匹配小波构造方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波变换由于具有良好的时频局部特性,已成为处理非平稳信号的有力工具,小波理论和设计受到了广泛的关注。有学者指出:“在小波分析的理论研究和应用中,存在着两个关键性的理论问题:第一个问题是小波的构造问题;第二个问题是如何根据信号的特点和信号处理的需要,自适应选取最优小波基的问题”。如何选取小波基,一直是小波理论与应用研究领域的重要问题之一。本文在探讨了小波变换理论的基础上,力图将匹配、时变与小波相结合,对最优匹配小波和时变匹配小波的理论与设计方法进行了深入研究。论文的主要研究工作包括:基于能量匹配的最优匹配小波设计,并将它应用于信号消噪与压缩中,基于格结构的时变匹配小波设计,基于匹配小波的主动式回波探伤系统。
     主要工作概述如下:
     (1)研究匹配小波的设计算法有助于提高小波在实际应用中的性能。本文在讨论了小波与信号匹配方式的基础上,提出了最优小波匹配准则,给出了相应的构造与设计算法,该方法根据信号在尺度空间最大投影原则,利用满足正则条件的结构化完全重构滤波器组和优化算法,构造了具有一定正则性的小波滤波器组,实现了尺度空间系数重构信号与给定信号的误差最小。其次,设计了与超声回波信号匹配的小波滤波器组,结果表明,最优匹配小波能够获得最佳的信号表示。
     (2)近年来,越来越多的学者对时变滤波器组进行了理论及设计方面的研究,但还存在许多未解决的问题,不论是时域还是频域,还没有通用的设计方法;有许多领域,时变滤波器组,时变小波都未涉及。本文阐述了基于格结构的时变滤波器组,根据匹配准则和小波的特定条件,利用优化目标函数,提出时变匹配小波的设计方法,建立相应的理论及设计体系。仿真和实验信号验证了方法的有效性,尤其是在时变信号含噪的情况下,也能有效地将信号分离和提取出来。表明时变匹配小波在处理时变信号时要优于其它小波。
     (3)在信号压缩和消噪应用中,小波基的选择直接影响着处理效果。本文针对超声回波和图像,研究了用于消噪的小波与信号和图像的匹配原则,在采用能量匹配原则的基础上,分别探讨了应用最优匹配小波对超声回波和图像消噪的方法,并取得令人满意的效果。其次将最优匹配小波应用于心电信号和图像压缩,利用结构化小波滤波器组以及新的波形匹配准则,选用与信号波形最优相似的
Compared with Fourier transform, wavelet transform has better ability to analyze the singularities and irregular signal because of a multi-resolution analysis, and we can obtain the details of signal at different scales by applying a wavelet transform. A chronological development of efforts in wavelet analysis shows that WT is a good tool for analyzing the non-stationary signal. The given signal projects into the basis function of wavelet, each of which is a dilation and translation of a function called mother waveletψ(t), at diffirent scale. Unlike FT, WT do not have a unique basis. Using different basis function of wavelet to analyze signal will get different results. If we design the wavelet to match the signal to be analyzed, the best representation of the signal can be resulted. Usually, one uses a wavelet to do signal decomposition; it is something like a blind man's walk. If we know the particular features of the signal and then design a wavelet to match the signal, it would be better. This is a reason that matched wavelets are finding applications in diverse fields and is a topic of current research. The main contents conclude: a method for construction of best matched wavelet, construction of orthogonal matched time-varying wavelet; denoising and compression based on optimal matched wavelet for echo and image; a new approach for ultrasound echo detection based on best matched wavelet. Many new algorithms and strategies are proposed for different problems, and can be summarized as follows:
     (1) This paper proposed an approach which is based on structural filter bank of wavelet for constructing matched wavelet. The method is to find the maximal projection of the given signal on the scaling subspace. Two kinds of wavelet filter banks based on this algorithm are constructed. The optimal algorithm of the matched wavelet is presented. The new method over existed methods has low design complexity and can directly obtain wavelet filter bank. Two examples are also presented and the errors between original and reconstruction signal are obtained. It is shown that the results of error by matched wavelet are reduced.
