控制系统的性能优化分析与设计限制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反馈控制系统的设计限制以及网络控制系统的性能优化问题是当今科学研究的前沿和热点问题。研究系统性能极限与控制系统的内在特性,比如,非最小相位零点、不稳定极点及其参考信号等之间的关系对控制系统的设计有非常重要的参考作用。参考信号的跟踪误差的性能极限性问题已经有了比较好的结果;但是,在稳态跟踪误差为零的时候,控制信号能量的极值与控制系统本质特征及参考信号的参数关系如何?网络化控制系统结构是新一代控制系统形式的大势所趋。网络控制系统由于网络的介入,不可避免出现时滞、带宽受限、丢包、量化引起的误差、干扰信号的影响等等。在网络环境下,如何考虑网络通信引起的性能极限性问题?本文在总结前人工作的基础上,系统深入地研究了稳态跟踪误差为零时,多变量控制系统最小控制能量,并且初步考虑网络环境下的设计限制和性能优化问题。
     以连续控制系统为研究对象,参考输入为单位阶跃信号,揭示了单位反馈控制系统的最小跟踪能量与被控对象的不稳定极点、控制对象稳定部分的幅值以及参考信号的输入方向向量直接的精确关系表达式。同时,证明了二自由度控制器在消除控制对象不稳定极点对系统性能指标影响的有效性。
     研究多变量离散系统的最小跟踪能量的极限值。参考信号为单位阶跃序列,将进入被控对象的输入信号的范数作为性能指标,来衡量跟踪能量的大小。得到了跟踪能量的极值与被控对象单位圆外零极点以及被控对象的幅值之间的精确的关系式。同时,该最优性能指标还与参考输入信号的方向向量有直接关系。给出了二自由度控制器下的最优性能指标,并将两种情况下得到的结果进行了比较,体现了二自由度控制器在控制系统的设计与分析中的优越性。
     基于脉冲切换系统模型,研究由系统的输入输出给出的性能指标的最小化问题。通过求解一系列的Riccati方程,可以求得最优控制器。主要目标是求取由系统输入和输出定义的系统的传递函数的范式的最小值。通过推导,给出了最优控制和廉价控制的性能指标式的下确界,并且得到了脉冲切换系统无源性的充分性条件,以及保证整个系统无源性的最优控制器输入。结论显示,脉冲矩阵是性能指标中的重要参量,该性能指标对于控制器的设计有参考意义。
     讨论了网络环境下反馈控制系统的跟踪和干扰抑制问题。参考信号是单位阶跃信号,采用二自由度控制器。基于Youla参数化控制器,考虑从传感器到控制器受到脉冲信号的干扰,得到了能量受限下跟踪问题的性能指标的最优值。接着考虑干扰信号为高斯白噪声信号,求解了网络控制系统跟踪误差的极限值。结果显示,网络环境下,反馈系统的性能极限值与系统的非最小相位零点、被控对象传递函数在频域下的增益等控制系统本身的一些特征密切相关。
     研究了部分分散网络系统的最小能量调整问题,综合采用传递函数的互质分解,控制器的Youla参数化,以及Bezout等式等工具,建立了系统最小调整能量与被控对象的幅值及其不稳定极点以及该不稳定极点的方向向量之间的定量关系。
     研究了含有交互耦合时变时滞主从节点复杂网络的同步问题,在这样的网络中,主节点有自己独立的动态行为,所有从节点跟随他的动态行为而调整自己的运动轨迹。基于Lyapunov稳定性理论,给出了这种主从节点网络的变结构控制策略。数值实例证明了所得的结论的正确性和所设计的控制器的有效性。
     最后对全文进行了归纳总结,并对网络通信环境下,网络控制系统进一步的研究和发展方向进行了展望。
The design constraints of feedback control systems and optimizations of networkedcontrol systems are focal and hot topics of great interest recently in science and engineering.The relationship between the performance limitations and system intrinsic characteristic,such as, nonminimum phase zeros, unstable poles and reference signal, is vitalreference to the controller design. The perfect performance limitations for tracking problemshave been uncovered. But when the steady tracking error is zero, how about therelationship between the the minimum control energy and the characteristics of controlsystems? The networked control system structure will prevail in the future. With theimpact of network circumstance, many issues emerged inevitably, such as network induceddelay, limited bandwidth, data packet dropouts, error caused by the quantization,disturbance signals etc. Under the networked environment condition, how to considerthe performance limitations caused by communications? This thesis, based on previousworks of the others, systematically and deeply investigates the minimum control energyfor the systems with zero steady tracking error. And furthermore, the initial results aboutthe performance limitations for networked control systems are got.
