用户名: 密码: 验证码:
层状非均匀介质介电特性反演分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达(6PR)作为典型的电磁无损检测技术手段,由于其检测速度快、无破损、精度高等特点,已经广泛应用于地质勘探、考古、交通、土木、环保、水利、铁道等工程领域。随着道路建设与养护管理的不断发展,空气耦合式的6PR(即路面雷达)已经大量应用于道路施工质量控制和路况评价中。目前路面应用技术的研究主要围绕介电常数的确定来展开的,其中通过介质分界面上反射波波幅的相对大小和电磁波传播过程中衰减的人工假定来得到介电常数的研究成果较多,而通过反演算法研究介电常数的研究成果相对较少。另外,目前的绝大部分研究成果集中在半空间或层状的均质材料。而构成工程应用材料大部分是由固态、液态、气态三相介质组成的混合物,其材料本身的介电特性随着组成成分及其比例的变化表现出非均质的特性。受材料非均匀性质的影响,这种依赖于层间界面的反射波幅得到的介电常数,只能代表界面附近材料的介电特性,不能反映各层内部的材料介电特性,从而导致6PR分析厚度的误差以及应用的局限。
     本文针对上述雷达应用技术的相对不足,研究了基于层状非均匀介质的路面雷达应用技术,主要成果和结论如下:
     1、实现了电磁波在层状非均匀介质中传播的正演模拟
     建立了层状介质的非均匀介电模型,利用时域有限差分(FDTD)方法实现了平面波在层状非均匀介质中传播的模拟计算。将路面结构非均匀层状体系,等效成若干个均匀子层,实现了路面雷达层状非均匀正演模拟。通过与实测反射波的对比发现,非均匀模拟效果更加符合实测反射波。
     2、实现了层状非均匀介电特性的反演分析
     利用系统识别和遗传算法,实现了层状非均匀介质介电特性的反演。同时,考虑到系统识别初始值敏感性和遗传算法时效性问题,结合系统识别反演的局部快速收敛和遗传算法全局寻优的优点,提出了遗传算法和系统识别的联合反演算法。实例分析表明,联合反演算法不受初始值的影响,同时相对于遗传反演算法节省了大量时间。
     3、通过层状非均匀介电特性反演,结合现场相关试验,实现了结构层内部物理量的雷达检测与分析技术。
     非均匀的介电特性反映了结构层内部物理量变化的非均匀性,通过这些物理量与介电常数的相关试验,分别实现了路基碾压层内部含水量沿深度方向和水平方向的快速检测、水泥稳定碎石基层强度的检测分析、沥青混合料级配的快速检测分析。相对于传统的层间界面介电特性的分析,这种基于结构层内部非均匀介电特性分布的检测分析更加有效,同时扩大了路面雷达的应用范围。
     论文针对雷达应用技术上均匀材料假定的相对不足,从电磁波传播理论出发,建立了层状非均匀时域有限差分法的电磁波正演模拟,并利用系统识别和遗传反演算法及二者的联合算法,进行了层状非均匀介质介电特性的反演。该方法的实现,从本质上解决了路面雷达应用的共性技术问题,能够充分挖掘了雷达回波蕴含的丰富材料信息,结果更加符合实际材料的特点;并结合路基路面材料物理特性与介电特性的相关试验结论,将雷达尝试性应用于厚度、含水量、密度、级配等施工质量控制指标的检测与分析,推动了路面雷达电磁无损检测技术的发展。
Ground Penetrating Radar (GPR) is used as a typical tool of electromagnetic non-destructure testing technologies. Because it is the fast, accurate and non-destructive, GPR has been widely used in geological explore, archaeology, traffic, civil engineering, environment, water conservancy, railway, etc, engineering fields. As the development of pavement in construction and maintenance, the air-launched GPR is widely used in construction quality control and pavement conditions evaluation. Currently, the research methods of GPR application focus on how to obtain the dielectric. Generally, the dielectric are calculated by the waveform amplitude reflected from the interfaces that the dielectric is obviously different between two layers. While the electromagnetic wave transmitting in pavement, it is assumed that the electromagnetic wave attenuation is fixed or ignored. A few methods that back-calculate dielectic constant are presented in half space or multi-layer system. But the model that is used to forecast the dielectric is homogeneous. In fact, many materials that are used in various engineerings are composites, which often are made up of three constituents or phases, such as solid, liquid, gas. The properties in every small space are different as the three phases mixtures vary. So the dielectric that predicted from the amplitude reflected from the interfaces can't represent the properties of a whole layer, and only represent the properties near the interface. The homogeneous predicting model will affect the precision of layer thickness detected from GPR, and it also could restrict the GPR application fields.
     According to the above, it is presented that the multi-layered inhomogeneous dielectrics are inversely analyzed, and how to use the inhomogeneous dielectric in pavement engineering testing by GPR. It is concluded as the followings.
     1. The foreward simulation that the electromagnetic wave propagates in multi-layered inhomogeneous media has been carried out.
     The 1-D and 2-D model of multi-layered inhomogeneous media are established, and the foreward simulations of electromagnetic wave propagates in this media are finished by using Finite Difference of Time Domain (FDTD) method. Regarded the pavement structures which are inhomogeneous as many homogeneous sub-layers, the forward model which is applied in inversion is established. Compared the homogeneous simulation, the inhomogeneous simulation is more close to the actual reflected waveform.
     2. The dielectric properties back-calculation for multi-layered inhomogeneous media has been achieved.
     The dielectric properties back-calculation for multi-layered inhomogeneous has been accomplished by System Identification (SID) method and Genetic Algorithm (GA). But the SID is influenced on the seed dielectrics sometimes, and GA is a time-consuming method. So the GA-SID hybrid method is presented, this new method contains some advantages that it can't be affected on seed electric and it is high efficiency. Comparison analysis that the three methods are used to back-calculate the dielectrics from the same reflected waveform shows the hybrid method is more effective.
     3. Using the field correlation experiments between the back-calculated dielecteic and the concerned physics parameters, these parameters inside the layers could be detected by electromagnetic wave testing technology.
     The inhomogeneous dielectric properties are associated with some physics parameters' uniformity inside the layers. If the correlation between the dielectrics and these parameters has been obtained by field experiments, some new testing technologies have been achieved, such as the subgrade moisture testing vertically and horizontally, strength analysis of cement stabilized base, grade estmation of asphalt concrete. These testing technologies are based on the inhomogeneous dielectric analysis of a whole layer, they utilize all information of the reflected waveform besides the amplitude. They can extend the application of GPR.
