二维与三维随机波浪对半圆型防波堤作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜向与多向不规则波浪对半圆型防波堤作用的研究此前尚未见文献报道。
     综合考虑波陡H/L(π_1)、相对波高H/d(π_2)、堤顶相对水深d_1/d(π_3′)、波浪入射角或波浪主方向θ_0(π_4)和波浪方向分布参数s(π_5)等5个主要影响半圆型防波堤波浪荷载的因子,基于二维水槽和三维水池物理模型试验,对二维(规则波与不规则波)和三维(斜向规则波、斜向不规则波和多向不规则波)波浪条件下半圆型防波堤的受力特性及其机理作了较系统的试验研究和数值计算。给出了不同波浪条件下半圆型防波堤的波浪压力分布特征及单位堤长、单元堤长波浪力的计算方法。
     半圆型防波堤波浪压力分布的基本特征受π_3′影响比较大。除π_3′外,π_1和π_2对压力分布的影响也不能忽略。规则波、不规则波和多向波作用下半圆型防波堤的波浪压力分布的基本特征无定性的差别。
     在π_2和π_3′一定的条件下,正向水平波浪力、垂向波浪力和底板浮托力随着π_1的减小而增大;负向水平波浪力则随单因子π_1变化的趋势较缓;在π_1和π_3′一定的条件下,正向水平波浪力、垂向波浪力和底板浮托力随π_2的增大而增大;在π_1和π_2一定的条件下,无因次总水平力(正向与负向)随着π_3′的增大而减小。实验范围内,给出了单位堤长上半圆型防波堤的负向水平力大于正向水平力的以π_1、π_2和π_3′分界的临界指标。
     斜向和多向波作用下单位堤长上波浪总力随主要影响因子π_1、π_2的变化规律与正向波浪作用时无定性的差别。但斜向波浪入射角度和多向波主波向的变化将会引起堤前波浪形态的变化(产生短峰波),进而导致波浪力的变化。实验范围内,斜向波浪入射角度在15°~45°范围内变化时,不排除单位堤长正向水平波浪力大于正向波浪作用时正向水平力的可能性;单位堤长上负向水平力总体上不大于正向波浪作用时的负向水平力。当主波向方向θ_0=0°和θ_0=30°时,在s=2~70范围内,多向不规则波作用时单位堤长上波浪力基本不受方向分布宽度参数的影响。π_3′一定的条件下,单位堤长波浪力的折减系数K_(θ_0)与π_1和π_2有关。试验给出了单位堤长波浪力的折减系数K_(θ_0)。
     波浪力的纵向分布受控于π_4和π_5。纵向分布的特征变化基本不受π_1和π_2的影响。波浪力的纵向分布是相对堤长L_c~*sinθ_0/L_p的函数。波浪能量的方向分布越宽,波浪力沿纵向的分布越不均匀。斜向波力纵向分布的不均匀性大于多向波的纵向分布的不均匀性。
Few experimental and numerical results have been found so far in the literature to study the effects of wave obliquity and multi-directionality on the wave forces acting on semicircular breakwaters.
    Based on 2-d and 3-d random wave physical model tests, the hydraulic characteristics of the semicircular breakwater are studied in this paper. The variations of wave forces on unit length of semicircular breakwater with the main effective factors including wave steepness H/L (π_1), relative wave height H/ d (π_2), relative water depth above the crown of semicircular breakwater d_1/d (π_3') , the angle of incidence θ_0( π_4 ) and spreading parameters s (π_5) are studied. A simplified formula for calculating crests values and troughs values of the total horizontal wave forces on the submerged, alternately submerged, and emerged semicircular breakwater is suggested.
    The π_3' is the most important factor for the pressure distribution on the semicircular breakwater, besides π_1 and π_2 The characteristics of the pressure distribution have no significant difference when the semicircular breakwater is subjected to regular waves, irregular waves and multi-directional waves.
    The analysis was made with the forces normalized. The crests values of the dimensionless total horizontal wave force P_h~+ the total vertical wave force P_v and the uplift force applied to the bottom slab P_u increase obviously with decreasing π_1 with π_2 and π_3' fixed. The troughs values of the dimensionless total horizontal wave forces P_h~+ are not vary much with the π_1; P_h~+, P_v and P_u increase with increasing π_2 when π_2 and π_3' were kept constant and decrease with increasing π_3' when π_2 and π_2 fixed. The conditions for trough values of the total horizontal wave forces are larger than crest values are discussed.