     The continuous feedback control system is considered. The problem under considerationis the minimum input energy for tracking control. The reference signal is unity stepsignal. Using a time-domain integral of the square of the input as a performance index,we derived the relations between the limitations and plant characteristics that depend onthe unstable poles, nonminimum phase zeros, the stable part of the plant and the referencesignal direction vector. Two degree of freedom controller is effective to eliminatethe influence of unstable poles for the performance index.
     Minimum tracking energy for multi-variable discrete feedback systems were studied.The fundamental limitations imposed by the plant structure are given. The referencesignal is unity step sequences. Using the input usage as a measure of tracking energy.We derived relations that represent fundamental limitations on the achievable infimumof the tracking energy for general MIMO discrete systems. The relations depend on the unstable poles and the stable part of the plant and the reference signal direction vector.Two-degree-of-freedom controller case is considered, too.
     A class of impulsive switched control systems are considered. Where the objectiveis to minimize a cost functional defined on the output and input. The optimal controllerscan be obtained through the solutions of a series of Riccati matrix equations. The performancefor optimal control and cheap optimal control are respectively given. Sufficientconditions for passivity of impulsive switched control systems are obtained, and the optimalinput controllers of system are addressed, too. The conclusions showed the impulsesare critical elements to the performance indices. Which are useful references to the controllersdesign.
     The optimal tracking problems for networked feedback systems were investigated.The reference signal is step signal. Two degree of freedom controller is adopted. Based onthe Youla parametrization of controller, suppose there is an impulsive disturbance fromthe sensor to the controller, the best performance for tracking limitation under energyconstraints is given. Continuously, we considered the tracking limitation in the case thatthe disturbance is Gaussian white noise. The performance limitation is tightly dependenton the nonminimum phase zeros, and the plant gain in the frequency range etc.
     The minimum energy regulation problem for partly networked control systemswas investigated. We adopted the coprime factorization of transfer function, Youlaparametrization of controller and Bezout identity. The explicit expression for the minimumregulation energy is related to the magnitude of plant, unstable poles and the directionsof unstable poles.
     Synchronization in leader-follower networks with varying time-delay interconnectionswas investigated. In such a network, the leader had its own dynamics and wasfollowed by all the other nodes. Specifically, a variable structure control strategy was developedfor the synchronization of the leader-follower networks based on the Lyapunovstability theory. An illustrative example was given to demonstrate the effectiveness of theproposed method.
     Finally, a summary has been done for all discussions in the dissertation. Theresearch works further study are presented for the networked control systems.
引文
[1] Morari,M.and Zafiriou,E.Robust Process Control.Prentice-Hall: Englewood Cliffs,NJ.,1989.
    [2] Doyle,J.C.and Francis,B.A.and Tannenbaum,A.R.Feedback Control Theory.U.S.A: Maxwell MacMillan,1992.
    [3] Seron,M.M.and Braslavsky,J.H.and Goodwin,C.Fundamental Limitations in Filtering and Control.London: U.K.: Springer-Verlag,1997.
    [4] 郭雷.关于反馈的作用及能力的认识.自动化博览,2003,(1):1-3.
    [5] Chen J,Middleton R H.New development and applications in performance limitations of feedback systems.IEEE Transactions on Automatic Control,2003,48(8).
    [6] 何汉林.反馈控制系统的分析与综合-互素分解方法:[博士学位论文].武汉:华中科技大学图书馆,2003.