     In this paper, it is brought out that the homogeneous dielectric properties can't describe actual material accurately. Based on electromagnetic theory, the model of FDTD that simulate the electromagnetic wave propagate in multi-layered inhomogeneous media is developed. And the three back-calculation methods that are SID, GA and GA-SID hybrid are accomplished to predict the dielectric constant of multi-layered inhomogeneous media. These works essentially find out the basic solution of GPR applications, they sufficiently apply the reflected waveform that connote the information of the material passed by electromagnetic wave. Combined the relationship bwteen the back-calculation dielectric and some physics parameters, the new testing technologies of construction quality control used by GPR are developed, such as base moisture testing, asphalt grade analysis, stabilized base strength survey. They effectively improve the electromagnetic non-destructive test technologies that detect pavement parameters by GPR.
引文
[1]曾昭发,刘四新,王者江.探地雷达方法原理及应用[M].北京:科学出版社,2006.
    [2]孙朝云.现代道路交通测试技术:原理与应用[M].北京:人民交通出版社,2000.
    [3]李大心.探地雷达方法与应用[M].北京:地质出版社,1994:56-79.
    [4]王惠濂,李大心.脉冲时间域探地雷达讲座[J].国外地质勘探技术,1990:34-40.
    [5]王惠濂.地质雷达的物理模拟研究[J].地球科学.1993,13(3):205-208.
    [6]Nolan RC,Egghart HC,Mittleman L,et al.MERADCOMmine detection program:1960 -198[R].Fort Belvoir,VA:US Army Mobility Equipment Research Development Command,Report 2294.1980.
    [7]Huston D,Fuhr P,Maser K,et al.Nondestructive Testing of Reinforced Concrete Bridges using Radar Imaging Techniques[R].VT:Department of Mechanical Engineering,College of Engineering & Mathematics,University of Vermont,Technical Report NETCR 94-2.2002.
    [8]Leckebusch J.Ground-penetrating radar:a modern three-dimensional prospection method[J].Archaeological Prospection,2003,10(4):213-240.
    [9]Dehong L,Gang K,Ling L,et al.Electromagnetic time-reversal imaging of a target in a cluttered environment[J].Antennas and Propagation,IEEE Transactionson,2005,53(9):3058-3066.
    [10]Borcea L,Papanicolaou G,Tsogka C.Theory and applications of time reversal and interferometric imaging[J].Inverse Problems,2003,(6):S139-S164.
    [11]Yavuz ME,Teixeira FL.Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves[J].Geoscienceand Remote Sensing Letters,IEEE,2005,2(2):233-237.
    [12]Bj rklund N,Johnsson T.Real-time sampling of Ground Penetrating Radar and Related Processing[DS.Lulea,Sweden:Department of Computer Science and Electrical Engineering,Lulea University of Technology,2005.
    [13]沈飚,石庆华.孙忠良.道路铺砌层中探地雷达波传播的正演模拟及应用[J].石油地球物理勘探,1997,32(增刊):135-140.
    [14]魏剑涛.探地雷达的分析和研究[D].大连:大连理工大学,硕士学位论文,2000.
    [15]Saarenketo,T.Ground Penetrating Radar Applications in Road Design and Construction in Finnish Lapland[J].Geological Survey of Finland,Special Paper 15,1992:161-167.
    [16]Saarenketo,T.,Scullion,T..Ground penetrating radar application on roads and highways[C].Research Report 1923-2F,Texas Transportation Institute,College Station,Texas,1994:36.
    [17]Saarenketo,T.,T.Nikkinen.S.Lotvonen.The Use of Ground Penetrating Radar for Monitoring Water Movement in Road Structures[C]. Proceedings of Fifth International Conference on Ground Penetrating Radar. Ontario, Canada. 1994. Vol.3 of 3:1181-1192.
    [18] Maijala, P., Saarenketo, T., Valtanen, P. Correlation of Some Parameters in GPR measurement Data with Quality Properties of Pavement and Concrete Bridge Decks[C]. Proceedings of the fifth International Conference on Ground Penetrating Radar. Ontario, Canada. 1994(2):393-406.
    [19] Scullion, T., Lau, C. 1.. Saarenketo, T. Performance Specification of Ground Penetrating Radar[C].Proceeding of the Sixth international Conference on Ground Penetrating Radar,Sendai, Japan, 1996:341-346.
    [20] Timo Saarenketo, Tom Scullion. Laboratory and GPR tests to Evaluate Eletrical and Mechanical Properties of Texas and Finnish Base Course Aggregates[C]. Proceedings of the Sixth International Conference on Ground Penetrating Radar, Sendai, Japan, 1996:477-482.
    [21] Saarakento T. Using ground penetrating radar and dielectric probe measurements in pavement density quality control[R]. In: Transportation Research Record 1575. Washington, DC: National Academy Press, 1997:34 - 41.
    [22] Tom Scullion, Timo Saarenketo. Application of Ground Penetrating Radar Technology for Network and Project Level Pavement Management Systems [C]. Proceedings of the Fourth International Conference on Managing Pavements, 1998
    [23] Tom Scullion, Timo Saarenketo. Integrating Ground Penetrating Radar and Falling Weight Deflectometer Technology in Pavement Evaluation[C]. Proceedings of the Third ASTM Symposium of Nondestructive Testing of Pavements and Backcalculation of Moduli, 1999.
    [24] Saarenketo, T., Roimela, P.. Ground Penetrating Radar Technique in Asphalt Pavement Density Quality Control[C]. Proceeding of the Seventh International Conference on Ground Penetrating Radar, Lawrence KS, 1998(2) :461-466.
    [25] Timo Saarenketo, Tom Scullion. Moisture Susceptibility and Electrical Properties of Base Course Aggregates[C]. Proceeding of BCRA 1998, Trondddheim, Norway, 1998 (3): 1401-1410.
    [26] Saarenketo, T. Electrical properties of water in clay and silt soils[J]. Journal of Applied Geophysics, 1998(40):73-88.
    [27] Timo Saarenketo, Tom Scullion. Road evaluation with ground penetrating radar[J]. Journal of Applied Geophysics, 2000(43):73-88.
    [28] Morey RM. Ground penetrating radar for evaluating subsurface conditions for transportation facilities[R]. Transportation Research Board, National Research Council: NCHRP Synthesis 255,Washington, DC: National Academy Press, 1998.