     (2) Time-Varying Wavelet is a good tool for analyzing non-stationary signal. The main problem for the construction of the time-varying filter is how to satisfy the condition for perfect reconstruction (PR) and regularity. This paper proposed a technique for constructing a time-varying wavelet based on the lattice structures of two-channel perfect-reconstruction quadrature filter banks, satisfying the PR condition. Firstly, the property of perfect-reconstruction and orthogonal is guarantied from structure. Secondly, the lattice coefficient having the regularity is given, while the optimization algorithm ensures implementation of the matched time-varying wavelet filter banks. This method is constructive and is used to generate time-varying orthogonal wavelet based on lattice structure, the application of time-varying matched wavelet denoising time-varying signal is also presented. Simulation shows that the proposed algorithm for constructing time-varying matched wavelet is efficient in time-varying signal procedure. Therefore, the time-varying matched wavelet is superior to the other time-varying wavelet in processing time-varying signal.
     (3) Wavelet transform is widely used in data compression and denoising. How to choice the best wavelet base is a key point for improving the compression ratio and SNR. In this paper, we put forward a idea of using wavelet base functions matching to signal. Firstly, We deal with denoising by using optimized match wavelet transform for ultrasonic echo and image. Some simulation results are given and they show that the effect by matched wavelet is superior to that by non-match wavelet in SNR enhancement. Secondly, a waveform matching criteria for contructing matched wavelets is given. The wavelet filter is constructed with an structure filter banks and the criteria, and two examples of compressing two-dimension image are presented. Compared with other wavelet filters, the matched wavelet filter is able to improve the performance of signal compression and denoising .
     (4) Detection of flaw echoes in the presence of high scattering microstructure noise is an important issue in ultrasonic nondestructive evaluation (NDE). As an efficient time-frequency analysis tool, the wavelet transform (WT) has been widely used to improve ultrasonic flaw detection performance. However, those wavelet-based methods usually can not guarantee the wavelet matching the flaw echo in a good way, thus the detection performance can not be improved distinctly. This paper proposed an novel method for detecting echo signals. The wavelet function is used as the transmit signal and the echo signal is detected with the corresponding completely same wavelet base. So the best match can be arrived. The advantage and implementation of new method was described. The simulation of the ultrasonic detection indicates the validity of the new way. The numerical results show good detection even for SNR of -17dB. Comparing with traditional method, the new method can increase the ability of signal detection.
引文
[1] Gabor D. Theory of communication. Journal of the Institute of Electrical Engineers, 1946, 93(26): 429-457.
    
    [2] Potter P K, Kopp G A, Green H C. Visible speech. New York:Van Norstrand, 1947.
    [3] Qian S, Chen D. Joint time-frequency analysis. Englewood Cliffs: Prentice Hall, 1996:52-58.
    
    [4] Cohen L. Time-frequency analysis. IEEE Trans on SP, 1999,16(1):22-28.
    [5] Mallat S. A wavelet Tour of signal processing. SanDiego, CA: Academic Press, 1997.
    
    [6] Cohen L. Time-frequency analysis. New Jersey: Prentice Hall PTR, 1995.
    [7] Young R. An introduciont to nonlinear Fourier series. New York: Academic Press, 1980:1-50.
    [8] Daubechies I. Where do wavelets come from? — A personal point of view. Proceedings of the IEEE, 1996, 84(4):510-513.
    [9] Littlewood J E and Paley R E. Theorems on Fourier series and power series. II, Proc. Lond. Math. Soc. 1936,42:52-89.
    [10] Calderon A P. Commutators of singular integral operators. Mathematics, 1965, 53:1092-1099.
    
    [11] Peetre J. New thought on Besov spaces. Duke University Math., Series, 1976.
    [12] Grossmann A and Molert J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math., 1984,15: 723-736.
    [13] Meyer Y. Wavelets and applications. Proceedings of the international comference, Marseiile, France, 1989.
    [14] Mallat S. A Theory of multiresolution signal decomposition: the wavelet transform. IEEE Trans. On PAMI, 1989,11(7):674-693.
