单基/双基SAR成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)具有全天候、全天时获取观测场景高分辨图像的能力,对军用和民用均有重要的应用价值。近年来,随着SAR技术在各种平台的广泛应用,如飞机、导弹、卫星等,SAR成像系统面临的问题也越来越复杂。在大斜视成像模式下,去走动处理后方位维可成像区域极小,造成所谓的聚焦深度问题;机载或者弹载SAR系统中,对前向目标成像是目前的难度之一;受气流影响或者机动飞行的影响,平台无法沿着匀速直线飞行,需要运动补偿处理;推广到高超声速平台以及任意构型的双基SAR系统也都面临新的问题。因此研究复杂情况下的SAR成像具有重要的意义。
     本论文围绕单基/双基SAR几何模型和信号处理中亟待解决的关键技术问题展开研究,内容涉及大斜视成像、前视成像、运动补偿、高超声速飞行器成像、任意构型双基SAR成像等方面,并通过计算机仿真试验对相关理论分析和关键技术进行了验证。本论文的主要研究内容如下:
     提出了一种基于方位非线性变标的大斜视成像算法。去走动处理克服了大斜视频谱混叠问题,减弱了大斜视对于系统参数(脉冲重频、信号处理机效率)的要求,同时引入了方位时变或称为聚焦深度的问题。算法通过分析数据采集和成像平面的目标映射关系推导出新的方位维非线性变标因子,在方位时域补偿该问题。算法是对常规非线性变标算法的推广,补偿方位时变量的同时,有效抑制了算法自身的残余相位问题。
     提出了一种基于级数反演法的曲线轨迹前斜视RDA算法。针对SAR雷达前视工作模式,算法通过载机运动轨迹的配合,将前视转换为大斜视成像算法。该算法利用级数反演法将时域回波转化到二维频率域,以补偿特殊轨迹带来的高次相位,利用改进的RDA算法对目标精确成像。最后通过仿真验证了该算法的有效性。
     提出一种曲线轨迹下获取前向目标大场景图像的CSA算法。算法首先通过时域距离走动校正有效减少了距离耦合,然后采用级数反演法获得二维频率域表达式。在此基础上求取CSA的相关系数,利用CSA算法获得了精确的成像结果。文章最后通过仿真实验验证了算法的有效性。
     提出了一种基于非线性变标的方位维two-step运动补偿算法。将曲线飞行轨迹和运动误差统一起来,都是在匀速直线轨迹上增加了高阶运动分量。将雷达到目标的瞬时斜距采用矢量展开的形式表述,分析说明经典的Two-step运动补偿方法仅补偿了径向二次运动误差。而在斜视模式下,一方面,径向高次运动误差导致成像质量的整体下降;另一方面,速度大小和方向的时变性导致了方位可成像区域的减小。类似于距离维Two-step,文章提出了方位维Two-step补偿方位运动误差的方法,方位时域补偿时变性、频域补偿高阶误差,有效改善了成像质量。
     提出了可适用于高超声速飞行器的成像算法。将前面的分析推广到速度更大的平台上,即高超声速飞行器。研究随着速度的增大,常规SAR系统忽略的两种运动信息的影响,即发射信号及发射到接收期间载机的运动。分析可知,前者随着脉冲宽度的增加或斜视角的增加,将严重影响成像质量;后者则是在高速模式下导致成像变差。算法将发射和接收斜距分别计算,等效求取中心斜距表达式;同时在瞬时斜距中引入距离时间,在几何模型中描述这两种运动信息。成像算法采用EFSA,算法流程中分步补偿高超引入的相位项,最后通过仿真试验说明分析的正确性。
     提出了任意构型双基SAR时变校正算法。在任意构型下,双基SAR回波具有方位时变性。基于级数反演法的二维频谱仅能对参考目标完全聚焦,而对其他目标的成像质量随着场景的增大迅速下降。算法首先将双基斜距采用矢量描述,然后利用空间关系提取方位时变量,最后采用方位非线性变标理论予以补偿。仿真结果表明,该算法可在星载/机载和机载/机载模式下有效提高成像质量。
Synthetic aperture radar (SAR) is capable of greatly improving radar’s informationacquirability to obtain high-resolution microwave images of the observed scene,regardless of meteorological conditions and solar illumination; hence it has great valuein both civilian and military applications.
     In recent years, widely used in various platforms, such as plane, missile, andsatellite etc., there are increasing number of problems required to be solved in specialSAR imaging systems. Firstly, after the linear reange cell migration correction (LRCMC)in highly-squinted configuration, the invariant regions, in which the data can bewell-focused, shrunk considerably, refer to as focus-depth problem. Secondly, how tofocus forward-looking data is a crucial problem in air-and missile-borne SAR systems.Thirdly, in terms of atmospheric turbulence and aircraft maneuvers, the moving sensorcannot flight along a straight track with a constant velocity, which will result in imagingdegradation. Furthermore, the SAR system on-board hypersonic vehicle or on-boardseparately platform, reffered to as Bistatic SAR (BiSAR), has new problems needed tobe solved. Therefore, research on SAR imaging algorithms in special cases is of greatimportance.