    [29] Cuvillier, M., Boaddard, J. F., Retour, P. New methods developed in France for road network survey and maintenance[C]. Proc. 6th Conf. Struct. Des. of Asphalt Pavements, Univ. of Michigan, Ann Arbor, ML, 1987(1).
    [30] Eckrose, R. Ground penetrating radar supplements deflection testing to improve airport pavement evaluations[C]. In: Bush III, A. J., Daladi, G. Y. (Eds.), Non-destructive Testing of Pavements and Back Calculation of Moduli, ASTM Spec. Tech. Publ., Philadelphia, PA, 1989, vol. 1026.
    [31] Fernando, E., Maser, K. R. Development of a procedure for automated collection of flexible pavement layer thicknesses and materials: phase 1. Demonstration of existing ground penetrating radar technology[R]. Phase 1 Final Report, Florida DOT, Tallahassee, Fla, 1991.
    [32] Maser, K., and Scullion, T. Influence of asphalt layering and surface treatments on asphalt and base layer thickness computations using radar[R]. Research Rep. 1923-1, Texas Transportation Institute, College Station, Tex(1992.
    [33] Attoh-Okine, B. Nii. Time series analysis for ground penetrating radar (GPR) asphalt thickness profile[J]. Applied Stochastic Models and Data Analysis, Sept, 1994, v10,n3:153-167.
    [34] Maser Kenneth R., Scullion Tom, Roddis W. M. Kim. Radar for pavement thickness evaluation[M]. ASTM Special Technical Publication, n1198, Dec, 1994: 343-360.
    [35] Maser KR. Ground penetrating radar surveys to characterize pavement layer thickness variations at GPS sites[R]. Strategic Highway Research Program, National Research Council: Report SHRP-P-39,Washington, DC: National Academy of Science, 1994.
    
    [36] Fernando Emmanuel, Liu Wenting, Dietrich Bruce. Computer program for network level determination of pavement layer thicknesses[C], Proceedings of SPIE - The International Society for Optical Engineering, 2000, v4084:194-199.
    [37] Loulizi Amara, Al-Qadi Imad L., Lahouar, Samer. Optimization of ground-penetrating radar data to predict layer thicknesses in flexible pavements[J]. Journal of Transportation Engineering, January/February, 2003, vl29, nl:93-99.
    [38] Al-Qadi ImadL, Lahouar Samer, Loulizi Amara. Successful Application of Ground Penetrating Radar for Quality Assurance-Quality Control of New Pavements[R]. Transportation Research Record, 2003, n1861:86-97.
    [39] Al-Qadi, Imad L. Accuracy of ground-penetrating radar for estimating rigid and flexible pavement layer thicknesses[R]. Transportation Research Record, 2005, n1940:69-78.
    [40] Huang Chunlin, SuYi. A new GPR calibration method for high accuracy thickness and permittivity measurement of multi-layered pavement [J]. International Geoscience and Remote Sensing Symposium (IGARSS). v3,25th Anniversary IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, 2005:1729-1733.
    [41] ASTM D4748-98. Standard test method for determining the thickness of bound pavement layers using short-pulse radar[M]. Annual book of ASTM standards, West Conshohocken, PA: American Society for Testing and Materials, 2005.
    [42] Willett David A., Mahbou Kamayar C. Rister Brad. Accuracy of ground-penetrating radar for pavement-layer thickness analysis[J].Journal of Transportation Engineering, v132, n1. January, 2006:6-103.
    [43] Maser K. R., Holland T. J., Roberts R. NDE methods for quality assurance of new pavement thickness[J]. International Journal of Pavement Engineering, v 7, n 1, March, 2006:1-10.
    [44] Clemena, G, Sprinkel,M., Long, R. Use of ground penetrating radar for detecting voids underneath a jointed concrete pavement[R]. Final Rep. Virginia Hwy. and Transp. Council, Charlottesville,VA, 1986.
    [45] Smith, S., Scullion, T. Development of ground-penetrating radar equipment for detecting pavement condition for preventive maintenance[R]. Final Rep., Strategic Hwy. Res. Program, Project H-104 A, Nat. Res. Council, Washington, D.C, 1993.
    [46] Uddin Waheed, Hudson W. Ronald. Evaluation of NDT equipment for measuring voids under concrete pavements[M]. ASTM Special Technical Publication, n1198, Dec, 1994:488-502
    [47] Tomita H., Tada H., Nanbu, T. Nature and detection of void-induced pavement failures[R]. Transportation Research Record, n1505,Jul, 1995:9-16.
    [48] Malva L.J., Cline G. D.. Detecting Voids Under Airfield Pavements[C]. Airfield Pavement Conference Proceedings, Airfield Pavements: Challenges and New Technologies, Proceedings of the Specialty Conference, 2003:366-377.
    [49] Clemena,G. Nondestructive inspection of overlaid bridge decks with ground penetrating radar [J]. Transp. Res. Rec., vol. 899, Transp. Res. Board, Washington, DC, 1986.
    [50] Maser, K.R., Rawson, A. Network bridge decks surveys using high speed-radar; case studies of 44 decks [J]. Transp. Res. Rec, vol. 1347. Transp. Res. Board, Washington, DC, 1992.
    [51] Saarenketo T., Soderqvist M. K.. Ground penetrating radar applications for bridge deck evaluations in Finland[J]'. Insight - Non - Destructive Testing and Condition Monitoring, v36, n7, July, 1994:496-501.
    [52] Chen Roger H. L., Halabe Udaya, Pei Lianfen. Experimental evaluation of concrete bridge decks and pavements using ground penetrating radar[C]. Structures Congress - Proceedings, v2, Building to Last, 1997:1508-1512.
    [53] Fitch Michael G., Abdulshaf i Osama A.. Field and laboratory evaluation of silica fume modified . concrete bridge deck overlays in Ohio[R]. Transportation Research Record, n1610, Aug, 1998:20-27.
    [54] Barnes Christopher L. ,Trottier Jean-Francois. Phenomena and conditions in bridge decks that confound ground-penetrating radar data analysis[R]. Transportation Research Record, n1795,2002:57-61.
    [55] Gucunski N., Romero F. A., Shokouhi P. Complementary impact echo and ground penetrating radar evaluation of bridge decks on 1-84 interchange in Connecticut. [J]. Geotechnical Special Publication, n 130-142, Geo-Frontiers 2005:1017-1026.