    [15] Mallet S. Multifrequency channel decompositions of images and wavelet models. IEEE Trans on ASSP, 1989, 37:2091-2110.
    
    [16] Daubechies I. Ten lectures on wavelets. Philadephia: SIAM, 1992:1-351.
    [17] Lemarie P G. Ondelettes a localization exponentiells. J. Math. Pure. Appl., 1988: 227-236.
    [18] Battle G. A block spin construction of undulates, Part Ⅰ: Lemarie Function. Comm. Math. Phys., 1987, (110): 601-615.
    [19] Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics,1988,Vol.Ⅻ:909-996
    [20]Daubechies I.The wavelet transform,time-frequency localization and signal analysis.IEEE Transactions on Information Theory,1990,36(5):961-1006
    [21]Chui C K and Wang J Z.An analysis of cardinal spline-wavelet.CAT Report #231,Texas A&M University,1990
    [22]Chui C K.An Introduction to Wavelets.Boston,Academic Press,1992
    [23]Chui C K.Wavelets:A Tutorial in Theory and Applications.Boston,Academic Press,1992
    [24]Alpert B,Rokhlin V.A fast algorithm for the evaluation of Legendre expansions.SIAM J Sci Statist Comput,1991,12:158-179
    [25]Goodman T N T,Lee S L.Wavelet of multiplicity.IEEE Trans,Amer.Math.Soc,1994,342(1):307-324.
    [26]Germonimo J S,Hardin D P,et al.Fractal functions and wavelet expansions based on several scaling functions.J of Approx Theory,1994,78:373-401.
    [27]Geronimo J S.Constructions of orthogonal wavelets using fractal interpolation functions.SIAM Journal Math Analysis,1996,27(1):1158-1192.
    [28]Strela V.The application of multiwavelet filter banks to.signal and image processing.IEEE Trans.on Image Processing,1999,8(4):548-563.
    [29]Xia X G.Design of prefilters for discrete multiwavelet transform.IEEE Trans on SP,1996,44(1):25-35.
    [30]Qingtang J.Orthogonal multiwavelets with optimum time-frequency resolution.IEEE Trans on SP,1998,46(4):830-884.
    [31]Strela V.Multiwavelets:theory and application.Phd Thesis.California,Atanford University,1996.
    [32]Kovacevic J,Vetterli M.Perfact reconstruction filter banks with rational sampling factors.IEEE Trans.On Signal Processing,1993,41(6):2047-2066.
    [33]Cohn A,Daubechies I,Feauveau J C.Biorthogonal bases of compactly supported wavelets.Commun.Pure Appl.Math.,1992,Vol.XLV:485-560.
    [34]Wickerhauser M V.Lecture on wavelet packet algorithms.Math.Depart.Washington Univ.,St.Lowis Missouri,U.S.,1991.
    [35]Sweldens W.The lifting scheme:a construction of second generation wavelets.Technical report,Bell-Labs.,1995.
    [36]Calderbank A R,Daubechies I,Sweldens W,et al.Wavelet transforms that map integers to integers.Appl Comput Harmon Anal,1998,5(3):332-369.
    [37]Kovacevic J,Sweldens W.Wavelet families of increasing orderin arbitrary dimensions. IEEE Trans. Image Pr ocess, 2000, 9(3):480-496.
    [38] Davis G M, Strela V, Turcajova R. Multiwavelet construction via the lifting scheme. In:Lecture Notes in Pure and Applied Mathematics [R/OL], Marcel Dekker, 1999.
    [39] Candes E J. Ridgelets: Theory and applications. USA: Department of Statistics, Stanford University, 1998.
    [40] Candes E J, Donoha L. Ridgelets: a key to higher-dimensional intermittency: Phil. Trans. R Soc. Lond. A. 1999, 357:2495-2509.
    [41] Johnston J D. A filter family designed for use in quadrature mirror filter banks. IEEE ICASSP, 1980:291-294.
    [42] Nussbaumer H J. pseudo QMF filter bank. IBM Tech. Disclosure Bulletin, 1981, 24(11):3081-3087.