    [7] 王伦.内外分解和谱分解问题的解析计算及其MATLAB仿真:[硕士学位论文].上海:上海交通大学图书馆,2007.
    [8] Stoorvogel A A.The robust H_2 control problem: A worst-case design.IEEE Transactions on Automatic Control,1993,38(9): 1358-1370.
    [9] Vidyasagar M.Control System Synthesis: A Factorization Approach.Cambridge,MA: MIT Press,1985.
    [10] Chen B,Saberi A,Smhash Y,et al.Construction and parametrization of all static and dynamic H_2 optimal state feedback solution for discrete-time system.Automatica,1994,30(10):1617-1624.
    [11] Bode,H.W.Network Analysis and Feedback Amplifier Design.Princeton: NJ: Van Nostrand,1945.
    [12] Chen J,Toker O,Qiu L.Limitation on maximal tracking accuracy-Part Ⅰ: Tracking step signals,in: Proceedings of the 37~(th) IEEE Conference On Decision and Control,Kobe,Japan,1996,726-731.
    [13] Sung H K,Hara S.Properties of sensitivity and complementary sensitivity functions in single-input single-output digital control systems.International Journal of Control,1988,48(6):2429-2439.
    [14] Middleton R H,Goodwin G C.Digital Control and Estimation.Englewood Cliffs: NJ: Printice-Hall,1990.
    [15] Middleton R H. Trade-offs in linear control system design. Automatica, 1991,27(2):281-292.
    [16] Chen J. Sensitivity integral relations and design tradeoffs in linear multivariable feedback systems. IEEE Transactions on Automatic Control, 1995, 40(8):1700-1716.
    [17] Hara S, Sung H K. Constraints on sensitivity characteristics in linear multivariable discrete-time control systems. Linear Algebra and its Applications, 1989,122(124):889-919.
    [18] Chen J, Nett C N. Bode integrals for multivariable discrete-time systems.in: Proceedings of the 32nd IEEE Conference On Decision and Control, San Antonio,Texas,1993,811-816.
    [19] Halpern M E, Evans R J. Minimizing the sensitivity integral.in: Proceedings of the 38th IEEE Conference On Decision and Control, Phoenix, Arizons USA, 1999,869-972.
    [20]王德进.H_2和H_∞优化控制理论.哈尔滨:哈尔滨工业大学出版社,2001.
    [21] Chen J. Logarithmic integrals, interpolation bounds, and performance limitations in MIMO systems. IEEE Transactions on Automatic Control, 2000, 45(6): 1098-1115.
    [22] Chen J, Qiu L, Toker O. Limitation on maximal tracking accuracy-Part 2: Tracking sinusoidal and ramp signals.in: Proceedings of the 1997 American Control Conference, Albuquerque, New Mexico, 1997, 1757-1761.
    [23] Su W Z, Qiu L, Chen J. Fundamental performance limitations in tracking Sinusoidal signals. IEEE Transactions on Automatic Control, 2003, 48(8): 1371-1380.
    [24] Chen J, Qiu L, Toker O. Limitation on maximal tracking accuracy. IEEE Transactions on Automatic Control, 2000, 44(2):326-331.
    [25] Chen J, Hara S, Chen G. Best tracking and regulation performance under control energy constraint. IEEE Transactions on Automatic Control, 2003,48(8): 1320-1336.
    [26] Seron M M, Braslavsky J H, Kokotovic P V, et al. Feedback limitations in nonlinear systems: From Bode integrals to cheap control. IEEE Transactions on Automatic Control, 1999, 44(4):829-833.
    [27] Chen G, Chen J, Middleton R. Optimal tracking performance for SIMO systems.IEEE Transactions on Automatic Control, 2002, 47(10): 1770-1775.
    [28] Lian F L. Analysis, design, modeling, and control of networked control systems:[PhD Dissertation]. USA: Department of Mechanical Engineering, University of Michigan, 2001.
    [29] Padmasola P.Tradeoffs and limitations in networked control systems: [Master Thesis].Iowa State University,2006.
    [30] Savkin A V.Analysis and synthesis of networked control systems: Topological entropy,observability,robustness and optimal control.Automatica,2006,42:51-62.
