基于离散事件动态系统的多媒体网络传输若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多媒体网络通信结合了计算机科学、通信和多媒体技术等研究领域,成为近十几年来的一门重要学科。目前多媒体网络通信及其应用的研究已发展为多个方向,包括多媒体压缩编码、多媒体业务传输、多媒体终端设计及多媒体数据存储等。在下一代网络(NGN)的演进过程中,交互式多媒体网络融合业务逐渐成为最具特色的核心业务之一。
     本文在离散事件动态系统的理论框架下,从多媒体网络系统数据传输、资源分配和随机同步三个方面展开研究,主要研究对象包括多媒体网络的接入控制、服务质量(QoS)优化、资源开销优化及动态节点同步等,具体内容和取得的成果如下:1.针对网络系统中多个用户媒体流同时传输的特性,分析并设计了接入控制及媒体质量优化算法。考虑源端使用可扩展编码(SVC)以适应带宽变化,结合其可扩展性,在用户媒体流到达分布未知和具有严格传输时延要求的情况下,给出了多速率用户流的可扩展接入条件。在此基础上,设计了接入控制算法,提高网络利用率且避免了拥塞。针对并发用户媒体业务均存在多个不同的质量层级,通过进一步设计动态QoS优化算法并证明最优解的存在性,实现了所有已接入用户整体QoS的最大化。为验证所设计算法的有效性,考虑家庭网络背景下两种典型的多媒体业务,即:视频点播(VOD)及网络电视(IPTV),给出了接入控制及优化的仿真结果。
     2.在用户网络传输及QoS得到保证的同时,研究并提出了网络系统资源开销的优化机制。通过建立多个并发用户传输队列的M/G/1/K排队模型,根据其动态传输特性,进一步地将队列的演化过程描述为半Markov过程。在对其嵌入Markov链研究的基础上,结合性能灵敏度方法,设计了基于梯度的资源开销优化算法并证明了最优性及收敛性。通过仿真进一步验证了算法的有效性。
     3.从流量动力学的角度讨论并给出了网络拓扑随机变化时系统的稳定与同步条件。结合复杂网络的研究方法,通过建立Markov跳跃模型,分别针对节点间耦合时延及节点内处理时延两种情况,研究了网络拓扑结构、节点动态方程及随机切换方式对系统性能的影响。仿真结果进一步验证了所提出理论的有效性和可行性。
     在论文最后,对本文所做工作进行了归纳总结,并结合未来多媒体网络发展的趋势,从离散信息拓扑空间理论、基于智能化管控机理的建模与协同调控、多媒体业务系统资源变化特性建模与稳定性分析及多媒体业务系统的节能机理的建模与控制等四个方面给出了进一步需要研究的方向。
In recent years, multimedia network communication has become an importantfield because of its combination of computer science, communications, and multimediatechniques. Researches and applications of multimedia network communication havespread into many fields, including multimedia compression, multimedia transmission,multimedia terminal design, and multimedia data storage, etc. In the evolution of nextgeneration network (NGN), the interactive multimedia network integration service hasbecome one of the most distinctive services.
     In this dissertation, the multimedia network system is studied by examining datatransmission, resource allocation, and stochastic stability, which includes multimedianetwork admission control, quality of service (QoS) optimization, resource overheadoptimization, and dynamic node synchronization, etc. The main contents and contribu-tions are summarized as follows:
     1. Given scalable video coding (SVC) and unknown arrival distribution, admissioncontrol issue is addressed within which the delay in conjunction with multiplerates is explicitly considered. Aiming to achieve the maximum aggregate QoS,a quality adaptation scheme is proposed, which optimally selects quality levelsavailable at every admitted stream. Simulation results indicate this scheme effec-tively improves performance and characterizes the in-home multimedia networksystem.
     2. A mathematical model for M/G/1-type queueing networks with multiple usermedia streams and limited resources is established. The goal is to develop adynamic distributed algorithm, which supports all data traffic as efficiently aspossible and makes optimally fair decisions about how to minimize the networkresource overhead. An on-line policy gradient optimization algorithm based on asingle sample path is provided to avoid suffering from a‘curse of dimensionality’.The asymptotic convergence properties of this algorithm are proved. Numericalexamples provide valuable insights for bridging mathematical theory with engi-neering practice.
     3. Synchronization stability problems in dynamic network system with Markoviantopology switching and time-varying delays are studied. By applying Lyapunov method, robust stability criteria of network synchronization are proposed for twotime-varying delays cases. With criteria satisfied, network synchronization canbe asymptotically stable or robust stable. The theoretical work helps to providea deeper understanding of the interplay between topology and stability in multi-media communication network.