    The regularity of oblique and multi-directional wave force on the semicircular breakwater with the main effecting factors are not vary much from the head-on wave forces. But short-crest waves will be produce in the water field just in front of the semicircular breakwater, and lead to the variety of the wave forces. Within the experimental consideration in this study, the angle of incidence of oblique wave varies in a range of 15° ~ 45°. P_h~+ does not decrease with increasing angle of attack θ_0 as the modified Goda's formulae related. It is clear that oblique incident waves often impose larger forces than head-on waves do. In general, the P_h~- under oblique waves is less
引文
[1] 交通部第一航务工程局堪察设计院.防波堤设计手册.北京:人民交通出版社,1982.
    [2] 刘大中.防波堤的优化设计与可靠度.北京:人民交通出版社,1990.
    [3] 谢世楞.深水防波堤技术的最新进展——94深水防波堤国际会议报导.港工技术.1994,(2):1-9.
    [4] 俞聿修.斜坡式防波堤技术的新进展.港工技术.1995,(3):13-18.
    [5] 俞聿修.直墙式防波堤技术的新进展.港工技术.1996,(1):1-7.
    [6] 俞聿修.防波堤技术的新进展.中国港湾建设.1999,2(1):49-52.
    [7] 俞聿修.斜坡式和直墙式防波堤技术的新进展.港工技术.2000,(4):1-4.
    [8] 谢世楞.90年代我国防波堤设计进展.水运工程.1999,(10):1-9.
    [9] 合田良实.港工建筑物的防浪设计.北京:海洋出版社,1983.
    [10] 中华人民共和国交通部.海港水文规范(JTJ213-98),.北京:人民交通出版社,2000.
    [11] 薛鸿超,顾家龙,任汝述.海岸动力学.北京:人民交通出版社,1980.
    [12] 邱大洪,贾影,藏军.椭圆余弦波与直墙的相互作用.水利学报.1996,No.9:11-21.
    [13] Nagais. Pressure of standing waves on a vertical wall. Proceedings of ASCE, 95(WW1). 1969. 53-76.
    [14] Franco, C.. Multidirectional wave loads on vertical breakwaters. Proceeding of 25th Conference on Coastal Engineering, Orlando, USA, 1996. 2008-2021.
    [15] 李玉成,孙昭晨,董国海等.斜向规则波与直墙堤相互作用的实验研究.中国海洋平台.2001,16(4):1-6.
    [16] 李玉成,董国海,孙昭晨等.斜向不规则波对直墙作用的实验研究.海洋工程.2002,20(1):57-63.
    [17] Goda, Y.. Random seas and design marine structures. Tokyo: University of Tokyo Press, 1985. 116-119.
    [18] Hsu,J.C..短峰波.海岸及海洋工程手册.李玉成,陈士萌,俞聿修等译.大连:大连理工大学出版社,1992.69—129.
    [19] Fenton, J.D.. Wave forces on vertical walls. J. of Waterway, Port, Coastal and Ocean Engineering. 1985, 111(4):693-781.
    [20] Tzang, S. Y. and Liaw, S. R.. A design short-crested wave force model for vertical deep-water breakwater. Proceeding of 25th Conference on Coastal Engineering, Orlando, USA, 1996. 2492-2507.
    [21] Madrigal, B. G.. Loads on caisson breakwaters in multidirectional random non-breaking seas. Proceedings of 5th International Conference on Coastal and Port Engineering in Developing Countries, Cape Town, South Africa, 1999. 1314-1326.
    [22] 李本霞.斜向和多向不规则波对直立堤作用的研究.大连:大连理工大学博士学位论文,2003.5.[23] Yu, Y. X., LI, B. X. and Zhang, N., C.. Oblique and multidirectional random wave loads on vertical breakwater. China Ocean Engineering. 2003, 17(2): 189-201.
    [24] Hiraishi, T.. Wave force on a vertical wall in directional seas. Proceedings of the Ninth International Offshore and Polar Engineering Conference, Brest, France, 1999. 718-723.
    [25] 谢世楞.斜坡式防波堤设计中若干问题的探讨.水运工程.1983.1.
    [26] Van der Meer J. W.. Stability of breakwater armor layers -design formula. J. of Coastal Engineering, 1987, 11 (3):219-239.
    [27] Allsop N. W. H., Jones R. J., Besley P. et al. Analysis of practical rubble mounds. Proc. 24th Coastal Engineering Conf., 1994, 918-931.