    [43] Smith M J T, Barnwell T P. Exact reconstruction techniques for tree-structured sub-band coders. IEEE Trans. ASSP, 1986, 6:434-441.
    [44] Vaidynathan P P. Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property. IEEE Trans. on ASSP, 1987, 35(4):476-492.
    [45] Vaidyanathan P P, Hoang P Q. Lattice structures for optimal design and robust implementation of two-channel perfect reconstruction QMF Banks. IEEE Trans. On ASSP, 1988: 81-94.
    [46] Vaidyanathan P P. Quadrature mirror filter bands, M-band extension and perfect-reconstruction techniques. IEEE ASSP magazine, 1987, 4(6):4-20.
    [47] Vaidyanathan P P, Mitra S K. Polyphase networks, block digital filtering, LPTV system, and alias-free QMF banks: a unified approach based on pseudocirculants. IEEE Trans. ASSP, 1988,36(3): 81-94.
    [48] Vaidyanathan P P. Multirate digital filter, filter bands, polyphase networks, and applications: a tutorial. Special issue on CS, IEEE Trans. on Education, August, 1989:181-197.
    [49] Nguyen T Q, Vaidyanathan P P. Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters. IEEE Trans. SP, 1989, 37(3): 676-690.
    [50] Koilpillai R D, Vaidyanathan P P. Cosine-modulated FIR filter banks satisfying perfect reconstruction. IEEE Trans. on SP., 1992: 770-783.
    [51] Soman A K, Vaidyanathan P P. Nguyen T.Q., Linear phase paraunitary filter banks: theory, factorization and design. IEEE Trans. on SP, 1993, 12:3480-3496.
    [52] Heller P N, Nguyen T Q. A general formulation of modulated filter banks. IEEE Trans. on SP, 1999, 47(4): 986-1002.
    [53] Siohan P, Roche C. Cosine-modulated filter banks based on extended gaussian function. IEEE Trans. SP, 2000, 48(11):3052-3061.
    [54] Vetterli M, Herley C. Wavelets and filter banks: theory and design. IEEE Trans. Signal Processing, 1992, 40(9):2207-2232.
    [55] Kovacevic J, Vetterli M. Non-separable multidimensional perfect reconstruction filter bank and wavelet bases for Rn . IEEE Trans. on Information Theory, 1992, 38(2):533-555.
    [56] Gopinath R A, et al. Optimal wavelet representation of signals and wavelet sampling theorem. IEEE Trans Circuits Systems II, 1994,41(4): 262-277.
    [57] Cohen A, et al. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992, 45(5): 485-560.
    [58] Daubechies I, Lagaries J. Two-scale difference equations I: Existence and global regularity of solutions. SLAM J. Math. Anal. 1991, 22(5):1388-1440.
    [59] Villasenor J, Belzer B, Liao J. Wavelet filter evaluation for image compression. IEEE Trans. on Image Processing, 1995, Vol.2, pp: 1051-1060.
    [60] Mallat, et al. Matching pursuits with time-frequency dictionaries. IEEE Trans on Signal Processing, 1993,41(12): 3397-3415.
    [61] Donoho D L, Johnstone J M. Adapting to unknown smoothness via wavelet shrinkage. Journal of American Stat. Assoc, 1995, 12: 1200-1224.
    [62] Tewfik A H,Sinha D,Jorgensen P. On the optima choice of a wavelet for signal representation.IEEE Trans.on Information Theory,1992,38(2):569-574.
    [63] Gopinath R A, et al. Optimal wavelet representation of signals and wavelet sampling theorem. IEEE Trans Circuits Systems II, 1994, 41(4): 262-277.
    [64] Aldroubi A, et al. Families of multiresolution and wavelet spaces with optimal properties. Numer Func Anal Optim, 1993,14(5-6):417-446.
    [65] Chapa J O, et al. Algorithm for designing wavelets to match a specified signal. IEEE Trans On Signal Processing, 2000, 48(12): 3395-3406.
    [66] Gupta A, et al. On a new approach for estimating wavelet matched to signal. In: Proceedings Eighth National Conference on Communications. IIT Bombay, 2002:180.