     Here we start our work with mono-and bistatic SAR geometry analysis and signalprocessing. The contents include highly-squinted imaging, motion compensation(MoCo), imaging analysis in the case on-board hypersonic vehicle, BiSAR imagingalgorithm in general case (GC), which are proved through computer simulations. Thekey innovations in this thesis are following.
     An imaging algorithm in highly-squinted case based on azimuth nonlinear chirpscaling (NLCS) is proposed. Linear range cell migration correction (LRCMC) can beused to accommodate the spectrum overlapping problem, which needs high PRF or/andextra computational load in this case. However, the LRCMC introduces azimuth-variantproblem, or referred to as focus-depth problem, which shrinks the imaging regions inazimuth direction significantly. This algorithm derives an extended azimuth nonlinearchirp scaling (ENLCS) algorithm to accommodate the problem based on a newprojection of the data from acquisition sub-geometry to imaging one. Compared withoriginal NLCS, the proposed ENLCS is capable of compensation of the azimuth-variantcomponents with neglectable residual phase.
     Modified range Doppler algorithm (RDA) is proposed to focus forward targets in curvilinear track using the method of series reversion (MSR). To obtain theforward-looking image, the algorithm uses a curvilinear track instead of ideal track totransform forward-looking mode into highly-squinted case. The special track iscompensated in2-dimension spectrum based on MSR, and then the data are focused bythe modified RDA. Simulated results are utilized to validate the effectiveness of theproposed algorithm.
     Modified chirp scaling algorithm (CSA) is proposed to image the forward targets incurvilinear track. In the new configuration, LRCMC is used to remove highly-squintedDoppler center; then a power series slant range is used to express the curvilinear trackand the method of series reversion (MSR) is adopted to derive precise2-D spectrum.Based on the spectrum, the coefficients used for algorithm are extracted and modifiedCSA ultilized to process the data. The simulations are used to illustrate theeffectiveness.
     Azimuth two-step motion compensation (MoCo) is proposed based on modifiednonlinear chirp scaling (MNLCS). The curvilinear track caused by aircraft maneuversand the motion errors caused by atmospheric turbulence can be seen as the same one, anideal track with motion errors. We give the instantaneous slant range by vectorexpression, and analyze that the traditional Two-step MoCo strategy just compensatesthe second order motion errors. In the squint mode, however, high order motion errorsalong range direction degrade the imaging results; on the other hand, theazimuth-variant problem caused by the varying magnitude and direction of sensorvelocity vector shrinks the invariant region. Analogous to Two-step procedure, theproposed algorithm compensates the motion errors by two steps. In azimuth timedomain, the azimuth-variant components can be eliminated by modified NLCSalgorithm and the high order components are processed in the azimuth spectrum.Simulated results show that the imaging quality is improved considerably.
     A SAR imaging algorithm is proposed to focus to data acquired from the systemon-board hypersonic vehicle. With the increasing of velocity, there are two intolerablemotion components of the sensor in original SAR systems should be taken into account,the sensor motion by transmitting signal and the other one between transmitting andreceiving. The former will degrade imaging results with the increasing of pulse durationand/or squint angle; the latter is required to be compensated in high velocity case. Inthis chapter, both the motion components are expressed by modified instantaneous slantrange. The former is extracted by introducing fast time into slant range expression;whereas the latter is covered in equi-slant range by calculating transmitting and
     receiving slant range respectively. In the imaging procedures of extended frequencyscaling algorithm (EFSA), the motion components are compensated step-by-step.Simulated results are used to illustrate the effectiveness of the proposed analysis.
     An imaging algorithm is proposed to accommodate the azimuth-variant bistaticdata in general case (GC). In GC, there is azimuth-variant problem caused by theconfiguration. The spectrum derived by MSR can just process the data acquired in asmall region centered on a reference target; whereas the one far away from the referencewill suffer more degradations associated with the increasing of imaging region. Thischapter extracts the azimuth-variant components by vector expression of instantaneousslant range. Then based on the principle of nonlinear chirp scaling, a new perturbation isderived to compensate these azimuth-variant components. A spaceborne/airborne and anairborne/airborne configuration are simulated to illustrate the effectiveness of theperformance.
引文
[1]Ian G. Cumming, Frank H. Wong. Digital processing of synthetic aperture radar data: algorithm and implementation[M]. Beijing:Publishing house of electronics industry,2005.
    [2]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [3]仇晓兰,丁赤飚,胡东辉.双站SAR成像处理技术[M].北京:科学出版社,2010.
    [4]皮亦鸣,杨建宇,付锍生,杨晓波.合成孔径雷达成像原理[M].成都:电子科技大学出版社,2007.
    [5]邢孟道.基于实测数据的雷达成像方法研究[D].博士,西安电子科技大学,2002.