    [31] 朱其新,胡寿松.网络控制系统的随机输出反馈控制.应用科学学报,2004,22(1):71-75.
    [32] Walsh G C,Ye H,Bushnell L G.Stability analysis of networked control systems,in: Proceedings of the 1999 American Control Conference,San Diego,CA,USA,1999,2876-2880.
    [33] 王飞跃,王成红.基于网络控制的若干基本问题的思考和分析.自动化学报(增刊),2002,18:171-176.
    [34] 张庆灵,邱占芝.网络控制系统的分析与综合.北京:科学出版社,2007.
    [35] 岳东,彭晨,Han Q.网络控制系统的分析与综合.北京:科学出版社,2007.
    [36] 郑英.网络化控制系统的故障诊断和容错控制:[博士学位论文].武汉:华中科技大学图书馆,2003.
    [37] 谢林柏.网络化控制系统中若干问题的研究:[博士学位论文].武汉:华中科技大学图书馆,2004.
    [38] 黄剑.网络化控制系统的建模、稳定与控制研究:[博士学位论文].武汉:华中科技大学图书馆,2005.
    [39] 杨业.网络控制系统的分析建模与控制研究:[博士学位论文].武汉:华中科技大学图书馆,2006.
    [40] 姚静.混合型复杂动态系统及网络的分析与控制:[博士学位论文].武汉:华中科技大学图书馆,2007.
    [41] 张皓.复杂网络的稳定与控制研究:[博士学位论文].武汉:华中科技大学图书馆,2007.
    [42] 严怀成.网络控制系统的分析与综合:[博士学位论文].武汉:华中科技大学图书馆,2007.
    [43] 王亮.基于胞映射的数字控制系统量化效应分析与设计:[博士学位论文].武汉:华中科技大学图书馆,2008.
    [44] 俞立.鲁棒控制-线性矩阵不等式处理方法.北京:清华大学出版社,2002.
    [45] Walsh G C,Ye H,Bushnell L G.Stability analysis of networked control Systems.IEEE Transactions On Control Systems Technology,2002,10(3):438-446.
    [46] Zhang W.Stability analysis of networked control systems: [PhD Dissertation].USA: Department of Electrical and Computer Science,Case Western Reserve University,2001.
    [47] 于之训,陈辉堂,王月娟.基于Markov延迟特性的网络系统的控制研究.控制理论与应用,2002,19(2):263-267.
    [48] Nilsson J.Real-time control systems with delays: [PhD Dissertation].Lund,Sweden: Department of Automatic Control,Lund Institute of Technology,1998.
    [49] Martins N C,Dahlehm M A.Fundamental limitations of performance in the presence of finite capacity feedback,in: Proceedings of the 2005 American Control Conference,Portland,OR,USA,2005,79-86.
    [50] Freudenberg J S,Looze D P.Right half plane zeros and poles and design tradeoffs in feedback systems.IEEE Transactions on Automatic Control,1985,AC-30(6):555-565.
    [51] Su W Z,Qiu L,Chen J.Fundamental limit of discrete-time systems in tracking multitone sinusoidal signals.Automatica,2007,43:15-30.
    [52] 章辉.控制系统中的信息描述与方法:[博士学位论文].杭州:浙江大学图书馆,2003.
    [53] Yook J K,Tilbury D M,Soparkar N R.Trading computation for bandwidth: Reducing communication in distributed control systems using state estimators.IEEE Transactions on Control Systems Technology,2002,10(4):503-518.
    [54] Padmasola P,Elia N.Bode integral limitations of spatially invariant multi-agent systems.in: Proceedings of the 35~(th) IEEE Conference On Decision and Control,Manchester Grand Hyatt Hotel,San Diego,CA,USA,2006,4327-4332.
    [55] Karimi A,Garcia D,Longchamp R.PID controller tuning using Bode's integrals.IEEE Transactions on Control Systems Technology,2003,11(6):812-821.
