Science,2007,38(2):151-165.
    [179]Zhang D F, Su H Y, Wang Z Q. Satisfactory fault-tolerant controller design for uncertain systems subject to actuator faults. Chinese Journal of Scientific Instrument, 2008,29(5):921-926.
    [180]Zheng Y, Fang H J, Xie L B, et al. An observer-based fault detection approach for networked control system. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applications & Algorithms,2003, (Suppl):416-421.
    [181]Zheng Y, Fang H J, Wang H, et al. Fault detection approach for networked control system based on a memoryless reduced-order observer. ACTA Automatica Sinica, 2003,29(4):559-566.
    [182]Bao Y, Dai Q Q, Cui Y L, et al. Fault detection based on robust Hoo states observer on networked control systems. Proceedings of 2005 International Conference on Control and Automation, Budapest, Hungary:IEEE,2005,1237-1241.
    [183]朱张青,周献中.不确定长时延网络控制系统的鲁棒故障检测.第六届全球智能控制与自动化大会会议录,大连:IEEE,2006,5670-5674.
    [184]谢林柏,纪志成,方华京.具有异步时延的网络化控制系统故障检测.系统仿真学报,2005,17(11):2717-2721.
    [185]马力伟,田作华,施颂椒.基于时滞补偿观测器的网络化控制系统故障检测.
    上海交通大学学报,2008,42(2):231-235.
    [186]陈雨,张颖伟.基于观测器的网络控制系统的故障检测.控制工程,2007,14(S2):120-123.
    [187]Zheng Y, Fang H J,Wang YW. Kalman filter based FDI of networked control systems. Proceedings of the 5th World Congresson Intelligent Control and Automation. Hangzhou, China: IEEE,2005:1330-1333.
    [188]Wang Y W, Zheng Y. Kalman filter based fault diagnosis of networked control system with white noise. Journal of Control Theory and Applications,2005,3(1): 55-59.
    [189]郑英,方华京,谢林柏,等.具有随机时延的网络化控制系统基于等价空间的故障诊断.信息与控制,2003,32(2):155-159.
    [190]Winstead V, Kolmanovsky I. Observers for fault detection in networked systems with random delays. Proceedings of the 2004 American Control Conference. Boston, USA: IEEE,2004:2457-2462.
    [191]Fang H J, Ye H, Zhong M Y. Fault diagnosis of networked control systems. Proceedings of IFAC Safeprocess. Beijing, China: IFAC,2006,1-12.
    [192]Zheng Y, Fang H J, Wang H O. Takagi-Sugeno fuzzy-modelbased fault detection for networked control systems with markov delays. IEEE Transactions on Systems, Man, and Cybernetics-PartB:Cybernetics,2006,36(4):924-929.
    [193]Mao Z, Jiang B, Shi P. Hoo fault detection filter design for networked control systems modelled by discrete markovian jump systems. IET Control Theory & Applications, 2007,1(5):1336-1343.
    [194]Zhong M Y, Liu Y X, Ma C F. Observer-based fault detection for networked control systems with random time-delays. Proceedings of the first International Conference on Innovative Computing, Information and Control. Beijing, China: IEEE,2006, 3:528-531.
    [195]Li S B, Dominique S D Aubrun C. Robust fault isolation filter design for networked control systems, emerging techonologies and factory automation. Proc. of the IEEE Conf. on ETFA,2006,681-688.
    [196]Cheng Y, Ruan Y B, Cui F, et al. Fault detection for networked control system with random communication delays. Proc. of Chinese Control and Decision Conference, Yantai, China,2008,496-499.
    [197]Ruan Y B, Yang F, Wang W. Robust fault detection for a class of networked systems
    with stochastic communication delays. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China,2008,8557-8562.
    [198]Ding S X, Zhang P, Weihold N. Observerschemes for networked control systems, Automatisierungs-technik,2004,52(8):377-387.
    [199]Wang Y Q, Ye H, Ding S X, et al. Fault detection of networked control systems based on optimal robust fault detection filter. ACTA Automatica Sinica,2008, 34(12):1534-1539.