    [6]易予生.弹载合成孔径雷达成像算法研究[D].博士,西安电子科技大学,2009.
    [7]张光斌.双/多基地雷达参数估计算法研究[D].博士,西安电子科技大学,2006.
    [8]张振华.双/多基SAR成像算法研究[D].博士,西安电子科技大学,2007.
    [9]Nicholas J. Willis. Bistatic Radar[M]. Raleigh, NC:SciTech Publishing Inc.,1995.
    [10]Steffen Gantert, Gertrud Riegler, Frank Teufel, Oliver Lang, Lutz Petrat, Wolfgang Koppe, Jorg Herrmann. TERRASAR-X, TANDEM-X, TERRASAR-X2and their applications[C]. APSAR, Soul, Korea,2011:18-21.
    [11]Konstantinos Papathanassiou, Florian Kugler, Irena Hajnsek. Exploring the potential of POL-INSAR techniques at X-Band first results and experiments from TANDEM-X[C]. APSAR, Soul, Korea,2011:24-25.
    [12]Wolfgang Martin Boerner. On Polarimetric, Interferometric, Polarimetric-Interferometric&RP-Differential-POLIn-SAR sensing&imaging of the terrestrial covers[C]. APSAR, Soul, Korea,2011:26-27.
    [13]M. Ludwig, R. Torres, A. stergaard, F. Rostan, C. Schaefer. The Sentinel-1SAR instrument[C]. APSAR, Seoul, Korea,2011:1-4.
    [14]Andres Solana Gonzalez, Massimo Labriola, Josep Closa Soteras, Javier Sanchez Palma. PAZ instrument design and performance[C]. APSAR, Soul, Korea,2011:14-17.
    [15]Joachim H. G. Ender, Andreas R. Brenner, Helmut Essen, Helmut Wilden, Delphine Cerutti-Maori, Alfred Wahlen, Winfried Johannes. Advances in radar imaging at Fraunhofer-FHR[C]. APSAR, Soul, Korea,2011:84-85.
    [16]Scott Hensley, Bruce Chapman, Maxim Neumann, Marco Lavalle, Thierry Michel, Shadi Oveisgharan, Ron Muellerschoen, Paul Siqueira, Razi Ahmed. Polarimetric interferometric studies of the harvard forest using L-band UAVSAR data repeat pass data[C]. APSAR, Soul, Korea,2011:22-23.
    [17]Munson D. C., O'brian J. D., Jenkins W. K. A tomographic formulation of spotlight mode synthetic aperture radar[C]. Proceedings of the IEEE,1983:917-925.
    [18]C. Wu, K. Y. Liu, M. Jin. Modeling and a correlation algorithm for spaceborne SAR signals[J]. IEEE Trans. Aerospace Electron. Syst.,1982,18:563-575.
    [19]Marc Rodriguez-Cassola, Pau Prats, Gerhard Krieger, Alberto Moreira. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations [J]. IEEE Trans. Aerosp. Electron. Syst.,2011,47(4):2949-2966.
    [20]Richard Bamler. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Trans. Geosci. Remote Sens.,1992,30(4):107-114.
    [21]C. Cafforio, C. Prati, F. Rocca. SAR data focusing using seismic migration techniques [J]. IEEE Trans. Aerosp. Electron. Syst.,1991,27(2):194-207.
    [22]R. Keith Raney, H. Runge, Richard Bamler, Ian G. Cumming, Frank H. Wong. Precision SAR processing using chirp scaling[J]. IEEE Trans. Geosci. Remote Sens.,1994,32(4):786-799.
    [23]Josef Mittermayer, Alberto Moreira, Otmar Loffeld. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(5):2198-2214.
    [24]Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and scanSAR imaging modes[J]. IEEE Trans. Geosci. Remote Sens.,1996,34(5):1123-1136.
    [25]D. Y. Zhu, M. W. Shen, Z. D. Zhu. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(6):1579-1588.
    [26]Frank H. Wong, Tat Soon Yeo. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(5):946-953.
    [27]G. C. Sun, X. W. Jiang, M. D. Xing, Z. J. Qiao, Y R. Wu, Z. Bao. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(6):2308-2322.
    [28]陈琦,杨汝良.机载前视合成孔径雷达ChirpScaling成像算法研究[J].电子与信息学报,2008,30(1):228-232.
    [29]Yi Yusheng, Zhang Linrang, Li Yan, Liu Nan, Liu Xin. range Doppler algorithm for bistatic missile-borne forward-looking SAR[C]. APSAR, Xi'an,2009:960-963.
    [30]German Aerospace Center(DLR), SIREV[Z]. http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2331/3693read-5512, April,2008.
    [31]G. Fornaro. Trajectory deviations in airborne SAR:analysis and compensation[J]. IEEE Trans. Geosci. Remote Sens.,1999,35(3):997-1009.
    [32]Meng Dao Xing, Xiu Wei Jiang, Ren Biao Wu, Fen Zhou, Zheng Bao. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(8):2870-2883.