    [56] Garcia D,Karimi A,Longchamp R.PID controller design with constraints on sensitivity functions using loop slope adjustment,in: Proceedings of the 2006 American Control Conference,Minneapolis,Minnesota,2006,268-273.
    [57] Braslavsky J H,Seron M M,Mayne D Q,et al.Limiting performance of optimal linear filters.Automatica,1999,35(2): 189-199.
    [58] Elia N.When Bode meets Shannon: control-oriented feedback communication schemes.IEEE Transactions on Automatic Control,2004,49(9):1477-1488.
    [59] Chen J,Chen G.Some new thoughts and findings on Bode integrals,in: Proceedings of 2004 SICE Annual Meeting,Sapporo,Japan,2004,1092-1097.
    [60] Tatikonda S,Mitter S.Control under communication constraints.IEEE Transactions on Automatic Control,2004,49(7):1056-1068.
    [61] Braslavsky J H,Middleton R H,Freudenberg J S.Feedback stabilization over signal-to-noise ratio constrainted channels,in: Proceedings of the 2004 American Control Conference,Boston,Massachusetts,2004,4903-4908.
    [62] Rojas A,Braslavsky J H,Middleton R H.Control over a bandwidth limited signal to noise ratio constrained communication channel,in: Proceedings of the 44~(th) IEEE Conference On Decision and Control and the European Control Conference 2005,Seville,Spain,2005,197-202.
    [63] Rojas A,Freudenberg J S,Braslavsky J H,et al.Optimal signal to noise ratio in feed-back over communication channels with memory,in: Proceedings of the 45~(th) IEEE Conference On Decision and Control,Manchester Grand Hyatt Hotel,San Diego,CA,USA,2006,1129-1134.
    [64] Ye H,Michel A N.Stability theory for hybrid dynamical systems.IEEE Transactions on Automatic Control,1999,25(3):461-474.
    [65] Guan Z H,David J H,Shen X M.On hybrid impulsive and switching systems and application to nonlinear control.IEEE Transactions on Automatic Control,2005,50(7):1058-1062.
    [66] Guan Z H,Hill D J,Yao J.A hybrid impulsive and switching control strategy for synchronization of nonlinear systems and application to Chua's chaotic circuit.International Journal of Bifurcation and Chaos,2006,16(1):229-238.
    [67] Qiu L,Davison E J.Performance limitations of nonminimum phase systems in the servochanism problem.Automatica,1993,29(2):337-349.
    [68] Kalman R E.Nonlinear aspects of sampled-data control systems.in: Proceedings of the symposium on nonlinear Circuit Theory,Manchester Grand Hyatt Hotel,San Diego,CA,USA: Brooklyn,NY: Plotechnic Press,1956.
    [69] Elia N,Mitter S K.Stabilization of linear system with limited information.IEEE Transactions on Automatic Control,2001,46(9):1384-1400.
    [70] Zhou,K.M.and Doyle,J.C.and Glover,K.Robust and Optimal Control.Prentice-Hall: NJ.,1996.
    [71] 周克敏,Doyle K.鲁棒与最优控制.北京:国防工业出版社,2002.
    [72] Francis B.A.A Course in H_∞ Control Theory.Berlin Germanny: ser.Lecture Notes in Control and Information Science.Springer-Verlag,1984.
    [73] 郑君里,应启珩,杨为理.信号与系统(上册).北京:高等教育出版社,2000.
    [74] 西安交通大学高等数学教研室.复变函数.北京:高等教育出版社,1996.
    [75] Skogestad, S. and Postlethwaite, I. Multivariable Feedback Control: Analysis and Design. Chochester: John Wiley & Sons, 1996.
    [76] Havre K, Skogestad S. Achievable performance of multivariable systems with unstable zeros and poles. International Journal of Control, 2001, 74(11): 1131-1139.
    [77] Su W Z, Qiu L, Petersen I R. Tracking performance limitations under disturbance and perturbation.in: Proceedings of the SICE Annual Conference in Fukui, Fukui University, Japan, 2003, 480-481.