    [200]Wang Y Q, Ding S X, Ye H, et al. A new fault detection scheme for networked control systems subject to uncertain time-varying delay. IEEE Transactions on Signal Processing,2008,56(10):5258-5268.
    [201]Ye H, Ding S X. Fault detection of networked control systems with network-induced delay. Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision. China: IEEE,2004:294-297.
    [202]Wang Y Q, Ye H, Cheng Y, et al. Fault detection of NCS based on Eigendecomposition and Pade Approximation. Proceedings of IFAC Safeprocess. Beijing, China: IFAC,2006:937-941.
    [203]刘云霞,丁强,钟麦英.网络控制系统故障诊断滤波器设计的LMI方法.山东大学学报,2005,35(3):63-67.
    [204]Ye H, Wang Y Q. Application of parity relation and stationary wavelet transform to fault detection of networked control systems. Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications. Singpore:IEEE,2006:69-74.
    [205]Zang P, Ding S X, Frank P M, et al. Fault detection of networked control systems with missing measurements. Proceedings of the 5th Asian Control Conference. Melbourne, Australia: IEEE,2004:1258-1263.
    [206]Gao H J, Chen T, Wang L. Robust fault detection with missing measurements. International Journal of Control,2008,81(5):804-819.
    [207]吕明,吴晓蓓,陈庆伟,等.基于异步动态系统的网络控制系统故障检测.控制与决策,2008 23(3):325-329.
    [208]Wang Y Q, Ding S X, Zhang P, et al. Fault detection of networked control systems with packet dropout. Proceddings of IFAC World Congress 2008. Korea: IFAC, 2008:8884-8889.
    [209]Zhong M Y, Han Q L. Fault Detection Filter Design for a Class of Networked Control Systems. Proceedings of the 6th World Congress on Intelligent Control and
    Automation. Dalian, China: IEEE,2006:215-219.
    [210]He X, Wang Z D, Zhou D H. Fault detection for networked systems with incomplete measurements, Proc. of the 17th IFAC World Congress, Seoul, Korea,2008, 13557-13562
    [211]He X, Wang Z D, Zhou D H. Networked-based robust fault detection with incomplete measurements, Int. J. of Adaptive Control and Signal Processing,2008, 22:510-528.
    [212]Wang Y Q, Ding S X, Zhang P, et al. Periodic communication sequences design for fault detection of networked control systems. Proceedings of the 3rd Workshop on Networked Control Systems Tolerant to Fault. France:Nancy-University,2007,1-6.
    [213]Wang Y Q, Ye H, Ding S X, et al. Fault detection of networked control systems with limited communication. International Journal of Control 2009,82(7):1344-1356.
    [214]Li W, Zhang P, Ding S X, et al. Fault detection over noisy wirelss channels. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, USA: IEEE,2007:5050-5055.
    [215]王永强,叶昊,王桂增.网络化控制系统故障检测技术最新进展.控制理论与应用,2009,26(4):400-409.
    [216]郑英,方华京,王彦伟.时变时延网络化控制系统的容错控制.华中科技大学学报(自然科学版),2004,32(2):35-38.
    [217]郑英,方华京.不确定网络化控制系统的鲁棒容错控制.西南交通大学学报,2004,38(8):804-807.
    [218]Kong D M, Fang H J. Stable fault-tolerance control for a class of networked control systems. Acta Automatica Sinica,2005,31(2):267-273.
    [219]霍志红,方华京.一类随机时延网络化控制系统的容错控制研究.信息与控制,2006,35(5):584-587.
    [220]Hou Z H, Fang H J. Research on robust fault-tolerant control for networked control system with packet dropout. Journal of Systems Engineering and Electronics,2007, 18(1):76-82.
    [221]Hou Z H, Fang H J. Fault-tolerant control research for networked control system under communication constraints. Acta Automatica Sinica,2006,32(5):659-666.
    [222]Hou Z H, Zhang Z X, Fang H J. Research on robust fault-tolerant control of networked control systems based on information scheduling. Journal of Systems Engineering and Electronics,2008,19(5):1024-1028.