    [33]Alberto Moreira, Yong Hong Huang. Airborne SAR processing of highly squited data using a chirp scaling approach with intergrated motion compensation[J]. IEEE Trans. Geosci. Remote Sens.,1994,32(5):1029-1040.
    [34]易予生,张林让,刘昕,刘楠,申东.基于级数反演俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术,2009,31(11):39-43.
    [35]杨超,许赟,谢长川.高超声速飞行器气动弹性力学研究综述[J].航空学报,2010,31(1):1-11.
    [36]J.H.G. Ender, I. Walterscheid, A.R. Brenner. Bistatic SAR-translational invariant processing and experimental results[J]. IEE Proc.-Radar Sonar Navig.,2006,153(3):177-183.
    [37]Shichao Chen, Qisong Wu, Peng Zhou, Mengdao Xing, Zheng Bao. A New Look at Loffeld's Bistatic Formula in Tandem Configuration[J]. IEEE Geosci. Remote Sens. lett.,2012,9(4):710-714.
    [38]Jinshan Ding, Zhenhua Zhang, Mengdao Xing, Zheng Bao. A new look at the bistatic-to-monostatic conversion for tandem SAR image formation[J]. IEEE Geosci. Remote Sens. lett.,2008,5(3):392-395.
    [39]Qisong Wu, Yi Liang, Mengdao Xing, Chengwei Qiu, Zheng Bao, Tat-Soon Yeo. Focusing of tandem bistatic-configuration data with range migration algorithm[J]. IEEE Geosci. Remote Sens. lett.,2011,8(1):88-92.
    [40]Q. Wu, M. Xing, H. Shi, X. Hu, Z. Bao. Exact analytical two-dimensional spectrum for bistatic synthetic aperture radar in tandem configuration[J]. IET Radar Sonar Navig.,2011,5(3):349-360.
    [41]Feng Li, Shu Li, Yigong Zhao. Focusing azimuth-invariant bistatic SAR data with chirp scaling[J]. IEEE Geosci. Remote Sens. lett.,2008,5(3):484-486.
    [42]Yew Lam Neo, Frank H. Wong, Ian G. Cumming. Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(1):14-21.
    [43]Hee-Sub Shin, Jong-Tae Lim. Omega-k algorithm for airborne spatial invariant bistatic spotlight SAR imaging[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(1):238-250.
    [44]Zhenhua Zhang, Mengdao Xing, Jinshan Ding, Zheng Bao. Focusing parallelbistatic SAR data using the analytic transfer function in the wavenumber domain[J].IEEE Trans. Geosci. Remote Sens.,2007,45(11):3633-3645.
    [45]Yanping Li, Zhenhua Zhang, Mengdao Xing, Zheng Bao. Bistatic spotlight SARprocessing using the frequency-scaling algorithm[J]. IEEE Geosci. Remote Sens.lett.,2008,5(1):48-52.
    [46]Robert Wang, Otmar Loffeld, Holger Nies, Stefan Knedlik, Joachim H. G. Ender.Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration[J].IEEE Trans. Geosci. Remote Sens.,2009,47(3):952-964.
    [47]Xiaolan Qiu, Donghui Hu, Chibiao Ding. An improved NLCS algorithm withcapability analysis for one-stationary BiSAR[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(10):3179-3186.
    [48]Xiaolan Qiu, Donghui Hu, Chibiao Ding. Some reflections on bistatic SAR offorward-looking configuration[J]. IEEE Geosci. Remote Sens. lett.,2008,5(4):735-739.
    [49]Robert Wang, Otmar Loffeld, Yew Lam Neo, Holger Nies, Ingo Walterscheid,Thomas Espeter, Jens Klare, Joachim H. G. Ender. Focusing bistatic SAR data inairborne/stationary configuration[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(1):452-465.
    [50]A.S. Goh, M. Preiss, N.J.S. Stacy, D.A. Gray. Bistatic SAR experiment with theIngara imaging radar[J]. IET Radar Sonar Navig.,2010,4(3):426-437.
    [51]Koba Natroshvili, Otmar Loffeld, Holger Nies, Amaya Medrano Ortiz, StefanKnedlik. Focusing of general bistatic SAR configuration data with2-D inversescaled FFT[J]. IEEE Trans. Geosci. Remote Sens.,2006,44(10):2718-2727.
    [52]Yew Lam Neo, Frank H. Wong, Ian G. Cumming. A comparison of point targetspectra derived for bistatic SAR processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2481-2492.
    [53]Robert Wang, Yun Kai Deng, Otmar Loffeld, Holger Nies, Ingo Walterscheid,Thomas Espeter, Jens Klare, Joachim H. G. Ender. Processing the azimuth-variantbistatic SAR data by using monostatic imaging algorithms based ontwo-dimensional principle of stationary phase[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(10):3504-3520.