    [78] Aguiar A P, Hespanha J P, Kokotovic P V. Performance limitations in reference tracking and path following for nonlinear systems. Automatica, 2008, 44:598-610.
    [79] Braslavsky J H, Middleton R H, Freudenberg J S. Feedback stabilization over signalto-noise ratio constrained channels. IEEE Transactions on Automatic Control, 2007,52(8):1391-1403.
    [80] Chen J, Nett C N. Sensitivity integrals for multivariable discrete-time systems. Automatica, 1995, 31(8): 1113-1124.
    [81] Qiu L, Chen J. Time domain characterizations of performance limitations of feedback control. Lecture notes in control and information sciences, 1998, 241:397-415.
    [82] Toker O, Chen J, Qiu L. Tracking performance limitations in LTI multivariable discrete-time systems. IEEE Transactions on Circuits and Systems, 2002,49(5):657-670.
    [83] Jemaa L B, Davison E J. Performance limitations in the robust servomechanism problem for discrete time periodic systems. Automatica, 2003, 39:1053-1059.
    [84] Bakhtiar T, Hara S. H_2 regulation performance limitations for SIMO linear timeinvariant feedback control systems. Automatica, 2008, 44:659-670.
    [85] Kwakernaak H, Sivan R. The maximally achievable accuracy of linear optimal regulators and linear optimal filters. IEEE Transactions on Automatic Control, 1972,AC-17(6):79-86.
    [86] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4):475-482.
    [87] Pettersson S. Synthesis of switched linear systems.in: Proceedings of the 42nd IEEE Conference On Decision and Control, Maui, Hawaii USA, 2003, 5283-5288.
    [88] Zhao J, Dimirovski G M. Quadratic stability of a class of switched nonlinear systems.IEEE Transactions on Automatic Control, 2004, 49(4):574-578.
    [89] 翟海峰,胡协和,苏宏业,et al.采用多Lyapunov函数的混杂系统稳定性研究.控制理论与应用,2002,19(3):457-461.
    [90] Li Z,Soh C B,Xu X.Lyapunov stability of a class of hybrid dynamic systems.Automatica,2000,36(2):297-302.
    [91] Xie G M,Wang L.Controllability and stabilizability of switched linear-systems.Systems & Control Letters,2003,48(2): 135-155.
    [92] Sun,Z.and Ge,S.S.Switched Linear Systems-Control and Design.London,U.K.: Springer-Verlag,2005.
    [93] Xu H,Liu X,Kok L T.Delay independent stability criteria of impulsive switched systems with time-invariant delays.Mathematical and Computer Modelling,2008,47(3-4):372-379.
    [94] Xu X.Antsaklis P J.Optimal control of switched autonomous systems,in: Proceedings of the 45~(th) IEEE Conference On Decision and Control,Las Vegas,Nevada USA,2002,1973-1978.
    [95] Bengea S C,Decarlo R A.Optimal control of switching systems.Automatica,2005,41(1):11-27.
    [96] Egerstedt M,Azuma S I,Wardi Y.Optimal timing control of switched linear systems based on partial information.Nonlinear Analysis,2006,65(9):1736-1750.
    [97] He J H.A review on some new recently developed nonlinear analytical techniques.International Journal of Nonlinear Sciences and Numerical Simulation,2000,11:51-70.
    [98] Jameson A,E.O R.Cheap control of the time-invariant regulator.Applied Mathematics and Optimization,1975,1(4):337-354.
    [99] Francis B A.The optimal linear-quadratic time-invariant regulator with cheap control.IEEE Transactions on Automatic Control,1979,AC-24(4): 1616-621.
    [100] Arcak M,Kokotovi(?) P V.Stability margins of cheap controls,in: Proceedings of the 37~(th) IEEE Conference On Decision and Control,Tampa,Florida USA,1998,1973-1978.
    [101] Gelig,A.K.and Churilov,A.N.Stability and Oscillations of Nonlinear Pulse-Modulated Systems.Boston,Massachusetts: Birkh(a丨¨)user,1998.
    [102] Ahmad S,Stamova I M.Global exponential stability for impulsive cellular neural networks with time-varying delays.Nonlinear Analysis: Theory,Methods & Applications,2008,69(3):786-795.