    [223]Aberkane S, Sauter D, Ponsart J C. Output feedback stochastic H∞ stabilization of networked fault-tolerant control systems. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2007, 221(6):927-935.
    [224]Li S. B., Sauter D., Aubrun C., et al. Stability Guaranteed Active Fault Tolerant Control of Networked Control Systems. Journal of Control Science and Engineering, 2008,8(1):33-42.
    [225]Lin C Q, Zong Q. Fault tolerant control of networked control systems based on MPC. Proc. of the IEEE Int. Conf. on Networking, Sensing and Control, Sanya, China, 2008,319-324.
    [226]Li W, Li Y J, Liu W R. Robust fault tolerant control for networked control systems with uncertain disturbance. Proc. of IEEE Conf. on Mechatronics and Automation, Harbin, China,2007,2813-2818.
    [227]李炜,李亚洁.基于LMI方法的网络化控制系统容错保性能控制.Proc. of the 27th Chinese Control Conference, Kunming, China,2008,227-231.
    [228]Fan W H, Song Y, Cai H, et al. MIMO networked control systems based on fault-tolerant control. Proc. of 5th World Congress on Intelligent Control and Automation. Hangzhou, China,2004,1366-1370.
    [229]Klinkhieo S, Kambhampati C, Patton R J. Fault tolerant control in NCS medium access constraints. Proc. of the IEEE Int. Conf. on Networking, Sensing and Control, London, UK,2007,416-423.
    [230]Mario J G C Mendes, Bruno M S Santos, Jose Sa da Costa. Multi-agent platform and toolbox for fault tolerant networked control systems. Journal of Computers,2009 4(4):303-310.
    [231]俞立等.鲁棒控制——线性矩阵不等式处理方法.北京:清华大学出版社.2002.
    [232]Paul A K, Andrew G A. Stability and feedback control of wireless networked systems. In Proceedings of the American Control Conference. IEEE,2005,2953-2959.
    [233]Costa O L. Stability results for discrete-time linear systems with Markovian jumping parameters. Journal of Mathematical Analysis and Applications,1993,179(1): 154-178.
    [234]Seiler P, Sengupta R. A bounded real lemma for jump linear systems, IEEE Transactions on Automatic Control,2003,48(9):1651-1654.
    [235]Ghaoui L E, Oustry F, Aitrami M. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic control,1997,42(8):1171-1176.
    [236]Maki M., Jiang J., and Hagino K. A stability guaranteed active fault-tolerant control system against actuator failures, International Journal of Robust and Nonlinear Control,200414(12):1061-1077.
    [237]Zhang X. M., Wu M., She J. H., et al, Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica,2005 41(8): 1405-1412.
    [238]Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on systems, Man, and cybernaetics,1985,15(1): 116-132.
    [239]Taniguchi T, Tanaka K, Ohtake H, Wang H W. Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems,2001,9(4):525-538.
    [240]Jiang X F, Han Q L. On designing fuzzy controllers for a class of nonlinear networked control systems. IEEE Transactions on Fuzzy Systems,2008,16(4): 1050-1060.
    [241]Zhang H G, Yang D D, Chai T Y. Guaranteed cost networked control for T-S fuzzy systems with time delays. IEEE Transactions on Systems, Man and Cybernetics, Part C,2007,37(2):160-172.
    [242]Frank P. M., Ding S X, Seliger B K. Current developments in the theory of FDI. Proceedings of the 4th IFAC Symposium:Safeprocess. Budapest, Hungary:IFAC, 2000,16-27.
    [243]Magdy G E, Ding S X, Gao Z W. Robust fault detection for uncertain Takagi-Sugeno fuzzy system with parametric uncertainty and process disturbances. Proceedings of the 6th IFAC Symposium:Safeprocess. Beijing, China: IFAC,2006,787-792.
    [244]Guan X P, Chen C L. Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays. IEEE Transactions on Fuzzy Systems,2004,12(2):236-249.
    [245]Lee H J, Park J B, Joo Y H. Robust control for uncertain Takagi-Sugeno fuzzy systems with time-varying input delay. Transaction of the ASME,2005,127: 302-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700