    [54]R. Wang, O. Loffeld, Y.L. Neo, H. Nies, Z. Dai. Extending Loffeld’s bistaticformula for the general bistatic SAR configuration[J]. IET Radar Sonar Navig.,2010,4(1):74–84.
    [55]Robert Wang, Otmar Loffeld, Holger Nies, Joachim H. G. Ender. Focusing spaceborne/airborne hybrid bistatic SAR data using wavenumber-domain algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(7):2275-2283.
    [56]Frank H. Wong, Ian G. Cumming, Yew Lam Neo. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2493-2505.
    [57]Can Evren Yarman, Birsen Yazici, Margaret Cheney. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories[J]. IEEE Trans. Geosci. Remote Sens.,2008,17(1):84-93.
    [58]I. Walterscheid, A. Brenner, J. Ender. Geometry and system aspects for a bistatic airborne SAR-experiment,[C]. Proc. EUSAR, Ulm, Germany,2004:567-570.
    [59]T. Espeter, I. Walterscheid, J. Klare, C. Gierull, A. R. Brenner, J. Ender, O. Loffeld. Progress of hybrid bistatic SAR:Synchronization experiments and first imaging results[C]. Proc. EUSAR, Friedrichshafen,Germany,2008:217-220.
    [60]D. Martinsek, R. Goldstein. Bistatic radar experiment[C]. Proc. EUSAR, Friedrichshafen, Germany,1998
    [61]Ingo Walterscheid, Thomas Espeter, Andreas R. Brenner, Jens Klare, Joachim H. G. Ender, Holger Nies, Robert Wang, Otmar Loffeld. Bistatic SAR experiments with PAMIR and TerraSAR-X—setup, processing, and image Results[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(8):3268-3279.
    [62]Marc Rodriguez-Cassola,Pau Prats,Daniel Schulze,Nuria Tous-Ramon,Ulrich Steinbrecher,Luca Marotti,Matteo Nannini,Marwan Younis,Paco Lopez-Dekker,Manfred Zink,Andreas Reigber,Gerhard KriegerAlberto Moreira. First bistatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Geosci. Remote Sens. lett.,2012,9(1):33-37.
    [63]李燕平,邢孟道,井伟,保铮.一种双基SAR的SR-ECS成像算法[J].自然科学进展,2008,18(3):323-333.
    [64]闫鸿慧,王岩飞,于海锋,李俐.一种基于距离补偿的分布式小卫星双基SAR成像方法[J].电子与信息学报,2005,27(5):771-774.
    [65]何峰,梁甸农,董臻.适于大斜视角的星载双基地SAR波数域成像算法[J].电子学报,2005,33(6):1011-1014.
    [66]史洪印,周荫清,陈杰.平飞模式机载双基地SAR动目标检测方法[J].北京航空航天大学学报,2009,35(8):996-1000.
    [67]刘昉,王建国.双基SAR欺骗式干扰性能研究[J].电子与信息学报,2010,32(1):75-79.
    [68]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:科学出版社,2003.
    [69]Brian D. Rigling, Randolph L. Moses. Polar format algorithm for bistatic SAR[J]. IEEE Trans. Aerosp. Electron. Syst.,2004,40(4):1147-1159.
    [70]Davide D'aria, Andrea Monti Guarnieri, Fabio Rocca. Focusing bistatic synthetic aperture radar using dip move out[J]. IEEE Trans. Geosci. Remote Sens.,2004,42(7):1362-1375.
    [71]Otmar Loffeld, Holger Nies, Valerij Peters, Stefan Knedlik. Models and useful relations for bistatic SAR processing[J]. IEEE Trans. Geosci. Remote Sens.,2004,42(10):2031-2038.
    [72]Robert Wang, Otmar Loffeld, Qurat Ul-Ann, Holger Nies, Amaya Medrano Ortiz, Ashraf Samarah. A bistatic point target reference spectrum for general bistatic SAR processing[J]. IEEE Geosci. Remote Sens. lett.,2008,5(3):517-521.
    [73]R. Wang, O. Loffeld, H. Nies, A. Medrano-Ortiz, S. Knedlik. Bistatic point target reference spectrum in the presence of trajectory deviations[J]. IET Radar Sonar Navig.,2009,3(2):177-185.
    [74]Kefeng Yang, Feng He, Diannong Liang. A two-dimensional spectrum for general bistatic SAR processing[J]. IEEE Geosci. Remote Sens. lett.,2010,7(1):108-112.
    [75]Yew Lam Neo, Frank Wong, Ian G. Cumming. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geosci. Remote Sens. lett.,2007,4(1):93-96.
    [76]Baochang Liu, Tong Wang, Qisong Wu, Zheng Bao. Bistatic SAR data focusing using an omega-K algorithm based on method of series reversion[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(8):2899-2912.
    [77]Michail Antoniou, Rajesh Saini, Mikhail Cherniakov. Results of a space-surface bistatic SAR image formation algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2007,45(11):3359-3371.