    [56] Narayanan, R. M., Hudson, S. G., Kumke, C. J.,. Detection of rebar corrosion in bridge decks using statistical variance of radar reflected pulses[C]. GPR98, Proc. 7th Intl. Conf. on GPR, Lawrence, Kansas, vol. 2,1998:601 - 605.
    [57] Hubbard, S. S, Zhang, J., Peterson, etc. Non-invasive rebar corrosion detection using geophysical methods[J]. ACI Mater. J. ,2003,100(2):501 -510.
    [58] Li, Jing, Xing, Huichun; Chen, Xuemin. Extracting rebar' s reflection from measured GPR data[C]. Proceedings of the Tenth International Conference Ground Penetrating Radar, GPR 2004, vl, 2004:367-370.
    [59] Du, S., Rummel, P. Reconnaissance studies of moisture in the subsurface with GPR[C].GPR 94, Proc. 5th Intl. Conf. on GPR, Kitchener, Ontario, 1994(3): 1241 - 1248.
    [60] Greaves, R. J., Lesmes, D. P., Lee, J. M., Toksoz, M. N. Velocity variations and water content estimated from multioff set ground penetrating radar [J]. Geophysics, 1996(61), 683-695.
    [61] Van Overmeeren, R., Sariowan, S., Gehrels, J. Ground penetrating radar for determining volumetric soil water content:results of comparative measurements at two test sites [J]. J. Hydrol., 1997:316-338.
    [62] Lesmes, D., Herbstzuber, R. J. ,Wertz, D. Terrain permittivity mapping: GPR measurements of near-surface soil moisture[C]. Proc. SAGEEP, Environmental and Engineering Geophysical Society, 1999:575-582.
    [63] Hubbard, S., Grote, K., Rubin, Y., Estimation of near subsurface water content using high frequency GPR ground wave [J]. Society of Exploration Geophysics, 2002, vol, 21(6): 552 - 559.
    [64] Maser Kenneth R.Condition assessment of transportation infrastructure using ground-penetrating radar[J]. Journal of Infrastructure Systems, v2,n2, Jun, 1996: 94-101.
    [65] Wimsatt Andrew J., Scullion Tom, Ragsdale, etc. The use of ground penetrating radar data in pavement rehabilitation strategy selection and pavement condition assessment[JR]. Proceedings of SPIE-The International Society for Optical Engineering, v3400,1998:372-383.
    [66] Maser K. R., Sande I. Application of ground penetrating radar for evaluation of sub-surface airfield pavement conditions[J]. Insight: Non-Destructive Testing and Condition Monitoring, v42, n7,Jul, 2000:451-453.
    [67] Moropoulou A., Avdelidis N. P., Koui, M. Infrared thermography and ground penetrating radar for airport pavements assessment [J]. On destructive Testing and Evaluation, v18, nl.Jan 1.2002:37-42.
    [68] Al-Qadi Imad L., Lahouar Samer, Loulizi Amara. Successful Application of Ground Penetrating Radar for Quality Assurance-Quality Control of New Pavements[R]. Transportation Research Record, n1861,2003:86-97.
    [69] Noureldin A. Samy, Zhu Karen, Li Shuo. Network Pavement Evaluation with Falling-Weight Deflectometer and Ground-Penetrating Radar[R]. Transportation Research Record, n1860,2003:90-99.
    [70] Grivas Dimitri A., Brawijaya F. N. U., Shin, Heejeong. Measuring performance of geotextiles in pavement systems using ground penetrating radar[C]. Proceedings of the Tenth International Conference Ground Penetrating Radar, GPR 2004, v 2, Proceedings of the Tenth International Conference Ground Penetrating Radar, GPR 2004:643-646.
    [71] Al-Qadi Imad L., Lahouar Samer. Ground penetrating radar: State of the practice for pavement assessment[J].Materials Evaluation, v62, n7, July,2004:759-763.
    [72] Uzarowski Ludomir, Maher Michael, Balasundaram Andrew.The use of ground penetrating radar to supplement the falling weight deflectometer for pavement evaluation [C]. Proceedings, Annual Conference-Canadian Society for Civil Engineering, Proceedings-33rd CSCE Annual Conference 2005:6th Transportation Specialty Conference, 2005, p TR-190-1-TR-190-8.
    [73] Al-Qadi Imad L., Lahouar Samer. Detection of asphalt binder aging in flexible pavement by ground penetrating radar[J]. Materials Evaluation, v 63, n 9, September, 2005:921-925.
    [74] Benedetto Andrea, Benedetto Francesco, De Blasiis Maria Rosaria. Reliability of signal processing technique for pavement damages detection and classification using ground penetrating radar[J]. IEEE Sensors Journal, v 5, n 3, June, 2005:471-479.
    [75] Li Chuang-Min. Application of ground penetrating radar in the analyzing of rut type of asphalt pavement[C]. Proceedings of the International Symposium on Test and Measurement, v4, 2003:3181-3184.
    [76] Huston Dryver, Pelczarski Noel, Esser Brian. Damage assessment in roadways with Ground Penetrating Radar[C].Proceedings of SPIE-The International Society for Optical Engineering, v3995,2000:483-491.
    [77] Sebesta Stephen, Scullion Tom. Application of Infrared Imaging and Ground-Penetrating Radar to Detect Segregation in Hot-Mix Asphalt Overlays. [R]. Transportation Research Record, n1861,2003:37-43.
    [78]Forest R.,Utsi V.Non destructive crack depth measurements with Ground Penetrating Radar[C].Proceedings of the Tenth International Conference Ground Penetrating Radar,GPR 200(2):799-802.
    [79]Grote K.,Hubbard S.,Harvey J.Evaluation of infiltration in layered pavements using surface GPR reflection techniques[J].Journal of Applied Geophysics,v57,n2,February,2005:129-153.
    [80]何大明,李大心.探地雷达探测公路路基质量的可能性探讨[J].地质科技情报,2000,19(3):90-92.
    [81]李大心.公路工程的探地雷达检测技术[J].地球科学-中国地质大学学报,1996,21(6):661-663.
    [82]杨永俊.探地雷达用于公路检测初探[J].公路交通科技,2000,6:7-12.
    [83]支海燕.中国道路探测雷达技术与应用[C].第三届国际道路和机场路面.技术大会论文集,1998:507-516.
    [84]黎春林.探地雷达检测路面含水量、空隙率和压实度的应用研究[D].郑州:郑州大学,硕士学位论文,2003.
    [85]钟燕辉.层状体系介电特性反演及其工程应用[D].大连:大连理工大学,博士学位论文,2006.