    [103] Guan Z H,Liao R,Zhou F,et al.On impulsive control and its application to Chen's chaotic system.International Journal of Bifurcation and Chaos,1998,12(5):475-482.
    [104] Yang T,Chua L O.Impulsive stability for control and synchronization of Chaotic systems: Theory and application to secure communication.IEEE Transactions on Circuits and Systems,1997,44(10):976-988.
    [105] Yang,T.Impulsive Control Theory.Berlin: Springer,2001.
    [106] Boyd,S.and Ghaoui,L.and Feron,E.and Balakrishnan,V.Linear Matrix Inequalities in System and Control Theory.SIAM Studies in Applied Mathematics: Philadelphia,PA,1994.
    [107] Lozano R,Brogliato B,Egeland O,et al.Dissipative Systems Analysis and Control.London Berlin Heidelberg: Springer-Verlag,2000.
    [108] Yao J,Guan Z H,David J H,et al.On passivity and impulsive control of complex dynamical networks with coupling delays,in: Proceedings of the 44~(th) IEEE Conference on Decision and Control and the European Control Conference 2005,Seville,Spain,2005,1595-1600.
    [109] Cui B T,Hua M G.Robust passive control for uncertain discrete-time systems with time-varying delays.Chaos,Solitons & Fractals,2006,29(2):331-341.
    [110] Mahmoud M S,Ismail A.Passivity analysis and synthesis of discrete-time delay systems.Dynamics of Continuous,Discrete and Impulsive Systems Ser A: Math.Anal.,2004,11(4):525-544.
    [111] Ceragioli F.Discrete valued feedback laws and the Zeno phenomenon.Nonlinear Analysis,2009,70:3254-3263.
    [112] 黄琳.系统与控制理论中的线性代数.北京:科学出版社,1984.
    [113] 冯纯伯,张侃健.非线性系统的鲁棒控制.北京:科学出版社,2004.
    [114] Liu Y,Qi T,Su W Z.Optimal tracking performance of a linear system with a quantized control input,in: Proceedings of the 26~(th) Chinese Control Conference,Zhangjiajie,Chinese,2007,531-535.
    [115] Chen J,Chen G,Ren Z,et al.Extended argument principle and integral design constraints,Part Ⅰ: A unified formula for classical results,in: Proceedings of the 39~(th) IEEE Conference On Decision and Control,Sydney,Australia,2000,4984-4989.
    [116] Zhang W,Branicky M S,Philips S M.Stability of networked control systems.IEEE Control Systems Magazine,2001,21(1):84-99.
    [117] Swaroop D,Hedrick J K.String stability of interconnected systems.IEEE Transactions on Automatic Control,1996,41(3):349-357.
    [118] Ogren P, Fiorelli E, Leonard N E. Formation with a mission: Stable coordination of vehicle group maneuvers.in: Proceedings of the 15th International Symposium Mathematical Theory of Networks and Systems, Notre Dame, IN, 2002, 502-507.
    [119] Mesbahi M, Hadaegh F. Formation flying of multiple spacecraft via graphs, matrix inequalities and switching. AIAA Journal of Guidance, Control, and Dynamics, 2001,24:369-377.
    [120] Beard R W, Lawton J, Hadaegh F Y. A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology, 1987, 9:777-790.
    [121] McInnes C R. Autonomous ring formation for a planar constellation of satellites.AIAA Journal of Guidance, Control, and Dynamics, 1995, 18(5): 1215-1217.
    [122] Giulietti F, Pollini L, Innocenti M. Autonomous formation flight. IEEE Control Systems Magazine, 2000, 20:34-44.
    [123] Stilwell D J, Bishop B E. Platoons of underwater vehicles. IEEE Control Systems Magazine, 2000, 20:45-52.
    [124] Davison E J. The robust decentralized control of a general servomechanism problem.IEEE Transactions on Automatic Control, 1976, AC-21(1):14-24.