    [78]Michail Antoniou, Mikhail Cherniakov, Cheng Hu. Space-surface bistatic SAR image formation algorithms [J]. IEEE Trans. Geosci. Remote Sens.,2009,47(6):1827-1843.
    [1]皮亦鸣,杨建宇,付锍生,杨晓波.合成孔径雷达成像原理[M].成都:电子科技大学出版社,2007.
    [2]Ian G. Cumming, Frank H. Wong. Digital processing of synthetic aperture radar data: algorithm and implementation[M]. Beijing:Publishing house of electronics industry,2005.
    [3]仇晓兰,丁赤飚,胡东辉.双站SAR成像处理技术[M].北京:科学出版社,2010.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [5]Josef Mittermayer, Alberto Moreira, Otmar Loffeld. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(5):2198-2214.
    [6]C. Cafforio, C. Prati, F. Rocca. SAR data focusing using seismic migration techniques[J]. IEEE Trans. Aerosp. Electron. Syst.,1991,27(2):194-207.
    [7]Richard Bamler. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Trans. Geosci. Remote Sens.,1992,30(4):107-114.
    [8]R. Keith Raney, H. Runge, Richard Bamler, Ian G. Cumming, Frank H. Wong. Precision SAR processing using chirp scaling[J]. IEEE Trans. Geosci. Remote Sens.,1994,32(4):786-799.
    [9]M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York:Wiley,1999.
    [10]D. Y. Zhu, M. W. Shen, Z. D. Zhu. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(6):1579-1588.
    [11]Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and scanSAR imaging modes[J]. IEEE Trans. Geosci. Remote Sens.,1996,34(5):1123-1136.
    [12]G. W. Davidson, L. G. Cumming, M. R. Ito. A chirp scaling approach for processing squint mode SAR data[J]. IEEE Trans. Aerosp. Electron. Syst.,1996,32(1):121-133.
    [13]黄源宝,李真芳,保铮.大斜视角SAR成像的改进频率变标算法[J].系统工程与电子技术,2003,25(12):1542-1546.
    [1] Richard Bamler. A comparison of range-Doppler and wavenumber domain SARfocusing algorithms[J]. IEEE Trans. Geosci. Remote Sens.,1992,30(4):107-114.
    [2] C. Cafforio, C. Prati, F. Rocca. SAR data focusing using seismic migrationtechniques[J]. IEEE Trans. Aerosp. Electron. Syst.,1991,27(2):194-207.
    [3] Alberto Moreira, Yong Hong Huang. Airborne SAR processing of highly squiteddata using a chirp scaling approach with intergrated motion compensation[J]. IEEETrans. Geosci. Remote Sens.,1994,32(5):1029-1040.
    [4]Josef Mittermayer, Alberto Moreira, Otmar Loffeld. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(5):2198-2214.
    [5]Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and scanSAR imaging modes[J]. IEEE Trans. Geosci. Remote Sens.,1996,34(5):1123-1136.
    [6]D. Y. Zhu, M. W. Shen, Z. D. Zhu. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(6):1579-1588.
    [7]G. W. Davidson, L. G. Cumming, M. R. Ito. A chirp scaling approach for processing squint mode SAR data[J]. IEEE Trans. Aerosp. Electron. Syst.,1996,32(1):121-133.
    [8]黄源宝,李真芳,保铮.大斜视角SAR成像的改进频率变标算法[J].系统工程与电子技术,2003,25(12):1542-1546.
    [9]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [10]Frank H. Wong, Tat Soon Yeo. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(5):946-953.
    [11]G. C. Sun, X. W. Jiang, M. D. Xing, Z. J. Qiao, Y R. Wu, Z. Bao. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(6):2308-2322.
    [12]Frank H. Wong, Ian G. Cumming, Yew Lam Neo. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2493-2505.
    [13]Ian G. Cumming, Frank H. Wong. Digital processing of synthetic aperture radar data:algorithm and implementation[M]. Beijing:Publishing house of electronics industry,2005.
    [14]Yew Lam Neo, Frank H. Wong, Ian G. Cumming. Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(1):14-21.
    [15]Yew Lam Neo, Frank H. Wong, Ian G. Cumming. A comparison of point target spectra derived for bistatic SAR processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2481-2492.
    [16]Yew Lam Neo, Frank Wong, Ian G Cumming. A two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geosci. Remote Sens. lett.,2007,4(1):93-96.
    [1]陈琦,杨汝良.机载前视合成孔径雷达ChirpScaling成像算法研究[J].电子与信息学报,2008,30(1):228-232.
    [2]Yi Yusheng, Zhang Linrang, Li Yan, Liu Nan, Liu Xin. range Doppler algorithm for bistatic missile-borne forward-looking SAR[C]. APSAR, Xi'an,2009:960-963.
    [3]German Aerospace Center(DLR), SIREV[Z]. http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2331/3693read-5512, April,2008.
    [4]房丽丽,王岩飞.俯冲加速运动状态下SAR信号分析及运动补偿[J].电子与信息学报,2008,30(6):1316-1320.