    [86]L.B.Wang et al.Quantification of damage parameters using X-ray tomography images[J].Mechanics of Materials,vol.35,2003:777 - 790.
    [87]E.J.Garboczi.Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics:Application to aggregates used in concrete.[J].Cement and Concrete Research,Vol.32,2002:1621 - 1638.
    [88]E.Tuncer,Y.Y.Serdyuk,S.M.Gubanski.Dielectric Mixtures:Electrical Properties and Modeling[J].IEEE Transactions on Dielectrics and Electrical Insulation,Vol.9No.5,(2002):809-828.
    [89]韩艳玲,王宏.随机介质中电磁波空间分布特性研究[J].光子学报,Vol.32,No.11,(2003):1405-1408.
    [90]Lisa M.Zurk,Electromagnetic Wave Propagation and Scattering in Dense Discrete RandomMedia with Application to Remote Sensing of Snow[D].PHD,University of Washington,1995.
    [91]Shih-Hui Chang.FDTD Modeling of Light Propagation and Correlations in Active Random Media[D].PHD,Northwesten University,2004.
    [92]Weng Cho,Che著.聂在平,柳清火译.非均匀介质中的场与波[M].北京:电子工业出版社,1992.
    [93]聂在平.非均匀介质中的场与波_理论及其在电测井中的应用[J].电子学报,Vol.19No.10,1995:19-24.
    [94]栾文贵.一类非均匀介质中电磁场的延拓[J].地球物理学报,Vol.3l No.6.1998:695-707.
    [95]刘新芽.电磁波在一维非均匀介质中的透射[J].物理学报,Vol.49,NO.2(2000):186-189.
    [96]赵勇,刘新芽.一维非均匀介质中透射电磁波的一些性质[J].南昌大学学报(理科版),Vol.26 No.1,2002:64-67.
    [97]Guo-Xin Fan,Q.H.liu,etal.3-D Numerical Mode-Matching(NMM) Method for Resistivity Well-logging tools[J].IEEE Trans.Antennas Propaget.,vol.48,NO.10,2000:1544-1552
    [98]聂在平,W.C.Chew,Q.H.Liu.电磁波对轴对称二维层状介质的散射[J].地球物理学报,Vol.35,No.4,1992:479-486.
    [99]Siyuan Chen.Low-Frequency Subsurface Electromagnetic Modeling[D].The Thesis for the degree of Doctor,The University of Illinois at Urbana-Champaign,2000.
    [100]洪伟.直线法原理与应用[M].南京:东南大学出版社,1993.
    [101]Michael A.Morgan,Kenneth K.Mei.Finite-Element Computation of Scattering by Inhomogeneous Penetrable Bodies of Revolution[J].IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.AP-27,N0.2,1979:202-213.
    [102]Gerrit Mur.Optimum Choice of Finite Elements for Computing Three-Dimensional Electromagnetic Fields in Inhomogeneous Media[J].IEEE TRANSACTIONS ON MAGNETICS,VOL.24,NO.l,1988:330-333.
    [103]R.F.Harrington.Field Computation by Moment Methods[J].Malabar,Fla.:R.E.Krieger,1968.
    [104]Theodore C.Guo,Wendy W.Guo.Computation of Electromagnetic Wave Scattering from an Arbitrary Three-Dimensional Inhomogeneous Dielectric Object[J].IEEE Transactions on Magnetics,VOL.25,NO.4,1989:2872-2874.
    [105]Andrzej A,Kucharski.A Method of Moments Solution for Electromagnetic Scattering by Inhomogeneous Dielectric Bodies of Revolution[J].IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.48,NO.8,2000:1202-1210.
    [106]Xue Min Xu,Qing H.Liu.The BCGS-FFT Method for Electromagnetic Scattering From Inhomogeneous Objects in a Planar Layered Medium[J].IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,VOL.1,2002:77-80.
    [107]孙玉发,陈志豪.分析三维随机介质目标散射问题的SMCG方法[J].中国科学技术大学学报,Vol.33,No.3,2003:345-350.
    [108]丁大志.复杂电磁问题的快速分析和软件实现[D].南京:南京理工大学,博士学位论文,2006.
    [109]Ramakrishna Janaswamy.A Fast Finite Difference Method for Propagation Predictions over Irregular,Inhomogeneous Terrain[J].IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.42,NO.9,SEPTEMBER 1994:1257-1267.
    [110]Zhi Ning Chen,Wei Hong.Application of FD-MEI to Electromagnetic Scattering from Transversally Anisotropic Inhomogeneous Cylinders[J].IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY,VOL.40,NO.2,1998:103-110.
    [111]Liu,Q.H.The pseudospectral timc-domain(PSTD))method:a new algorithm for solutions of Maxwell's equations[J].Antennas and Propagation Society International Symposium,IEEE.,Vol.1,1997:122-125.
    [112]S.Gokhun Tanyer,Mustafa Karaman,Ibrahim Ozturk.Analysis of Wave Propagation in Inhomogeneous Media Using FDTD Method and Its Applications[C].VIIth International Conference on Mathematical Methods in Electromagnetic Theory,Ukraine,1998:629-631.
    [113]F.L.Teixeira,Weng Cho Chew,M.Straka,etc.Finite-Difference Time-Domain Simulation of Ground Penetrating Radar on Dispersive,Inhomogeneous,and Conductive Soils[JR].IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.36,NO.6,1998:1928-1937.
    [114]Levent Gürel,Ugur Oguz.Three-Dimensional FDTD Modeling of a Ground-Penetrating Radar[J].IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.38,NO.4,2000:1513-1521.
    [115]丁海.非均匀媒质区域二阶精度FDTD方程[D].硕士学位论文.西安电子科技大学,2006.
    [116]杨利霞.复杂介质电磁散射的FDTD算法及其相关技术研究[D].西安:西安电子科技大学,博士学位论文,2006.
    [117]梁子长,金亚秋.非均匀散射层矢量辐射传输(VRT)方程[J].物理学报,Vol.52,No.2,2003:247-255.
    [118]杜兴忠.传输线法及其在非均匀介质电磁场计算中的应用[D].成都:成都理工大学,硕士学位论文,2005.
    [119]Katherine Mer-Nkonga,Michel Mandallena,David Goudin,etc.A numerical strategy for a high frequency electromagnetic scattering problem in a mixed formulation[J].C.R.Physique 7,2006:509-517.
    [120]John L.Volakis.Alternative Field Representations and Integral Equations for Modeling Inhomogeneous Dielectrics[J].IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.40,NO.3,1992:604-608.