     Finally, a brief review of this dissertation is given, based on which some future re-search areas and open issues in discrete information space, intelligent control, resourcedynamics, and energy saving are highlighted.
引文
ITU-T Recommendation Y.2001. General principles and general reference model fornext generation network [S]. 2004.
    Knightson K, Morita N, Towl T. NGN architecture: Generic principles, functional ar-chitecture, and implementation [J]. IEEE Communications Magazine, 2005, 43(10):49-56
    Mikoczy E, Sivchenko D, Xu B, Moreno J. IPTV services over IMS: Architecture andstandardization [J]. IEEE Communications Magazine, 2008, 47(5): 128-135
    He J, Rexford J, Chiang M. Don’t optimize existing protocols, design optimizableprotocols [C]. Proceedings of the ACM SIGCOMM, Kyoto, Japan, 2007: 53-58
    Chiang M, Low S, Calderbank A, Doyle J. Layering as optimization decomposition:A mathematical theory of network architectures [J]. Proceedings of the IEEE, 2007,95(1): 255-312
    Ho Y C. Dynamics of discrete event systems [J]. Proceedings of the IEEE, 1989, 77(1):3-6
    郑大钟,赵千川.离散事件动态系统[M].北京:清华大学出版社, 2000.
    Widrow B. A study of rough amplitude quantization by means of Nyquist samplingtheory [J]. IRE Transactions on Circuit Theory, 1956, 3(4): 266-276
    Oliver B M, Pierce J, Shannon C. The philosophy of PCM [J]. Proceedings of the IRE,1948, 36(11): 1324-1331
    Shannon C E. A mathematical theory of communication [J]. The Bell System TechnicalJournal, 1948, 27: 379-423, 623-656
    Ash R. Information Theory [M]. New York: Dover Publications, 1990.
    Gall D. MPEG: A video compression standard for multimedia applications [J]. Com-munications of the ACM, 1991, 34(4): 46-58
    Steinbach E, Farber N, Girod B. Standard compatible extension of H.263 for robustvideo transmission in mobile environments [J]. IEEE Transactions on Circuits andSystems for Video Technology, 1997, 7(6): 872-881
    Fitzek F, Reisslein M. MPEG-4 and H.263 video traces for network performance eval-uation [J]. IEEE Network, 2001, 15(6): 40-54
    Wiegand T, Sullivan G, Bjontegaard G, Luthra A. Overview of the H.264/AVC videocoding standard [J]. IEEE Transactions on Circuits and Systems for Video Technol-ogy, 2003, 13(7): 1103-1120
    Lei S, Chen T, Sun M. Video bridging based on H.261 standard [J]. IEEE Transactionson Circuits and Systems for Video Technology, 1994, 4(4): 425-437
    Conti M, Gregori E, Larsson A. Study of the impact of MPEG-1 correlations on video-sources statistical multiplexing [J]. IEEE Journal on Selected Areas in Communica-tions, 1996, 14(7): 1455-1471
    Assuncao P, Ghanbari M. A frequency-domain video transcoder for dynamic bit-ratereduction of MPEG-2 bit streams [J]. IEEE Transactions on Circuits and Systemsfor Video Technology, 1998, 8(8): 953-967
    Katsaggelos A K, Kondi L, Meier F, Ostermann J. MPEG-4 and rate-distortion-basedshape-coding techniques [J]. Proceedings of the IEEE, 1998, 86(6): 1126-1154
    Battista S, Casalino F, Lande C. MPEG-4: A multimedia standard for the third millen-nium. 1 [J]. IEEE Multimedia, 1999, 6(4): 74-83
    Battista S, Casalino F, Lande C. MPEG-4: A multimedia standard for the third millen-nium. 2 [J]. IEEE Multimedia, 2000, 7(1): 76-84
    Wenger S. H.264/AVC over IP [J]. IEEE Transactions on Circuits and Systems forVideo Technology, 2003, 13(7): 645-656
    Sullivan G, Wiegand T. Video compression: From concepts to the H.264/AVC standard[J]. Proceedings of the IEEE, 2005, 93(1): 18-31
    Schwarz H, Marpe D, Wiegand T. Overview of the scalable video coding extension ofthe H.264/AVC standard [J]. IEEE Transactions on Circuits and Systems for VideoTechnology, 2007, 17(9): 1103-1120AVS. http://www.avs.org.cn/
    Wien M, Schwarz H, Oelbaum T. Performance analysis of SVC [J]. IEEE Transactionson Circuits and Systems for Video Technology, 2007, 17(9): 1194-1203
    Li W P. Overview of fine granularity scalability in MPEG-4 video standard [J]. IEEETransactions on Circuits and Systems for Video Technology, 2001, 11(3): 301-317