    [28] 俞聿修,柳淑学,朱传华.多向不规则波作用下斜坡式建筑物护面块体的稳定性.海洋学报.2002,24(4):92-104.
    [29] Van der Meer J. W.. Wave runup and overtopping, 1998.
    [30] 陈国平.平台高程及宽度对不规则波爬高的影响.南京水利科学研究院河港研究所.1989.
    [31] Krvstian W. Pilarczvk. Dike and revelments. Delft, 1998.
    [32] 潘少华.波浪与建筑物的相互作用.河海大学.2001.
    [33] Francisco L. Martin, Miguel A. losada, Raul Medina. Wave load on rubble mound breakwater crown walls. Coastal Engineering. 1999, 37:149-174.
    [34] J. Richard Weggle.. Wave overtopping Equation. Proc. 15th Coastal Engineering Conf., 1976,.
    [35] Owen, M.W.. Design of seawalls allowing for wave overtopping. Hydraulics Research, Wallingford, Report No. EX924, UK.
    [36] 张宁川.“二维和三维随机波浪对半圆型防波堤作用对比研究”国家自然基金申请书,2001.
    [37] 谢世楞.半圆型防波堤的设计和研究进展.中国工程科学.第2卷第11期,2000.11
    [38] 徐光,谢善文,李元音.防波堤的新结构形式.水运工程.2001,(11):20-25.
    [39] 谢世楞.淹没情况下半圆型导堤的波浪力计算方法.交通部第一航务工程勘查设计院,1997.
    [40] Tanimoto K. Takahashi S. Japanese Experiences on Composite Breakwater. Proc. Intern. Workshop on "Wave barriers in Deepwater", 1994.
    [41] Hiroshi S., Takashi K, Yuji N. et al. Field Demonstration Test on Semicircular Breakwater. HYDROPORT' 94, Japan, pp593-641, 1994.
    [42] Aburatani, S., Koizuka, T., Sasayama, H. et al. Field test on a semicircular caisson breakwater. Coastal Engineering in Japan. 1996, 39(1): 59-78.
    [43] 谷本胜利,吉本靖俊,滑川伸孝等.半圆型堤水力特性设计波力.第34回海岸工学讲演会文集,pp.551—555,1987.
    [44] 谷本胜利,滑川伸孝,关本恒浩.半圆型堤水力特性设计波力.第34回海岸工学讲演会文集,pp.662—666,1988.
    [45] 滑川伸孝,谷本胜利,关本恒浩等.消波型,透过型半圆型堤水力特性设计波力.海岸工学论文集,第42卷,pp.841—845,1996.
    [46] 油谷进介.半圆型堤现地实证试验.海岸工学论文集,第42卷,pp.841—845,1995.[47] V. Sundar and V. Ragu. Dynamic pressure and run-up on semicircular breakwater due to random waves. Ocean engineering. 1998, 25(2-3):221-241.
    [48] Dhinakaran, G., Sundar, V. et al. Dynamic pressures and forces exerted on impermeable and seaside perforated semicircular breakwaters due to regular waves. Ocean engineering. 1998, 29(15): 1981-2004.
    [49] 张宁川等.半圆型防波堤在波浪作用下的稳定与受力试验研究报告(之1,之2,之3).大连理工大学海岸和近海工程国家重点实验室,1996.
    [50] 天津港湾工程研究所.天津港北大防波堤新建工程半园型堤断面模型试验报告.1995
    [51] 俞聿修,张宁川,饶永红.半圆型防波堤的水力特性研究.海洋工程.17(4),1999.
    [52] 张宁川,俞聿修.不开孔的半圆型防波堤在波浪作用下的受力.第四届全国海事技术研讨会文集,pp.36—41,海洋出版社,1999.
    [53] 俞聿修,张宁川,饶永红.半圆型防波堤上的波浪力.第九届全国海岸工程学术讨论会文集,pp.25—31,海洋出版社,1999.
    [54] 饶永红.半圆型防波堤在波浪作用下的受力与滑移稳定实验研究.大连理工大学硕士学位论文.1998.7.
    [55] 饶永红,俞聿修,张宁川.淹没状态下半圆型防波堤的水力特性研究.海洋学报.2001,23(2):124-131.
    [56] Xie, S. L. (1999). Waves forces on submerged semicircular breakwater and similar structures. China Ocean Engineering. 13(1):63-72.
    [57] 张宁川等.长江口深水航道治理一期南导堤工程堤身结构稳定断面模型试验研究.大连理工大学海岸和近海工程国家重点实验室,1998.