    [121]Xuemin Millard,Qing Huo Liu.A Fast Volume Integral Equation Solver for Electromagnetic Scattering From Large Inhomogeneous Objects in Planarly Layered Media[J].IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.VOL.51,NO.9,2003:2393-2401.
    [122]王卫延,张守融.平面分层媒质中二维非均匀结构电磁散射的研究[J].电子科学学报,Vol.19,No.1,1997:105-111.
    [123]Shanker.B,Aygun.K.,Gres.N.,Michielssen.E.,Fast integral equation based analysis of transient electromagnetic scattering from three-dimensional inhomogeneous lossy dielectric objects[J].Antennas and Propagation Society International Symposium,2001.IEEE,2001(4):532-535.
    [124]Gerrit Mur.The finite-element modeling of three-dimensional time-domain electromagnetic fields in strongly inhomogeneous media[J].IEEE TRANSACTIONS ON MAGNETICS,VOL.28,No.2,1992:1130-1133.
    [125]S.Yu.Reutskiy,B.Tirozzi.A new boundary method for electromagnetic scattering from inhomogeneous bodies[J].Journal of Quantitative Spectroscopy & Radiative Transfer,Vol.72,2002:837 -852.
    [126]Gerrit Mur.A Mixed Tinite Element Method for Computing Three-Dimensional Time-Domain Electromagnetic Fields in Strongly Inhomogeneous Media[J].IEEE TRANSACTIONS ON MAGNETICS,VOL.26,No.2,1990:674-677.
    [127]吴剑锋.非均匀介质中的三维电磁散射分析的有限元及其混合方法:理论与应用[D].西安:电子科技大学,硕士学位论文,2005.
    [128]詹毅.复杂有耗色散地层的FDTD方法及在冲击探地雷达中的应用[D].西安:电子科技大学,博士学位论文,2000.
    [129]Levent Gttrel,Ugur Oguz.Simulations of Ground-Penetrating Radars Over Lossy and Heterogeneous Grounds[j].IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.39,NO.6,2001:1190-1197.
    [130]Jennifer Jane Holt B.S.Finite Difference Time Domain Modeling of Dispersion from Heterogeneous Ground Properties in Ground Penetrating Radar[D].PHD.Ohio Sates University,2004.
    [131]方慧.介质不均匀性与探地雷达信号关系研究[D].北京:中国地质大学(北京),博士学位论文,2005.
    [132]Rose JH,Richardson T M.Time Domain BornApproximation[J].Journal of Nondestructive Evaluation,1982:3 -45.
    [133]Wang,Fuming,Lytton,R.L.System Identification Method for Backcalculating Pavement Layer Properties[R].TRB.1993(1384):1-7.
    [134]王登刚,刘迎曦,李守巨.弹性力学非线性反演方法概述[J].力学进展,2003,Vol.33,No.2:166-174.
    [135]张智江.数理方程反问题的发展状况与主要研究方法[J].纺织高校基础科学学报,Vol,9(1),1996:1-4.
    [136]钱祖平,洪伟.直接反演非均匀介质柱的一种新方法[J].微波学报,Vol.15,No.4,1999:361-365.
    [137]闵涛,周宏宇,寇婷等.最佳摄动量法在一维波动方程参数反演中的应用[J].西安理工大学学报,Vol.2l,No.4,2005:347-350.
    [138]Tsien D.S.,Chen Y.M.A Numerical Method for Nonlinear I.:inverse Problems in Fluid Dynamics.Computational Methods in Nonlinear Mechanics[A].Proc.Inc.Conf.Comput.Mech.Nonlinear Mechs,1974:935-945.
    [139]Lin X.Y,Chen Y.M.A Generalized Pulse-Specturm Technique(CPST) for Determining Equations[J].SIAMJ.Sci.Stat.Comput.,1987,8(1):436-445.
    [140]刘家琦,刘振跃.脉冲谱技术在地震勘探中的应用[J].地球物理学报,专辑,1990,(33): 160-168.
    [141]沈贤能,周正欧,黄顺吉.解一维电磁逆散射问题的两种数值方法[J].成都电讯工程学院学报,Vol.10,No.1,1987:21-27.
    [142]石守元葛德彪.二维有耗介质目标重建的迭代-共扼梯度方法[J].电子学报,Vol.24,No.9,1996:95-98.
    [143]P.Lobel,R.E.Klieuman.Conjugate-gradient Method for Solcing Inverse Scattering with Experimental Data[J].IEEE Antennas and Propagation Magazine,Vol.38,No.3,1996:48-51.
    [144]TORUUNO,SABURO ADACHI.Inverse Scattering Method for One-Dimensional Inhomogeneous Layered Media[J].IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.VOL.AP-35,NO.12,1987:1456-1466.
    [145]刘迎曦,王登刚 等.材料特性参数识别的梯度正则化方法[J].计算力学学报,Vol.17,No.1,2000:69-75.
    [146]Chaowei Su,Jian Yang.An Iterative Numerical Algorithm for Electromagnetic Imaging [J].Antennas and Propagation Society International Symposium,1995(3):1626-1629.
    [147]王卫延,张守融.平面分层媒质中二维非均匀结构的电磁逆散射问题[J].电波科学学报,Vol.11,No.4,1996:1-6.
    [148]周定法.电磁逆散射成像的一种混合正则化方法[J].软件天地,05-1,2007:305-308.
    [149]T.Khan.A,Smirnova.1D inverse problem in diffusion based optical tomography using iteratively regularized Gauss - Newton algorithm[J].Applied Mathematics and Computation.2005(161):149- 170.
    [150]宋华,刘家琦,牛顿-正则化方法与一类差分方程反问题的求解[J].计算数学,No.3,1998:225-231.
    [51]王宝娥.反问题中离散不适定问题的数值求解方法[D].硕士学位论文.西安理工大学,2006.
    [152]黄小为,吴传生,朱华平.求解不适定问题的TSVD正则化方法[J].武汉理工大学学报,Vol.27,No.2,2005:90-92.
    [153]林胜良.病态线性方程组解法研究[D].浙江:浙江大学,硕士学位论文,2005.
    [154]林武忠.奇摄动线性代数方程组及其对病态方程的应用[J].应用数学和力学,Vol.8,No.6,1987,:513-522.
    [155]李化欣,潘晋孝.最速下降法在图像重建中的应用[J].科技情报开发与经济,Vol.16,No.3.2006:155-156.