    Ding J, Deng D, Wu T, Chen H. Quality-aware bandwidth allocation for scalable on-demand streaming in wireless networks [J]. IEEE Journal on Selected Areas in Com-munications, 2010, 38(3): 366-376
    Perros H, Elsayed K. Call admission control schemes: A review [J]. IEEE Communi-cations Magazine, 1996, 34(11): 82-91
    Knightly E, Shroff N B. Admission control for statistical QoS: Theory and practice [J].IEEE Network, 1999, 13(2): 20-29
    Kelly F P, Key P, Zachary S. Distributed admission control [J]. IEEE Journal onSelected Areas in Communications, 2000, 18(12): 2617-2628
    Fidler M, Sander V. A parameter based admission control for differentiated servicesnetworks [J]. Computer Network, 2004, 44(4): 463-479
    Jamin S, Danzig P, Shenker S, Zhang L. A measurement-based admission controlalgorithm for integrated services packet networks [C]. Proceedings of the ACMSIGCOMM, Cannes, France, 1997: 2-13
    Grossglauser M, Tse D S. A framework for robust measurement-based admission con-trol [J]. IEEE/ACM Transactions on Networking, 1999, 7(3): 293-309
    Mishra P, Kanakia H. A hop-by-hop rate-based congestion control scheme [C]. Pro-ceedings of the ACM SIGCOMM, Maryland, USA, 1992: 112-123
    Breslau L, Knightly E, Shenker S, Stoica I, Zhang H. Endpoint admission control:Architectural issues and performance [C]. Proceedings of the ACM SIGCOMM,Stockholm, Sweden, 2000: 57-69
    Cruz R L. A calculus for network delay. 1, 2 [J]. IEEE Transactions on InformationTheory, 1991, 37(1): 114-131, 132-141
    Le Boudec J. Application of network calculus to guaranteed service networks [J]. IEEETransactions on Information Theory, 1998, 44(3): 1087-1096
    Chang C S, Cruz R L, Le Boudec J, Thiran P. A min, + system theory for constrainedtraffic regulation and dynamic service guarantees [J]. IEEE/ACM Transactions onNetworking, 2002, 10(6): 805-817
    Zafer M, Modiano E. A calculus approach to energy-efficient data transmission withquality-of-service constraints [J]. IEEE/ACM Transactions on Networking, 2009,17(3): 898-910
    Rejaie R, Handley M, Estrin D. Layered quality adaptation for Internet video streaming[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(12): 2530-2543
    Taehyun K, Ammar M. Optimal quality adaptation for scalable encoded video [J].IEEE Journal on Selected Areas in Communications, 2005, 24(2): 344-356
    Mukherjee D, Delfosse E, Kim J, Wang Y. Optimal adaptation decision-taking forterminal and network quality-of-service [J]. IEEE Transactions on Multimedia, 2005,7(3): 454-462
    Khan A, Sun L, Jammeh E, Ifeachor E. Quality of experience-driven adaptation schemefor video applications over wireless networks [J]. IET Communications, 2010, 4(11):1337-1347
    Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assess-ment [J]. Electronics Letters, 2008, 44(13): 800-801
    Sullivan G, Wiegand T. Rate-distortion optimization for video compression [J]. IEEESignal Processing Magazine, 1998, 15(6): 74-90
    Rohaly A et al. Video quality experts group: current results and future directions [C].Proceedings of SPIE Visual Communication and Image Processing, Perth, Australia,2000: 742-753
    Weber S, Veciana G. Rate adaptive multimedia streams: Optimization and admissioncontrol [J]. IEEE/ACM Transactions on Networking, 2005, 13(6): 1275-1288
    Baldi P, De Nardis L, Di Benedetto M. Modeling and optimization of UWB communi-cation networks through a ?exible cost function [J]. IEEE Journal on Selected Areasin Communications, 2002, 20(9): 1733-1744
    Amir Y, Awerbuch B, Danilov C, Stanton J. Global flow control for wide area overlaynetworks: A cost-benefit approach [C]. Proceedings of the IEEE OPENARCH, NewYork, USA, 2002: 155-166
    Chang C S. Stability, queue length, and delay of deterministic and stochastic queueingnetworks [J]. IEEE Transactions on Automatic Control, 1994, 39(5): 913-931Athuraliya S, Low S, Li V, Yin Q. REM: Active queue management [J]. IEEE Network,2001, 15(3): 48-53
    Low S. A duality model of TCP and queue management algorithms [J]. IEEE/ACMTransactions on Networking, 2003, 11(4): 525-536
    Bertsekas D, Tsitsiklis J. Neuro-dynamic programming [M]. Belmont: Athena Scien-tific, 1996.