    [125] Wu A C, Fu L C, Hsu C F. Decentralized model reference adaptive control of interconnected dynamic systems using variable structure design.in: Proceedings of the 29th IEEE Conference On Decision and Control, Honolulu, Hawaii, 1990, 1149-1150.
    [126] Sourlas D D, Manousiouthakis V. Best achievable decentralized performance. IEEE Transactions on Automatic Control, 1995, 40(11):1858-1871.
    [127] Akar M, Ozgiiner m. Decentralized sliding mode control design for hybrid systems.in: Proceedings of the 1999 American Control Conference, San Diego, California,USA, 1999, 525-529.
    [128] Gao Z W, Ho D C, Wang X L, et al. Decentralized Bezout identity and a parametrization of decentralized controllers for singular systems. Journal of Systems Science and Systems Engineering, 2000, 9(l):34-45.
    [129] Yan X G, Lam J, Li H S, et al. Decentralized control of nonlinear large-scale systems using dynamic output feedback. Journal of Optimization Theory and Applications, 2000, 104(2):459-475.
    [130] Li X, Xu Z. Robust decentralized control of a class of uncertain interconnected systems. in: Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, P.R.China, 2002, 3080-3084.
    [131] Goodwin G C, Salgado M E, Silva E I. Time-domain performance limitations arising from decentralized architectures and their relationship to the RGA. International Journal of Control, 2005, 78(13): 1045-1062.
    [132] Kariwala V. Fundamental limitation on achievable decentralized performance. Automatica, 2007, 43:1849-1854.
    [133] Silva E I, Goodwin G C, Quevedo D E. On networked control architectures for MIMO plants.in: Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, 2008, 8044-8049.
    [134] Leonard N E, Fiorelli E. Virtual leaders, artificial potentials and coordinated control of groups.in: Proceedings of the 40th IEEE Conference On Decision and Control,Orlando, FL, 2001,2968-2973.
    [135] Wang W, Slotine J E. A theoretical study of different leader roles in networks. IEEE Transactions on Automatic Control, 2006, 51:1156-1161.
    [136] Slotine J E, Wang W, Rifai K E. Contraction analysis of synchronization in networks of nonlinearly coupled oscillators.in: Proceedings of the 16th International Symposium on Mathematical Theory of Networks and Systems, MTNS, 2004.
    [137] Yao J, Guan Z H, Hill D J. Adaptive switching control and synchronization of chaotic systems with uncertainties. International Journal of Bifurcation and Chaos, 2005,15(10):3381-3390.
    [138] Pikovsky, A. and Rosenblum, M. and Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, 2003.
    [139] Pikovsky, A. and Rosenblum, M. and Kurths, J. Sync: The Emerging Science of Spontaneous Order. New York: Hyperion, 2003.
    [140] Pyragas K. Synchronization of coupled time-delay systems: analytical estimations.Physical Review E, Statistical Physics Plasmas Fluids Relat. Interdiscip. Top., 1998,58(3):3067-3071.
    [141] Yang X S. Chaos in small-world networks. Physcical Review E, Statistical Physics Plasmas Fluids Relat. Interdiscip. Top., 2001, 63(4).
    [142] Hu J, Hong Y. Leader-following coordination of multi-agent systems with coupling time delays. Physica A, 2007, 374:853-863.
    [143] Itkis U. Control Systems of Variable Structure. New York: Wiley, 1976.
    [144] Utkin, V. I. Sliding Modes and Theirs Applications in Variable Structure Systems.Moscow: MIR Editors, 1978.
    [145] Gazi V. Swarm aggregations using artificial potentials and sliding mode control.IEEE Transactions on Robotics, 2005, 21(6):1208-1214.
    [146] Yao J, Ord(?)ez R, Gazi V. Swarm tracking using artificial potentials and sliding mode control.in: Proceedings of the 45th IEEE Conference On Decision and Control, San Diego, CA, USA, 2006, 4670-4675.
    [147] Gazi V, Ord(?)ez R. Target tracking using artificial potentials and sliding mode control.in: Proceedings of the 2004 American Control Conference, Boston, MA, 2006,5588-5593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700