    [156]Mats Gustafsson,Sailing He.A Wave-Splitting Based Optimization Approach to Multi-Dimensional Time-Domain Electromagnetic Inverse Problems[J].Mathematics and Computers in Simulation,Vol.50,1999:541-551.
    [157]Taek-Kyung Lee,Soo-Young Lee,Jung-Woong Ra.A Hybrid Finite Element-Boundary Element Method and Its Application to Incerse Scattering[J].Antennas and Propagation Society International Symposium,vol.3,1989:1628- 1631.
    [158]冯果忱.解非线性方程组松弛法的大范围收敛性[J].高等学校计算数学学报,No.1,1980:7-14.
    [159]王遵义.基于逐步超松弛法及修正梯度法的材料二维缺陷弹性波识别[J].煤矿机械,No.1,2005:43-45.
    [160]李清仁,张向军等.波动方程多尺度反演[J].石油地球物理勘探,Vol.40,No.3,2005.273-279
    [161]TORU UNO,SABURO.Inverse Scattering Method for One-Dimensional Inhomogeneous Layered Media[J].IEEE Transactions onAntenna and Propagation,Vol.AP-35,No.12,1987:1456-1466.
    [162]Kailash Prasad Thakur,Wayne S.Holmes.Noncontact Measurement of Moisture in Layered Dielectrics From Microwave Reflection Spectroscopy Using an Inverse Technique[J].IEEE TRANSACTIONS ON MICROWAVE THEORYAND TECHNIQUES,VOL.52,NO.1,2004:76-82.
    [163]崔凯,李兴斯等.求解非线性反问题的大范围收敛梯度正则化算[J].计算力学学报,Vol.22,No.4,2005:415-419.
    [164]Bert Jan Kooij,Peter M.van den Berg.Nonlinear Inverse in TE Scattering[J].IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,VOL.46,NO.11,1998:1704-1712.
    [165]师学明,王家映.地球物理资料非线性反演方法讲座(三)[J].工程地球物理学报,Vol.4,No.3,2007:165-174.
    [166]Salvatore Caorsi,Antonio Costa,Matteo Pastorino.Microwave Imaging Within the Second-Order Born Approximation:Stochastic Optimization by a Genetic Algorithm [J].IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,VOL.49,NO.1,2001:22-31.
    [167]田明俊,周晶.基于蚁群算法的土石坝土体参数反演[J].岩石力学与工程学报,Vol.24,No.8,2005:1411-1416.
    [168]Emad A.M.,Hashish E.A.One-Dimensional Electromagnetic Inversion Using Particle Swarm Optimization[C].Radio Science Conference,NRSC,2007:1 - 8.
    [169]宋志宇,李俊杰,汪红宇.混沌人工鱼群算法在重力坝材料参数反湊中韵应用[J].岩土力学,Vol.28,No.10,2007:2193-2196.
    [170]杨文采.地震道的非线性混沌反演-Ⅰ理论和数值试验[J].地球物理学报,Vol.36,No.2,1993:221-232.
    [171]I.Elshafiey,L.Udpa,S.S.Udpa.Applicationof Neural Networks to Inverse Problems in Electromagnetics[J].IEEE Transactions on Magnetics,Vol.30,No.5,1994:3629-3632.
    [172]Jozsef Pavo,Szabolcs Gyimothy.Adaptive inversion database for electromagnetic nondestructive evaluation[J].NDT&E International,Vol.40,2007:192- 202.
    [173]Leonard R.Pasion,Stephen D.Billings,etc.Application of a library based method to time domain electromagnetic data for the identification of unexploded ordnance [J].Journal of Applied Geophysics,Vol.61,2007:279-291.
    [174]李文,梁昔明.基于混沌优化和最速下降法的一种混合算法[J].计算基数与自动化,Vol.22,No.2,2003:12-14.
    [175]Raghu K.Chunduru,等著.许建华,译.地球物理反演的混合优化方法[J].石油物探译丛,1998(4):10-23.
    [176]林海燕,戴云,肖慈珣.改进的模拟退火-变尺度优化方法在测井解释中的应用.矿物岩石,增刊Vol.18,1998:203-205.
    [177]刘先珊.周创并,张立君.基于模拟退火的Gauss-Newton算法的神经网络在渗流反分析中的应用[J].岩土力学,Vol.26,No.3,2005:404-408.
    [178]王登刚,刘迎曦,李守巨.最优化问题全局寻优的混合遗传算法[J].力学学报,Vol.34,No.3,2002:469-474.
    [179]谢献忠,易伟建.混合遗传算法在结构动力反演中的应用研究[J].工程力学,Vol.22,No.3,2005:21-25.
    [180]姚磊华.遗传算法和高斯牛顿法联合反演地下水渗流模型参数[J].岩土工程学报,Vol.27,No.8,2005:885-890.
    [181]朱合华,刘学增.基于遗传算法的混合优化反分析及比较研究[J].岩石力学与工程学报,Vol.22,No.2,2003:197-202.
    [182]何翔,李守巨等.基于遗传神经网络的坝基岩体渗透系数识别[J].岩石力学与工程学报,Vol.23,No.5,2004:751-757.
    [183]李端有,甘孝清,周武.基于均匀设计及遗传神经网络的大坝力学参数反分析方法[J].岩土工程学报,Vol.29,No.1,2007:125-130.
    [184]孙晓光,周华强,何荣军.基于蚁群算法和神经网络的位移反分析[J].西安科技大学学报,Vol.27,No.4,2007:569-572.
    [185]李守巨,刘迎曦等.基于混合遗传算法的混凝土大坝力学参数反演[J].大连理工大学学报,Vol.44 No.2,2004:195-199.
    [186]潘成欣.用混沌遗传优化方法反演岩性参数变化率的研究[D].青岛:中国海洋大学,硕士学位论文,2006.
    [187]Gian Guido Gentili,Umberto Spagnolini.Electromagnetic Inversion in Monostatic Ground Penetrating Radar:TEMHorn Calibration and Application[J].IEEE TRANSACTIONS ON GEOSCIENCEAND REMOTE SENSING,VOL.38,NO.4,2000:1936-1946.
    [188]Umberto Spagnolini.Permittivity Measurements of Multilayered Media with Monostatic Pulse Radar[J].IEEE Transactions on Geophysics and Remote Sensing,Voi.35,No.2,1997:454-463.