    Altman E. Constrained Markov decision processes [M]. Boca Raton: CRC Press, 1999.
    Neely M J. Stochastic optimization for Markov modulated networks with application todelay constrained wireless scheduling [C]. Proceedings of the IEEE CDC, Shanghai,China, 2009: 4826-4833
    Cao X R, Chen H F. Perturbation realization, potentials, and sensitivity analysis ofMarkov processes [J]. IEEE Transactions on Automatic Control, 1997, 42(10): 1382-1393
    Cao X R. The potential structure of sample paths and performance sensitivities ofMarkov systems [J]. IEEE Transactions on Automatic Control, 2004, 49(12): 2129-2142
    Yin B Q, Dai G P, Li Y J, Xi H S. Sensitivity analysis and estimates of the performancefor M/G/1 queueing systems [J]. Performance Evaluation, 2007, 64(4): 347-356
    Li B, Xie S, Keung G, Liu J, Stoica I, Zhang H, Zhang X. An empirical study of thecoolstreaming+ system [J]. IEEE Journal on Selected Areas in Communications,2007, 25(9): 1627-1639
    Huang Y, Fu T, Chiu D, Lui J, Huang C. Challenges, design and analysis of a large-scale p2p-vod system [C]. Proceedings of the ACM SIGCOMM, Seattle, USA, 2008:375-388
    Liang W, Bi J, Wu R, Li Z, Li C. On characterizing PPStream: Measurement andanalysis of p2p IPTV under large-scale broadcasting [C]. Proceedings of the IEEEGLOBECOM, Hawaii, USA, 2009: 1-6
    Carra D, Lo Cigno R, Biersack E. Graph based analysis of mesh overlay streamingsystems [J]. IEEE Journal on Selected Areas in Communications, 2007, 25(9): 1667-1677
    Gu X H, Nahrstedt K. Distributed multimedia service composition with statistical QoSassurances [J]. IEEE Transactions on Multimedia, 2006, 8(1): 141-151
    Neda Z, Ravasz E, Brechet T, Vicsek T, Barabasi A. Self-organizing processes: Thesound of many hands clapping [J]. Nature, 2000, 403: 849-850
    Belykh I, Lange E, Hasler M. Synchronization of bursting neurons: What matters inthe network topology [J]. Physical Review Letters, 2005, 94(18): 1-4
    汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社, 2006.
    Wang X, Chen G. Synchronization in scale-free dynamical networks: Robustness andfragility [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory andApplications, 2002, 49(1): 54-62
    Yuan W, Luo X, Jiang P, Wang B H, Fang J. Stability of a complex dynamical networkmodel [J]. Physica A, 2007, 374(1): 478-482
    Zhu J, Zhao M, Yu W, Zhou C, Wang B H. Better synchronizability in generalizedadaptive networks [J]. Physical Review E, 2010, 81(2): 1539-3755
    Erlang A K. The theory of probabilities and telephone conversations [J]. Nyt TidsskriftMathematic, 1909, 20(B): 33-39
    Feller W. An introduction to probability theory and its applications [M]. New York:Wiley, 1971.
    Takacs L. A single-server queue with Poisson input [J]. Operations Research, 1962,10(3): 388-394
    Neuts M F. A versatile Markovian point process [J]. Journal of Applied Probability,1979, 16(4): 764-779
    Cohen J, Hooghiemstra G. Brownian excursion, the M/M/1 queue and their occupationtimes [J]. Mathematics of Operations Research, 1981, 6(4): 608-629
    Jiang Y M. Network calulus and queueing theory: Two sides of one coin [C]. Proceed-ings of VALUETOOLS, Pisa, Italy, 2009: 1-11
    Le Boudec J, Thiran P. Network calculus: A theory of deterministic queuing systemsfor the Internet [M]. Berlin: Springer, 2001.
    Kolokoltsov V, Maslov P. Idempotent Analysis and Its Applications [M]. Berlin:Springer, 2010.
    Kleinrock L. Queueing Systems, vol 1: Theory [M]. New York: Wiley, 1975.