    [67] Isar A, Cubitchi A. A new best wavelet basis searching method for the compression of smooth signals. In: IEEE international conference on Telecommunications. Bucharest, 2001. Romania: University Politehnica of Bucharest, 2001.152-157.
    [68] Aleksandra M, et al. On the selection of an optimal wavelet basis for texture characterization. IEEE Trans On Image Processing, 2000,19(12):2043-2048.
    [69] Nayebi K, Smith M J T, Barnwell T P. Analysis-synthesis systems based on time varying filter banks. IEEE ICASSP, 1992, 4: 617-620.
    [70] Arrowood J L, Smith M J T. Exact reconstruction analysis/synthesis filter banks with time-varying filters. Proc. IEEE ICASSP, 1993, 3:233-236.
    [71] Herley C, Kovacevic J, Ramachandran K, Vetterli M. Tilings of the time-frequency plane: construction of arbitrary orthogonal bases and fast tiling algorithm. IEEE Trans. Signal Processing, 1993,41(12):3341-3359.
    [72] Queiroz R L, Rao K R. Time-varying lapped transforms and wavelet packets. IEEE Trans. on Signal Processing, 1993,41(12):3293-3305.
    [73] Xia X G, Suter B W. Construction of perfect reconstruction time-varying FIR multirate filter banks with overlaps. Proc. IEEE Int. Symposium on Time-Frequency and Time-Scale Analysis, 1994:120-123.
    [74] Sodagar I, Nayebi K, Barnwell T P, Smith M J T. A novel structure for time-varying FIR filter banks. IEEE Trans. on Acoust., Speech, Signal Processing, 1994,3:157-160.
    [75] Herley C, Vetterli M. Orthogonal time-varying filter banks and wavelets. Proc. IEEE Trans. on Signal Processing, 1994,42(10):2650-2663.
    [76] Nayebi K, Sodagar I, Barnwell T P. Time-varying filter banks and wavelets. IEEE Trans. on Signal Processing, 1994,42(11): 2983-2996.
    [77] Herley C. Boundary filters for finite length signals and time-varying filter banks. IEEE Trans. on Circuits and Systems, 1995,42:102-114.
    [78] Gopinath R A, Burrus C S. Factorization approach to unitary time-varying filter bank trees and wavelets. IEEE Trans. on Signal Processing, 1995,43(3):666-680.
    [79] Mau J, Valot J, Minaud D. Time-varying orthogonal filter banks without transient filters. IEEE Trans.on Acoust., Speech, Signal Processing, 1995,2:1328-1331.
    [80] Phoong S M, Vaidyanathan P P. Time-varying filters and filter banks: some basic principles. IEEE Trans. on Signal Processing, 1996, 44(12):2971-2987.
    [81] Schwarz C, Dasgupta S, Fu M. A lattice structure for perfect reconstruction linear time varying filter banks with all pass analysis banks. IEEE Int. Conf. on Acoust., Speech, Signal Processing, 1997, 1:39-42.
    [82]Wang G.Time-varying filter banks and transform coding for speech and audio signals.Aachen,Germany:Shaker Verlag,2000.
    [83]Wang G,Heute U.Time-varying MMSE modulated lapped transform and its applications to transform coding for speech and audio signals.Signal Processing,2002,82(3):1283-1304.
    [84]Wang G.Time-varying cosine-modulated filter banks.Digital Signal Processing,2005,15(3):237-254.
    [85]Wang G Y.The most general time-varying filter bank and time-varying lapped transforms.Trans.Signal Processing,2006,54(10):3775-3789.
    [86]Barnwell T P.Subband coder design incorporationg recursive quadrature mirror filters and optimum ADPCM coders.IEEE Trans,Acoust,Speech,Signal Processing,1982,30(10):751-765.
    [87]Westerink P H.Subband coding of images,Ph.D thesis,T.U.Delft,The Netherlands,1989.
    [88]Akansu A N,Liu Y.On-signal decomposition techniques.Opt.Eng,1999,30(6):912-920.
    [89]Coifman R,Meyer Y,Quake S,Wickerhauser M.Signal processing with wavelet packets.New Haven,CT:Numerical Algorithm Res.Group,Yale Univ.,1990.
