用URANS方程模型模拟高桩码头面板的浮托力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着开发海岸带资源的需要,人们在海岸和近海地区愈来愈多地兴建各种透空式建筑物,如顺岸式码头、岛式码头、人工岛、栈桥、港外系船柱以及海上平台等。这些建筑物的大型实体部分一般由置于静水面以上的水平面板构成,常常处于无掩护的条件下,其下部将直接遭受波浪的袭击,而发生严重破坏。国内外曾多次发生因面板高程设计不当,而造成海上建筑物上部结构破坏。因此波浪与结构物的相互作用是海岸、海洋工程设计、施工和管理中十分重要的问题。
     早期研究波浪和海工结构物相互作用主要是实验室中的模型试验,并积累了许多经验公式。随着计算机和计算技术的发展,用数学模型来模拟波浪和结构物相互作用取得了很大进展。
     本文基于交通部“高桩码头面板波浪上托力计算”重点基金项目,通过建立波浪与结构物相互作用的二维数学模型,对高桩码头面板在一系列波况下所受波浪上托力进行了数值模拟计算,分析了波陡、超高、板宽等因素对面板所受上托力的影响。
Because of the demand for exploring the costal area resources, more and more constructions are built in the offshore and costal areas, such as alongshore dock, island-like dock, man-made island, trestle, bollard out of the port and offshore platform. The entity part of these constructions is mainly constructed of plan boards above the still water surface, which are always without any protection, and the lower part of the plane boards are directly struck by the water wave, which sometimes lead to serious destruction. The unsuitable design of the board’s water level results in the destruction of offshore construction’s above-water part, which have happened many times in our country and foreign countries. So, the interaction between water wave and marine constructions is a very important problem in the costal engineering management and design.
     The early research of the interaction between water wave and marine constructions is mainly carried out by model experiment in laboratory, and it gives out a lot of empirical equations. As the development of computer and computing technologies, using numerical model to simulate the interaction between water wave and marine constructions has achieved great advancement.
     This study is based on the major fund project from the ministry of communications. By establishing a two-dimensional model to simulate the interaction between water wave and marine constructions, the buoyancy on the high pile wharf board is simulated and calculated in series of wave cases, meanwhile, the wave steepness, distance between water surface and the bottom of the board, the width of the board’s influence to the buoyancy on the board is analyzed in these cases.
引文
[1]过达,蔡保华,透空式建筑物面板波浪上托力计算,华东水利学院学报,1990
    [2] Wang H, Water Wave Pressure on Horizontal Plate, Journal of the Hydraulics Division, ASCE, HY10, Oct. 1970
    [3] Patarapanich M, Forces and Moment on A Horizontal Plate Due to Wave Scattering, Coastal Engineering, Elsevier Science Publishers B. V., 1984, Vol. 8
    [4] Wood D J and Peregrine D H, Wave Impact Beneath a Horizontal Surface, Proc. 25th Coastal Eng. Conf., ASCE, 1996
    [5]交通部第一航务工程勘测设计院,海港码头结构设计手册,北京:人民交通出版社,1975
    [6]宋礽,白立兴,波浪对离岸透空式码头上部结构的作用,港工技术,1997
    [7] Brorsen M, Larsen J, Source generation of nonlinear gravity waves with the boundary intergral equation method, Costal Engineering, 1987, 11: 93-113
    [8] Wei G, Kirby J T, Sinha A, Generation waves in Boussinesq models using a source function method, Coastal Eng., 1999, 36: 271-299
    [9]钦文婷,Boussinesq方程数学模型的改进及其工程应用:[天津大学硕士学位论文],天津:天津大学,2003
    [10]高学平,曾广冬等,不规则波浪数值水槽的造波和阻尼消波,海洋学报,2002,24(2):127-132
    [11] Kawasaki K, Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater, Coastal Engineering, 1999, 41: 201-223
    [12] Larsen J, Dancy H, Open boundaries in short wave simulations-a new approach, Coastal Eng. 1983, 7: 285-297
    [13]刘长根,用URANS方程模型模拟非线性水波与海工结构物的相互作用:[天津大学博士学位论文],天津:天津大学,2003
    [14] Miyata H and Nishimura S, Finite difference simulation of nonlinear ship waves, J. Fluid Mech., 1985, 157: 327-357
    [15] Armenio V, dynamic loads on submerged bodies in a viscous numerical wave tank at small KC numbers, Ocean Eng.,1998, 25: 881-905
    [16] Yamada F and Takikawa K, Numerical models with Reynolds equation based energy dissipation for plunging breakers on a uniform slope, Coastal Engineering, 1999, 41: 247-267
    [17] Yuchuan B, et. al.,近岸海域富营养化研讨会论文集,天津,2002
    [18]高学平,曾广冬,不规则波浪数值水槽的造波和阻尼消波,海洋学报,2002,24(2):127-132
    [19] Petit H A H, et. al, Numerical simulation and validation of plunging breakers using a 2D Navier-Stokes Model, Coastal Engineering Conference, 1994, 511-524
    [20] Sabeur Z A, William N, Allsop H, et. al., Wave dynamics at coastal structures: development of a numerical model for free surface flow, Coastal Engineering Conference, 1996, 389-402.