    Kendall D G. Some problems in the theory of queues [J]. Journal of Royal StatisticSociety, 1951, 13(2): 151-173
    Bertsekas D, Gallager R. Data networks, 2nd edition [M]. Upper Saddle River: PrenticeHall, 1992.
    Little J D C. A proof of the queuing formula: L = AW [J]. Operations Research,1961, 9(3): 383-387
    Neuts M F. Generalizations of the Pollaczek-Khinchin integral equation in the theoryof queues [J]. Advances in Applied Probability, 1986, 18(4): 952-990
    De Schutter B, van den Boom T. Model predictive control for max-min-plus-scalingsystems [C]. Proceedings of the ACC, Arlington, USA, 2001: 319-324
    Jiang Y M. A basic stochastic network calculus [C]. Proceedings of the ACM SIG-COMM, Pisa, Italy, 2006: 123-134
    Ho Y C, Cao X R. Perturbation analysis of discrete event dynamic systems [M]. Berlin:Springer, 1991.
    Correia A, Abbas-Turki A, Bouyekhf R, Moudni A. A dioid model for invariant re-source sharing problems [J]. IEEE Transactions on Systems, Man and Cybernetics,Part A: Systems and Humans, 2009, 39(4): 770-781
    樊葆华.基于网络演算的计算机网络性能分析模型研究[D].长沙:国防科学技术大学, 2009.
    Burchard A, Liebeherr J, Patek S. A min-plus calculus for end-to-end statistical serviceguarantees [J]. IEEE Transactions on Information Theory, 2006, 52(9): 4105-4114
    Mammeri Z. Framework for parameter mapping to provide end-to-end QoS guaran-tees in IntServ/DiffServ architectures [J]. Computer Communications, 2005, 28(9):1074-1092
    Jiang Y M, Liu Y. Stochastic network calculus [M]. Berlin: Springer, 2008.Pisinger D. A minimal algorithm for the multiple-choice knapsack problem [J]. Euro-pean Journal of Operational Research, 1995, 83(2): 394-410
    Hifi M, Michrafy M, Sbihi A. Heuristic algorithms for the multiple-choice multidi-mensional knapsack problem [J]. Journal of the Operational Research Society, 2004,55(12): 1323-1332
    Cherfi N, Hifi M. A column generation method for the multiple-choice multi-dimensional knapsack problem [J]. Computational Optimization and Applications,2010, 46(1): 51-73
    Wacks K. Home systems standards: Achievements and challenges [J]. IEEE Commu-nications Magazine, 2002, 40(4): 152-159
    Merabti M, Fergus P, Abuelma’atti O, Yu H, Judice C. Managing distributed networkedappliances in home networks [J]. Proceedings of the IEEE, 2008, 96(1): 166-185
    Bansal D, Bao J, Lee W. QoS-enabled residential gateway architecture [J]. IEEECommunications Magazine, 2003, 41(4): 83-89
    Hei X, Liang C, Liang J, Liu Y, Ross K.W. A measurement study of a large-scale P2PIPTV system [J]. IEEE Transactions on Multimedia, 2007, 9(8): 1672-1687
    Schioler H, Schwefel H, Hansen M. Cync: a Matlab/Simulink toolbox for networkcalculus [C]. Proceedings of VALUETOOLS, Nantes, France, 2007: 1-10
    Howard R A. Dynamic programming and Markov process [M]. Cambridge: The MITPress, 1960.
    奚宏生.随机过程引论[M].合肥:中国科学技术大学出版社, 2009.
    殷保群,奚宏生,周亚平.排队系统性能分析与Markov控制过程[M].合肥:中国科学技术大学出版社, 2004.
    江琦.半Markov切换空间控制过程及其应用[D].合肥:中国科学技术大学, 2008.
    Tang H, Xi H S, Yin B Q. Performance optimization of continuous-time Markov con-trol processes based on performance potentials [J]. International Journal of SystemsScience, 2003, 34(1): 63-71
    Meyn S, Tweedie R. Markov chains and stochastic stability [M]. Berlin: Springer,1993.
    Cao X R. Stochastic learning and optimization: A sensitivity-based approach [M].Berlin: Springer, 2007.
    Ho Y C. Perturbation analysis: Concepts and algorithms [C]. Proceedings of WSC,Arlington, USA, 1992: 23-240
    Jones G. On the Markov chain central limit theorem [J]. Probability Surveys, 2004, 1:299-320
    Mariton M. Jump linear systems in automatic control [M]. New York: Marcel Dekker,1990.
    朱进. Markov跳跃系统的鲁棒Kalman滤波与非线性控制[D].合肥:中国科学技术大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700