    [5]易予生,张林让,刘昕,刘楠,申东.基于级数反演俯冲加速运动状态弹载SAR成像算法[J].系统工程与电子技术,2009,31(11):39-43.
    [6]易予生,张林让,刘昕,刘楠,申东.一种弹载侧视SAR大场景成像算法[J].电子与信息学报,2010,32(3):587-592.
    [7]皮亦鸣,杨建宇,付锍生,杨晓波.合成孔径雷达成像原理[M].成都:电子科技大学出版社,2007.
    [8]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [9]Yew Lam Neo, Frank H. Wong, Ian G. Cumming. Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(1):14-21.
    [10]Yew Lam Neo, Frank Wong, Ian G. Cumming. A two-dimensional spectrum for
    bistatic SAR processing using series reversion[J]. IEEE Geosci. Remote Sens. lett.,
    2007,4(1):93-96.
    [11] Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scaling
    algorithm for air-and spaceborne SAR data processing in stripmap and scanSAR
    imaging modes[J]. IEEE Trans. Geosci. Remote Sens.,1996,34(5):1123-1136.
    [1]G. Fornaro. Trajectory deviations in airborne SAR:analysis and compensation[J]. IEEE Trans. Geosci. Remote Sens.,1999,35(3):997-1009.
    [2]Meng Dao Xing, Xiu Wei Jiang, Ren Biao Wu, Fen Zhou, Zheng Bao. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(8):2870-2883.
    [3]房丽丽,王岩飞.俯冲加速运动状态下SAR信号分析及运动补偿[J].电子与信息学报,2008,30(6):1316-1320.
    [4]易予生,张林让,刘昕,刘楠,申东.一种弹载侧视SAR大场景成像算法[J].电子与信息学报,2010,32(3):587-592.
    [5]Alberto Moreira, Yong Hong Huang. Airborne SAR processing of highly squited data using a chirp scaling approach with intergrated motion compensation[J]. IEEE Trans. Geosci. Remote Sens.,1994,32(5):1029-1040.
    [6]W. G. Carrara, R. S. Goodman, R. M. Majewski. Spotlight Synthetic Aperture Radar: Signal Processing Algorithm[M]. Boston:MA:Artech House,1995.
    [7]Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and scanSAR imaging modes[J]. IEEE Trans. Geosci. Remote Sens.,1996,34(5):1123-1136.
    [8]D.E. Wahl, P.H. Eichel, D. C. Ghiglia, C. V. Jakowatz. Phase gradient autofocus-A robust tool for high resolution SAR phase correction[J]. IEEE Trans. Aerosp. Electron. Syst.,1994,30(3):827-835.
    [9]Lei Zhang, Zhijun Qiao, Mengdao Xing, Lei Yang, Zheng Bao. A robust motion compensation approach for UAV SAR imagery[J]. IEEE Trans. Geosci. Remote Sens.,2012,
    [10]G. C. Sun, X. W. Jiang, M. D. Xing, Z. J. Qiao, Y R. Wu, Z. Bao. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Trans. Geosci. Remote Sens.,2011,49(6):2308-2322.
    [11]Frank H. Wong, Tat Soon Yeo. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(5):946-953.
    [12]Josef Mittermayer, Alberto Moreira, Otmar Loffeld. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(5):2198-2214.
    [13]D. Y. Zhu, M. W. Shen, Z. D. Zhu. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(6):1579-1588.
    [14]Robert Wang, Otmar Loffeld, Holger Nies, Stefan Knedlik, Manfred Hagelen, Helmut Essen. Focus FMCW SAR data using the wavenumber domain algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(4):2109-2118.
    [15]Robert Wang, Otmar Loffeld, Holger Nies, Stefan Knedlik, Joachim H. G. Ender. Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration[J]. IEEE Trans. Geosci. Remote Sens.,2009,47(3):952-964.
    [16]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [17]Frank H. Wong, Ian G. Cumming, Yew Lam Neo. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2493-2505.
    [1]杨超,许赞,谢长川.高超声速飞行器气动弹性力学研究综述[J].航空学报,2010,31(1):1-11.
    [2]Y. Liu, M. D. Xing, G. C. Sun, X. L. Lv, Z. Bao, W. Hong, Y. R. Wu. Echo model analyses and imaging algorithm for high-resolution SAR on high-speed platform[J]. IEEE Trans. Geosci. Remote Sens.,2012,
    [3]Frank H. Wong, Tat Soon Yeo. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(5):946-953.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [5]Angel Ribalta. Time-Domain reconstruction algorithms for FMCW-SAR[J]. IEEE, Geosci. Remote Sens. lett,2011,8(3):396-400.
    [6]梁毅,王虹现,邢孟道,保铮.调频连续波SAR信号分析与成像研究[J].电子与信息学报,2008,30(5):1017-1021.
    [7]Robert Wang, Otmar Loffeld, Holger Nies, Stefan Knedlik, Manfred Hagelen, Helmut Essen. Focus FMCW SAR data using the wavenumber domain algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(4):2109-2118.