    [21] Emarat N, et. al., A Study of Plunging Breaker Mechanics by PIV measurements anda Navier-Stokes Solver, Coastal Engineering, 2000, 891-901
    [22] Mayer S and Madsen P A, Simulation of Breaking waves in the surf Zone Using a Navier-Stokes Solver, Coastal Engineering, 2000, 928-941
    [23] Lin and Liu, A Numerical study of breaking waves in the surf zone, J. Fluid Mech., Cambridge, U.K., 1998, 359: 239-264
    [24] Christensen E D, Turbulence in breaking waves– a numerical investigation. PhD thesis, ISVA, Technical University of Denmark, 1998
    [25] KOJI, Kawasaki, Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater, Coastal Engineering, 1999, 41: 201-223
    [26]林明森,陶建华,三维溃坝问题的数值模拟研究,水利学报,1996,7:67-74
    [27] Maxworthy T, Experiments on collisions between solitary waves, J. Fluid Mech., 1976, Vol.76
    [28]王永学, VOF方法数模直墙式建筑物前的波浪破碎过程,自然科学进展-国家重点实验室通讯,1993,3(6):553-559
    [29]王永学,无反射造波数值波浪水槽,水动力学研究与进展A辑,1994,2:205-214
    [30] Chorin A J, A numerical method for solving incompressible viscous flow problems, J. of Comp. Phys., 1967, Vol.2
    [31] Merkel C L and Athavale M, Time-accurate unsteady incompressible algorithms based on artificial compressibility, AIAA 1987,
    [32]王金瑞,波浪运动的数值模拟,华北水利水电学院学报,1996,17(1):13-20
    [33]万德成,缪国平,数值模拟波浪翻越直立方柱,水动力学研究与进展.A辑,1998,13(3):363-370
    [34]齐鹏,王永学,非线性波浪时域计算的三维耦合模型,海洋学报,2000,22(6):102-109
    [35]高学平,曾广冬等,不规则波浪数值水槽的造波和阻尼消波,海洋学报,2002,24(2):127-132
    [36] Larsen J and Dancy H, Open boundaries in short wave simulations– a new approach, Coastal Eng. 1983, 7: 285-297
    [37] Launder B E, Spalding D B, The numerical computation of turbulent flows, Computer mehhods in Applied Mechanics and Engineering, 1974, 3: 269-289
    [38] Kothe D B, et. al., Volume tracking of interfaces having surface tension in two and three dimensions, Technical Report AIAA 96-0859
    [39] Ursell F, Dean R G, and YU Y S, Forced small-amplitude waters: a comparison of theory and experiment, Fluid Mechanics, 1959, 33-52.
    [40] Skjelbreia and Hendrickson, Fifth order gravity wave theory, Proc. 7th Coastal Engineering Conf., The Hague, 1960, 184-196
    [41] Chorin A J, Numerical Solution of the Navier-Stokes equations, Math. Comp., 1968, Vol.22
    [42] Chorin, A J, On the convergence of discrete approximations of the Navier-Stokes Equations, Math. Comp. 1969, 341-353
    [43] Hestenes M R and Stiefel E, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 1952, Vol.49
    [44] Concus P and Golub G H, A generalized conjugate gradient method for nonsymmetric systems of linear equations, in Lecture Notes in Economics and Mathematical Systems, edited by R. Glowinski and J. L. Lions, Springer-Verlag, Berlin, 1976, Vol.134
    [45] Widlund O, A Lanczos method for a class of nonsymmertric systems of linear equations, SIAM. J. Numer. Anal., 1978, Vol.15
    [46] Eisenstat S C, Elman H C andSchultz M H, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Num. Anal., 1983, Vol.20
    [47] Saad Y, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp., 1981, Vol.37
    [48] Saad Y, Preconditioned Krylov subspace methods: an overview, computational fluid dynamics review 1995, edited by M. Hafez, K. Oshima, J. Wiley and Sons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700