    [90]Coifman R R,Wickerhauser M V.Entropy-based algorithms for best basis selection,IEEE Trans,Inform.Theory,1992,38(2):713-718.
    [91]Ramachandran K,Vetterli M.Best wavelet packet bases in rate-distortion sense.IEEE Trans on Image Processing,1993,2(4):160-176.
    [92]Nayebi K,Barnwell T P,Smith M T J.Analysis-synthesis systems with time-varying filter banks structures.Proc.Int.Conf.Acoust.,Speech,Signal Processing,Mar,1991.
    [93]Okuda M,Mitra S K,Ikehara M,et al.Time-varying wavelet transforms with lifting steps for lossless image compression.Proc.IEEE Int.Conf.Image Processing,1999,4:48-52.
    [94]Daubechies I,Grossman A,Meyer Y.Painless nonorthogonal expansions.J.Math.Phys.1986,27(5):1271-1283.
    [95]Mallat S,et al.Signularity detection and processing with wavelets.IEEE Trans Information Theory.1992,38(3):617- 643.
    [96]Mallat S,et al.A theory for multiresolution signal decomposition:the wavelet representation.IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [97]Sodagar I,Nayebi K,Barnwell T P.A class of time-varying wavelet transforms.In Proc,ICASSP'93,1993,Ⅲ:201-204.
    [98]Deprez F,Rioul O,Duhamel P.Border recovery for subband processing of finite-length signals,application to time-varying filter banks,in Proc.ICASSP 94,1994,3:133-136.
    [99]Tewfik A H,et al.On the optimal choice of a wavelet for signal representation.IEEE Trans on Information Theory,1992,38(3):747-765.
    [100]丁爱玲,石光明,郑春红,焦李成.最优匹配小波构造.自然科学进展,2004,14(11):1469-1474.
    [101]Mallat S.Zero-crossings of a wavelet transform.IEEE Trans Inform Theory,1991,37(4):1019-1033.
    [102]Mallat S,Zhong S.Characterization of signal from multiscale edges.IEEE Trans PAMI,1992,14(7):710-732.
    [103]Phong S M.Time-varying filters and filter banks:some basic principles.IEEE Trans.On Signal Processing,1996,44(12):2971-2987.
    [104]Sodagar I.Time-varying filter banks and wavelets.IEEE Trans.On Signal Processiong,1994,42(11):2983-2996.
    [105]Vaidyanathan P P:Multirate systems and filter banks.Prentice Hall,Englewood Cliffs,New Jersey,1993.
    [106]Vaidyanathan,P.P.,Hoang,R-Q.:Lattice structure for optimal design and robust implementation of two-channel perfect reconstruction QMF banks.IEEE Trans.on Acoust.,Speech,Signal Processing,1988,36(1):81-94.
    [107]Kok,C W,Ikehara M,Nguyen T Q.Design and factorization of FIR paraunitary filter banks given several analysis filters.IEEE Trans.on Acoust.,Speech,Signal Processing,Vol.48,No.7,(2000) 2157-2161.
    [108]杨福生(著).小波变换的工程分析与应用.北京:科学出版社,1999:91-95.
    [109]Oraintara S.Lattice structure for regular paraunitary linear-phase filterbanks and M-band orthogonal symmetric wavelets.IEEE Trans.On Signal Processing,2001,49(11):2659-2672.
    [110]孙亚芳,时变滤波器组和时变小波的设计及应用研究.[硕士论文].西安电子科技大学,2007:38-41.
    [111]Mallat S,Hwang W L.Singularity detection and processing with wavelets.IEEE Trans on Information Theory,1992,38(2):617-643.
    [112]Hsung T C,Lun D P K,Siu W C.Denoising by singularity detection.IEEE Transactions on Signal Processing,1999.47(11):3139-3144.
    [113]Xu Y,Weaver J B,klealy D M,et al.Wavelet transform domain filters:a spatially selective noise filtration technique.IEEE Transactions on Image Processing,1994,3(6):747-758.