    [8]Y Liu, Y. Kai Deng, R. Wang, O. Loffeld, X. Wang. Model and signal processing of bistatic frequency modulated continuous wave synthetic aperture radar[J]. IEE Proc.-Radar Sonar Navig.,2012,6(6):472-482.
    [9]Josef Mittermayer, Alberto Moreira, Otmar Loffeld. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,1999,37(5):2198-2214.
    [10]D. Y. Zhu, M. W. Shen, Z. D. Zhu. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(6):1579-1588.
    [11]仇晓兰,丁赤飚,胡东辉.双站SAR成像处理技术[M].北京:科学出版社,2010.
    [1] Nicholas J. Willis. Bistatic Radar[M]. Raleigh, NC: SciTech Publishing Inc.,1995.
    [2] Robert Wang, Otmar Loffeld, Yew Lam Neo, Holger Nies, Ingo Walterscheid,Thomas Espeter, Jens Klare, Joachim H. G. Ender. Focusing bistatic SAR data inairborne/stationary configuration[J]. IEEE Trans. Geosci. Remote Sens.,2010,48(1):452-465.
    [3] J.H.G. Ender, I. Walterscheid, A.R. Brenner. Bistatic SAR–translational invariantprocessing and experimental results[J]. IEE Proc.-Radar Sonar Navig.,2006,153(3):177-183.
    [4] Marc Rodriguez-Cassola,Pau Prats,Daniel Schulze,Nuria Tous-Ramon,UlrichSteinbrecher,Luca Marotti,Matteo Nannini,Marwan Younis,PacoLópez-Dekker,Manfred Zink,Andreas Reigber,Gerhard KriegerAlberto Moreira.First bistatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Geosci.Remote Sens. lett.,2012,9(1):33-37.
    [5] Ingo Walterscheid, Thomas Espeter, Andreas R. Brenner, Jens Klare, Joachim H. G.Ender, Holger Nies, Robert Wang, Otmar Loffeld. Bistatic SAR experiments withPAMIR and TerraSAR-X—setup, processing, and image Results[J]. IEEE Trans.Geosci. Remote Sens.,2010,48(8):3268-3279.
    [6] Yew Lam Neo, Frank H. Wong, Ian G. Cumming. Processing of azimuth-invariantbistatic SAR data using the range doppler algorithm[J]. IEEE Trans. Geosci.Remote Sens.,2008,46(1):14-21.
    [7] Robert Wang, Otmar Loffeld, Holger Nies, Stefan Knedlik, Joachim H. G. Ender.Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration[J].IEEE Trans. Geosci. Remote Sens.,2009,47(3):952-964.
    [8] Yanping Li, Zhenhua Zhang, Mengdao Xing, Zheng Bao. Bistatic spotlight SARprocessing using the frequency-scaling algorithm[J]. IEEE Geosci. Remote Sens.lett.,2008,5(1):48-52.
    [9] Baochang Liu, Tong Wang, Qisong Wu, Zheng Bao. Bistatic SAR data focusingusing an omega-K algorithm based on method of series reversion[J]. IEEE Trans.Geosci. Remote Sens.,2009,47(8):2899-2912.
    [10]Frank H. Wong, Tat Soon Yeo. New applications of nonlinear chirp scaling in SARdata processing[J]. IEEE Trans. Geosci. Remote Sens.,2001,39(5):946-953.
    [11] Xiaolan Qiu, Donghui Hu, Chibiao Ding. An improved NLCS algorithm withcapability analysis for one-stationary BiSAR[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(10):3179-3186.
    [12]Frank H. Wong, Ian G. Cumming, Yew Lam Neo. Focusing bistatic SAR data usingthe nonlinear chirp scaling algorithm[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(9):2493-2505.
    [13]Yew Lam Neo, Frank Wong, Ian G. Cumming. A two-dimensional spectrum forbistatic SAR processing using series reversion[J]. IEEE Geosci. Remote Sens. lett.,2007,4(1):93-96.
    [14]Xupu Geng, Honghui Yan, Yanfei Wang. A two-dimensional spectrum model forgeneral bistatic SAR[J]. IEEE Trans. Geosci. Remote Sens.,2008,46(8):2216-2223.
    [15]T. Espeter, I. Walterscheid, J. Klare, C. Gierull, A. R. Brenner, J. Ender, O. Loffeld. Progress of hybrid bistatic SAR:Synchronization experiments and first imaging results[C]. Proc. EUSAR, Friedrichshafen,Germany,2008:217-220.
    [16]仇晓兰,丁赤飚,胡东辉.双站SAR成像处理技术[M].北京:科学出版社,2010.
    [17]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2008.
    [18]Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scaling algorithm for air-and spaceborne SAR data processing in stripmap and scanSAR imaging modes[J]. IEEE Trans. Geosci. Remote Sens.,1996,34(5):1123-1136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700