    [189]Umberto Spagnolini,Vittorio Rampa.Multitarget Detection/Tracking for Monostatic Groung Penetrating Radar Application to Pavement Profiling[J].IEEE Transactions on Geophysics and Remoting Sensing,Vol.37,No.1,1999:383-394.
    [190]O.Lazaro-Mancilla,E.Gomez-Trevno.Ground penetrating radar inversion in 1-D:an approach for the estimation of electrical conductivity,dielectric permittivity and magnetic permeability[J].Journal of Applied Geophysics,Vol.43,2000:199-213.
    [191]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media[J].IEEE Trans.Antennas and Propagation,1996,14(3):302-307.
    [192]C.D.Taylor,D.H Lam,T.H.Shampert.EMpulse scattering in time varying inhomogeneous media[J].IEEE TransAntennas Propagation,1969,17(5):585-589.
    [193]A.Taflove,M.E Brodwin.Numerical solution of steady-state EM scattering problems using the time-dependent Maxwell' s equation[J].IEEE Trans.Microwave Theory Technology,1975,23(8):623-630.
    [194]G.Mur.Absorbing boundary condition for finite-difference approximation of the time-domain electromagnetic field equations[J].IEEE Trans.Electromagnetic Compaction,1981,23(4):377-382.
    [195]K.R.Umashankar,h.Taflove.A novel method of analyzing electromagnetie scattering of complex objects[J].IEEE Trans.Electromagnetic Compaction,1982,24(4):397-405.
    [196]J.C.Kasher,K.S.Yee.h numerical example of a two dimensional scattering problem using a subgrid[J].Applied Computational Electromagnetic Society Journal and Newsletter,1987,2(2):75-102.
    [197]K.K Mei,h.C,Cangellaris,D.J.Angelakos.Conformal time domain finite difference method[J].Radio Science,1984,19(5):l145-1147.
    [198]K.S.Yee,D.Ingham,K.Shlager.Time-domain extrapolation to the far field based on FDTD calculations[J].IEEE Trans.Antennas and Propagation,1991,39(3):410-413.
    [199]R.J.Lubbers,D.Ryan,J.Beggs.A two-dimensional time-domain near-zone to far-zone transformation[J].IEEE Trans.Antennas and Propagation,1992,40(7):848-851.
    [200]R.J.Lubbers,F.Hunsberger,K.S.Kunz,R.B.Standler,M.Schneider.h frequency dependent finite difference time domain formulation for dispersive materials[J].IEEE Trans.Electromagnetic Compaction,1990,32(3):222-227.
    [201]J.P.Berenger.A perfectly matched layer for absorption of electromagnetic waves[J].Journey of computation and Physics,1994,114(2):185-200.
    [202]J.P.Berenger.Three-dimensional perfectly matched layer for absorption of electromagnetic waves[J].Journey of computation and Physics,1996,127(2):363-379.
    [203]J.P.Berenger.Perfectly matched layer for the FDTD solution of wave-structure interaction problem of electromagnetic waves[J].IEEE Trans.Antennas and Propagation,1996,44(1):110-117.
    [204]闫玉波.FDTD在工程瞬态电磁学中的应用[D].西安:西安电子科技大学,硕士学位论文,2000.
    [205]任武,时域全波分析算法(FDTD)及其对复杂形体结构的建模与分析研究[D].北京:北京理工大学,硕士学位论文,2003.
    [206]马维丽.时域有限差分法(FDTD)在计算空间接续及天线近场的应用[D].北京:北京航空航天大 学,硕士学位论文,2000.
    [207]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002:1-89.
    [208]K.S Yee.Numerical solution of initial boundary value problems involving Maxwell' s equations in isotropic media[J].IEEE Trans.Antennas and Propagation,1966,14(5):302-307.
    [209]A.Taflove,M.E.Brodwin.Numerical solution of steady-state elecreomagnetic scattering problems using the time-dependent Maxwell' s equations[J].IEEE Trans.Microwave Theory and Techniques,1975,23(8):23-30.
    [210]A.Taflove.A novel method to analyze electromagnetic scattering of complex objects[J].IEEE Trans.Electromagnetic Compatibility,1982,24(4):397-405.
    [211]周方彦.时域有限差分法及其应用[D].北京:北京航空航天大学,硕士学位论文,2001.
    [212]An Ping Zhao,Antti V.Raisanen.Application of a simple and efficient source excitation technique to the FDTD analysis of waveguideand microstrip circuit[J].IEEE Trans.Antennas Propagate,1996,44(9):1535-1538.
    [213]Z.P.Liao,H.L.Wong,B.P.Yang,Y.F.Yuan.A transmitting boundary for transient wave analysis Sicentia sinica(series A)[J].1984,100:1063-1076.
    [214]B.Engquist,A.Majda.Absorbing Boundary Condition for the Numerical Simulation of Waves[J].Math of Computations,1977,31(139):629-651.
    [215]李功胜,马逸尘.应用正则化子建立求解不适定问题的正则化方法的探讨[J].数学进展,2000,29(6):531-541.
    [216]黄小为,吴传生,朱华平.基于奇异值分解建立的一种新的正则化方法[J].数学物理学报,2005,25A(3):331-336.
    [217]Bagley J D.The behavior of Adaptive System which Employ Genetic and CorrelationAlgorithm[J].Dissertation Abstracts International,1967,28(12).
    [218]Holland J H.Adaption in Nature and Artificial Systems[M].MIT Press,1992.
    [219]De Jong K A.An Analysis of the Behavior of a Class of Genetic Adaptive Systems[D].PhD.Dissertation,University of Michigan,No.76-9381,1975.
    [220]Davis L D.Handbook of Genetic Algorithms[M].Van Nostrand Reinhold,1991.
    [221]Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning[J].Addison-Wesley,1989.
    [222]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [223]周雪铭.路基含水量对弯沉值的影响[J].中南公路工程,2003,28(1):60-62.
    [224]李秋忠,查旭东.路基含水量测定方法综述[J].中外公路,2005,25(2):41-43.
    [225]Grote,K.,S.S.Hubbard,and Y.Rubin.GPR monitoring of volumetric water content in soils applied to highway construction and maintenance[J].Leading Edge of Expl,2002,21:482-485.
    [226]M.N.Soutsos,J.H.Bungey,S.G.Millard,M.R.Shaw,A.Patterson.Dielectric properties of concrete and their influence on radar testing.NDT & International,2001,34:419-425.
    [227]钟燕辉,李强等.路面雷达在沥青混凝土路面离析检测中的应用研究.公路,2007,(4):117-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700