    [114]Pan Q,Zhang L,Dai G,et al.Two denoising methods by wavelet transform.IEEE Transactions on Signal Processing,1999,47(12):3401-3406.
    [115]Pan Q,Zhang L,Zhang H,et al.Adaptive wavelet based spatially de-noising.Proceedings of the 4th International Conference on Signal Processing Proceedings,Beijing China,1998:486-489.
    [116]Donoho D L,Johnstone I M.Ideal spatial adaptation by wavelet shrinkage.Biometrika,1994,81(3):425-455.
    [117]Donoho D L,Johnstone I M,Kerkyacharian G;et al.Wavelet shrinkage:asymptopia?.Journal of Royal Statistics Society Series,1995,57:301-369.
    [118]Donoho D L.Denoising by soft-thresholding.IEEE Transactions on Information Theory,1995,41(3):613-627.
    [119]Weyrich N,Warhola G T.Wavelet shrinkage and generalized cross validation for image denoising.IEEE Trans.on Image Processing,1998,7(1):82-90.
    [120]Chang S G;Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression.IEEE Trans.on Image Processing.2000,9(9):1532-1546.
    [121]Marpe D,Cycon H L,Zander G,et al.Context-based denoising of images using iterative wavelet thresholding.Visual Communications and Image Proc,2002,907-914.
    [122]Walker J S,Chen Y J.Image denoising using tree-based wavelet subband correlation and shrinkage.Opt,Eng,2000,11:2900-2908.
    [123]Martin A T,Robert D N.Wavelet-based image estimation:an empirical bayes approach using Jdffreys' noninformative prior[J].IEEE Trans on Image Processing,2001,10(9):1322-1331.
    [124]冯象初,甘小冰,宋国乡.数值泛函与小波理论.西安:西安电子科技大学出版社,2003.
    [125]邓大新,林春胜,龚沈光等.基于Neyman—Pearson准则的小波阈值去噪法,信号处理,2003,19(3):281-283.
    [126]Bruce A G,Gao H Y.Waveshrink:shrinkage functions and Thresholds.SPIE,1995,2569:270-281.
    [127]Wan F Y,Yuan Z D.Optimization problem of shrinkage and thresholding policies in wavelet and the application to image processing.Proceedings of the 3rd World Congress on Intelligence Control and Automation,Hefei China,2000,4:2661-2665.
    [128]Thomas B A,Rodriguez J J.Wavelet-based color image denoising.IEEE International Conference on Image Processing Proceedings,2000,(2):804-807.
    [129]Jalobeanu A,Blanc F L,Zerubia J.Satellite image deconvolution using complex wavelet packets.IEEE International Conference on Image Processing Proceedings,2000,(3):809-812.
    [130]Malfait M,Roose D.Wavelet-based image denoising using a Markov random field a priori mode.IEEE Transactions on Image processing,1997,6(4):549-565.
    [131]Fan G L,Xia X G.Improved hidden markov models in the wavelet domain.IEEE Transactions on Signal Processing.2001,49(1):115-120.
    [132]Chang G,Yu B,Vetterli M.Spatially adaptive wavelet thresholding with context modeling for image denoising.IEEE Transaction on Image Processing,2000,9(9):1532-1546.
    [133]Chambolle A.et al "Nonlinear wavelet image processing:Variational problems,compression,and noise removal through wavelet shrinkage," IEEE Trans.Image processing,Special Issue on Partial Differential Equations.and Geometry-Driven Diffusion in Image Processing and Analysis 1998,Vol.7,pp:319-335.
    [134]丁爱玲,石光明,郑春红,焦李成.基于最优匹配小波的回波与图像消噪研究.长安大学学报,2006,26(4):103-107.
    [135]孙圣和,陆哲明.矢量量化技术及应用.北京:科学出版社,2002.
    [136]Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients.IEE Transaction on Signal Processing,1993,41(12):3445-3462.
    [137]Said A,Pearlman W A.A new fast and efficient image codec based on set partitioning in hierarchical trees.IEEE Transaction on Circuit and Systems for Video Technology,1996,6(3):243-250.