    [58] 天津港湾工程研究所.长江口南导堤半圆型结构断面模型试验报告,1998.
    [59] 王美茹,谢善文,贾东华,李元音.半圆型防波堤的设计和应用.港工技术.1999,(3):1-6.
    [60] 郭科,李梅英.半圆型防波堤试验研究,中国港湾建设.2000,12(6):27-30.
    [61] 贾东华.长江口深水航道治理工程半圆导堤数学模型研究.交通部第一航务工程设计院,1996.
    [62] 陶建华,袁德奎.半圆型防波堤波浪力的计算方法.中国港湾建设.2002,(2):11-15.
    [63] Yuan, D. K., and Tao, J. H.. Wave forces on submerged, alternately submerged, and emerged semicircular breakwaters. Coastal Engineering. 2003, 48(2): 75-93.
    [64] 袁德奎,徐杰,陶建华.基于人工神经网络方法求解半圆型防波堤波浪力.港工技术.2003,(3):1-3.
    [65] 刘长根,陶建华.用时变雷诺方程模型模拟孤立波与半圆型防波堤的相互作用.应用数学和力学.2004,Vol.25(10).
    [66] 李炎保,马强华,谷汉斌.半圆型防波堤波浪力计算方法的讨论.港工技术.No.2,2003.6.
    [67] 吴宋仁,陈永宽.港口及航道工程模型试验.北京:人民交通出版社,1993.
    [68] 李玉成,滕斌.波浪对海上建筑物的作用(第二版).北京:海洋出版社,2002.
    [69] 中华人民共和国交通部.波浪模型试验规程.北京:人民交通出版社,2002.
    [70] 俞聿修.随机波浪及其在工程上的应用.pp.70-155,大连理工大学出版社,2000.[71] 柳淑学.多向不规则波有效试验区的扩展法.海洋工程.1995,14(2):40-50.
    [72] Yu, Y.X., Liu, S.X. and Li, L.. Numerical simulation of multidirectionat random seas. Proceedings of ISOPE'91. Edinburgh, United Kingdom, 1991. 26-32.
    [73] Hashimoto, N., Kobune, K. and Kameyama, Y.. Estimation of directional spectrum using the Bayesian approach and its application to field data analysis. Report of Port Harbor Research Institute, Ministry of Transport, Japan, 1987, 26(5):57-100.
    [74] 俞聿修,柳淑学.方向谱的分析方法.港口工程.1994,Vol.1:25-32.
    [75] 贾东华.斜入射椭圆余弦波与防波堤相互作用研究.大连理工大学硕士学位论文,1995.
    [76] 李本霞.斜向和多向不规则波对直立堤作用的研究.大连理工大学博士学位论文,2003
    [77] Battjes, J.. Effects of short-crestedness on wave loads on long structure. Journal Applied Ocean Research, 1982, 4(3): 165-172.
    [78] 王永学.无反射造波数值波浪水槽.水动力学研究与进展.1994,A辑,9(2):205-214
    [79] 王永学.VOF方法数值模拟直墙式建筑物前的波浪破碎过程.自然科学进展—国家重点实验室通讯.1993,3(6):553-559.
    [80] Ito, K., Katsui, H., Mochizuk M.,and et al..Non-reflected multidirectional wave maker theory and experiments of verification. Proceedings of 25th Conference on Coastal Engineering, Orlando, USA, 1996. 443-456.
    [81] Hald, T. and Frigaard, P.. Alternative method for active absorption in multidirectional waves. Proceedings of the IAHR Seminar on Multidirectional waves and their interaction with structure, 1997. 183-194.
    [82] Troch, P. Rouch, J. D.. Development of two-directional numerical wave flume for wave interaction with rubble mound breakwater. Proceedings of 26th Conference on Coastal Engineering, 1998. 1638-1649.
    [83] Troch, P. Rouch, J. D.. An active wave generating-absorbing boundary condition for VOF type numerical model. Coastal Engineering. 1999, 38: 223-247.
    [84] Frigaard, P. and Christensen, M.. An absorbing wave-maker based on digital filters. Proceedings of 24th Conference on Coastal Engineering, Kobe, Japan, 1994, 24:168-180.
    [85] Frigaard, P. and Brorsen M.. A time-domain method for separating incident and reflected irregular waves. Coastal Engineering. 1995, 24:205-215.
    [86] 柳淑学.入、反射波的时域分离.第八届全国海洋工程学术会议论文集.2000.277-283.
    [87] 刘海青,赵子丹.数值波浪水槽的建立与验证.水动力学研究与进展.1999,A辑,11(1):8—15.
    [88] Romate, J. E.. Absorbing boundary condition for free surface waves. Joumal of Computational Physics, 1992, 99:135-145.
    [89] Larsen, J. and Dancy, H.. Open boundaries in short wave simulation-a new approach. Coastal Engineering. 1983, 7:285-297.
    [90] Brorsen M. and Larsen, J.. Source Generation of nonlinear gravity waves with boundary integral eqation method. Coastal Engineering. 1987, 11:93-113.
    [91] Ohyama, T.. Development of a numerical wave tank for analysis of nonlinear and irregular wave field. Fluid Dynamics Research. 1991, 8:231-251.[92] Tao Jianhua and Yuan Dekui. Numerical simulation of the wave forces on semicircular breakwaters. Proceeding of Asian and Pacific Coastal Engineering. Dalian, China, 2001. 658-663.
    [93] Iwata, K., Kawasaki, K. and Kim, D.. Breaking limit, breaking and post-breaking wave deformation due to submerged structures. Proceedings of 25th Conference on Coastal Engineering, Orlando, USA, 1996. 2338-2351.
    [94] Lin, P., Liu P.. Internal wave-maker for Navier-Stokes equations models. Journal of Waterway, Port, Coastal and Ocean Engineering. 1999, 125(4):207-215.
    [95] 高学平,曾广冬,张亚.不规则波浪数值水槽的造波和阻尼消波.海洋学报.2002,24(2):127-132.
    [96] Wei, G., Kirby, J. T. and Sinha, A.. Generation of waves in Boussinesq model in using a source function method. Coastal Engineering. 1999, 36:271-299.
    [97] Lee, C., Cho, Y-S and Yum, K.. Internal generation of waves for extended Boussinesq equations. Coastal Engineering. 2001, 42:155-162.
    [98] Liu, S. X. and Teng, B.. Wave generation in computational domain using source function method. Proceeding of Asian and Pacific Coastal Engineering. Dalian, China, 2001. 358-368.
    [99] Liggett, J. A., Liu, P. L. -F., 1983. The Boundary Integral Equation Method for Porous Media Flow. George Allen & Unwin, England.
    [100] Brebbia, C. A.. The boundary element method for engineers. Pentech Press, London, 1978.
    [101] 王元淳.边界元法基础.上海交通大学出版社,1988.
    [102] Kim, S. K., Liu, P. L. -F., Liggett, J.A.. Boundary integral equation solution for solitary wave generation, propagation and run-up. Coastal Engineering. 1983(7):299-317.
    [103] Salmon, J.R., Liu, P.L.-F. and Liggett, J.A.. Integral equation method for linear water waves. ASCE, Journal of the Hydraulics Division, 1980(HY12): 1995-2010.
    [104] Liu, P. L.-F. and Liggett, J. A. Applications of boundary element methods to problems of water waves. Chap. 3 in Developments in Boundary Element Methods Vol. 2 (ed. P. K. Banerjee and R. P. Shaw), 1982, Applied Science Publisher Ltd, London
    [105] Liu, P. L.-F. and Liggett, J. A. Boundary element formulations and solutions for some nonlinear water wave problems. Chap. 7 in Developments in Boundary Element Methods Vol. 3 (ed. P. K. Banerjee), 1984, Applied Science Publisher Ltd, London
    [106] Liu, P. L.-F. and Liggett, J. A. Boundary element analysis of non-linear sloshing problems. Chap. 8 in Developments in Boundary Element Methods Vol. 3 (ed. P. K, Banerjee), 1984, Applied Science Publisher Ltd, London
    [107] Lennon, G. P., Liu, P. L.-F. and Liggett, J. A.. Boundary integral solutions of waver wave problems. J. Hydraul. Div.. ASCE, 1982, 108(HY8): 921-931.
    [108] Grilli, S. T., Skourup J. and Svendsen, I. A.. An efficient boundary element method for nonlinear water waves. Engineering Analysis with Boundary Elements. 1989, 6(2): 97-107.
    [109] Mohamad, T. T.. Unlinearized boundary element technique for computing water waves. Numerical Methods for Non-linear Problems. (eds. C. Taylor, E. Hinton and D. R. J. Owen) Pineridge Press. Swansea. 861-871.
    [110] 张涤明等.计算流体力学.中山大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700