    [138]Islam A and Pearlman W A.An embedded and efficient low-complexity hierarchical image coder,Visual communications and Image Processing'99.Prodeedings of SPIE,Jan 1999,3653:294-305.
    [139]Taubman D S.High performance scalabel image compression with EBCOT.IEEE Transaction on Image Processing,2000,9(7):1158-1170.
    [140]丁爱玲,石光明,郑春红,焦李成.波形匹配小波设计及其在信号数据压缩中的应用.电子信息学报.2007,29(4):804-807.
    [141]Barlaud M.Wavelets in image communication(advances in image communication 5).New York:Elsevier Science B V,1994.
    [142]Villasenor J D,Bellzer B,Liao B.Wavelet filter evaluation for image commpression.IEEE Trans on Image Processing,1995,4(8):1053-1060.
    [143]Egger O,Li W.Subband coding of image using asymmetrical filter banks.IEEE Trans on Image Processing,1995,4(4):478-485.
    [144]Abbate A,Koay J,Frankel J,Schroeder S C and Das P.Signal detection and noise suppression using a wavelet transform signal processor:application to ultrasonic flaw detection.IEEE Trans.Ultrasonics,Ferroelectrics and Frequency Control,1997,44(1).14-26.
    [145]Abbate A,Koay J,Frankel J,Schroeder S C and Das P.Application of wavelet transform signal processor to ultrasound,in Proc.IEEE Int.Conf.Ultrasonics Symposium,Nov.1994.1147-1152.
    [146]Legendre S,Massicotte D,et al..Wavelet-transform- based method of analysis for lamb-wave ultrasonic NDE signals.IEEE Trans.Instrumentation and Measurement,2000,49(3).524-530.
    [147]Liou R J,Kao K C,Yeh C Y and Chen M S.Flaw detection and sizing of ultrasonic images using wavelet transform and SAFT.in Proc.IEEE Int.Conf.Intelligent Signal Processing and Communication Systems,Nov.2004.106-110.
    [148]Hayward G and Lewis J E.A theoretical approach for inverse filter design in ultrasonic applications.IEEE Trans.Ultrasonics,Ferroelectrics and Frequency Control,1989,36(3).356-364.
    [149]Abbate A.Signal detection and noise suppression using a wavelet transform signal processor:application to ultrasonic flaw detection.IEEE Trans on Ultrasonics ferroelectrics and frequency control,1997,44(1):14-26.
    [150]Hamilton R and Hayward G.The modelling and design of controllable composite transducers,in Proc.IEEE Int.Conf.Ultrasonics Symposium,Dec.1990.393-396.
    [151]Hayward G,Lewis J E.A theoretical approach for inverse filter design in ultrasonic applications[J].IEEE Transaction on Ultrasonics Ferroelectrics and Frequency Control,1989,36(3):356-364.
    [152]胡广书.现代信号处理教程.北京:清华大学出版社,2004.
    [153]Joseph O,Chapa,Raghuveer M R.Algorithms for designing wavelets to match a specified signal.IEEE Trans on Signal Processing,2000,48(12):3395-3406.
    [154]David B H.Rationalizing the coefficients of popular biorthog-onal wavelet filters.IEEE Trans on Circuits and Systems for Video Technology,. 2000,10(6):998-1005.
    [155]Chan S.C.,et al.Theory of M-channel biorthogonal compactly supported wavelet base.IEEE Trans.on SP,1998,46(4):1142-1151.
    [156]Isar A,et al.A new best wavelet basis searching method for the compression of smooth signals.In:IEEE international conference on Telecommunications.Bucharest,2001.Romania,University Politehnica of Bucharest,2001:152-157.
    [157]Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shinkage.Journal of the American statistical Assoc.,1995,90(32):1200-1224.
    [158]Donoho D L.De-noising by soft thresholding.IEEE Trans on Information,Theory,1995,41(3):613-627.
    [159]Mallat S.Multiresolution approximations and wavelet orthonormal bases of L~2(R).Trans Amer Math Soc,1989:69-87.
    [160]张浩,模拟数字混合最优滤波技术在介损在线测量中的应用.[硕士论文].哈尔滨理工大学,2005:17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700