用户名: 密码: 验证码:
微波光子晶体带隙特性及其在天线中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波光子晶体,也称为电磁带隙结构(Electromagnetic Band-Gap:EBG),是一种具有频率禁带的新型周期结构。本文主要针对微波光子晶体的带隙特性及其在微波天线和隐身材料中的应用进行了研究。
     首先建立分析微波光子晶体结构的理论模型和数值仿真工具,研究对象为以微带基片为载体的微波光子晶体结构。利用Floquet定理,无限大周期结构可以简化为一个周期单元来计算。数值仿真方法采用周期格林函数与矩量法相结合,采用谱域导抗法得到微带结构的全三维并矢格林函数。
     利用所建立的数值仿真工具,对几种微波光子晶体结构进行了计算,包括平面微波光子晶体以及加载覆盖层光子晶体的带隙特性。各部分的主要研究内容为:
     (1)平面型光子晶体考虑了方形贴片光子晶体的谐振特性,主要考察了单元尺寸、缝隙尺寸、基板厚度和介电常数、覆盖层的厚度和介电常数以及过孔半径等不同参数对谐振特性的影响,提出了一些新型的紧凑的平面型微波光子晶体——交指型结构和螺旋型结构。
     (2)针对某些天线系统设计中需要得到双频段或多频段带隙,本文计算了具有分形特征的二维金属柱EBG结构,获得双频段的频率带隙甚至是新的全局带隙,并且总结了它们的工作特性和分形结构之间的关系。
     (3)研究了光子晶体在微波天线以及天线阵列中的应用。主要研究了高阻表面在波导缝隙天线中的应用,包括波导端头缝隙天线、16元单脊波导缝隙天线阵以及16元非对称单脊波导缝隙天线阵。研究表明,光子晶体的引入可以有效地改善天线和天线阵列的特性,主要体现在可以提高天线主瓣增益、降低后向和侧向辐射电平上以及减小天线单元和天线阵列间的耦合。对高阻表面在相控阵天线中的应用进行了初步的探讨。利用高阻表面的频率带隙抑制相控阵天线单元间的互耦,改善了相控阵天线的宽角阻抗匹配,消除了相控阵天线的扫描盲点问题,从而改善天线的扫描特性。
     在连续波雷达中收发天线阵之间的隔离度是一个非常重要的指标。在连续波雷达的实际设计中不能将雷达收发天线的间距设计的过大也不能过小,因为收发天线之间间距如果太小,发射天线所发射的电波就会有一部分直接进入接收天线。针对这一问题本文利用光子晶体材料的电磁带隙特性,有效地解决长期困扰连续波雷达设计的收发天线互耦问题,提高收发隔离度,获得了互耦系数减小15 dB的效果,增加了连续波雷达的探测能力,
     (4)对光子晶体在吸波材料中的应用进行了初步研究。利用光子晶体的同相反射特性作为人工磁导体,代替传统的电损耗Salisbury屏的间隔层,降低了整体厚度,同时又保持电损耗的稳定性能。并将这种新型的由光子晶体制作的吸波材料成功地应用于波导端头缝隙天线,和非对称单脊波导缝隙天线阵,使这些天线和天线阵在增益衰减较少的情况下,雷达散射截面(RCS)得到了较为明显的减缩。
Microwave photonic crystals (MPC), also referred as electromagnetic bandgap(EBG) materials, are periodic structures characterized by the existence of frequency bandgaps. The dissertation focuses on the electromagnetic characteristics and its application in microwave antenna.
     At first we establish theoretical model and numerical simulation method that are constructed in the microstrip structures. The infinite periodic structure is reduced to one single cell by applying Floquet theorem. The numerical simulations are performed using periodic Green's functions plus the method of moments (MOM) and the whole dimensional dyadic Green's functions are obtained by using spectral domain immittance approach (SDI).
     Using the above simulation tools, several kind MPC structures have been analyzed, including the planar MPC and the bandgap characteristics of MPC with a cover layer. The primary work is as follows:
     (1) In planar MPC, the cells with square patches have been mainly studied. Some parameters which can affect the resonant performance of the MPC have been studied, including cell size, gap width, thickness and dieletric constant of substrate and that of cover layer, and radius of via. Some new MPCs, such as interdigital MPC, and spiral MPC, are provided.
     (2) Aimed at the dual/multiple bandgap in some antenna system design, 2-D metal cylinder EBG structure with fractal characteristics is computed and dual frequency bandgap even new complete bandgap are obtained. At last the relationship between their working characteristics and the fractal structure is summarized
     (3) The photonic crystals (PC) have been applied in microwave antennas and antenna arrays. The high impedance surface (HIS) has been mainly used in waveguide slot antennas including waveguide end-slot antenna, sixteen-element single ridged waveguide slotted antenna array and sixteen-element asymmetric single ridged waveguide slotted antenna array. The results show that the PCs can improve the characteristics of antennas and antenna arrays. The gain of main lobe has addition, the radiation levels of back/side lobes decrease and the mutual coupling between the antenna elements or arrays can be reduced. The application of the HIS in phased arrays is investigated basically. The HIS is used to suppress the mutual coupling between the phased array elements and the results show that the HIS can improve the scan characteristics of phased array through ameliorating the wide-angle impedance matching and eliminating the scan blindness.
     Isolation of receiver-radiation antenna arrays in Continuous-Wave Radar is an important parameter. In the practical design of Continuous-Wave Radar, the space between receive and radiation antenna should not be too large and not be too small,either. If the space is too small, there is a problem that the power from radiation antenna will radiate directly into receive antenna. The application of EBG bandgap can solve this problem effectively. By using EBG can reduce the mutual coupling and promote the isolation. The measured results show that the mutual-coupling coefficient reduced 15dB, improved the detective ability of Continuous-Wave Radar.
     (4) The applications of PC in absorbing materials have been studied. Because of the in-phase characteristics, the periodic structures can be used as artificial magnetic conductor (AMC) and substituted for the spacer of the traditional electric Salisbury screen in order to reduce the entire thickness and preserve the stability of the traditional electric Salisbury screen. The new absorbing materials which are made of PC are successfully used in waveguide end-slot antenna and asymmetry single ridged waveguide slotted antenna array. The testing results suggest that the new absorbing material can obviously reduced the Radar Cross Section (RCS) with little attenuation of these antennas' gain.
引文
[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters, 1987, 58(20): 2059-2062.
    
    [2] S. John, Strong localization of photons in certain disordered dielectric super-lattices,Physical Review Letters, 1987, 58(20): 2486-2489.
    [3] http://www.pbglink.com/.
    [4] http://www.scienceonline.org/.
    [5] T. Kamgaing and O. Ramahi, Electromagnetic band-gap structures for multiband mitigation of resonant modes in parallel-plate waveguides, IEEE Antennas and Propagation Society Symposiums, 2004, 4: 3577-3580.
    [6] K. Rambabu, A. Tennent and J. Bornemann, A simplied model for planar electromagnetic band-gap structures formed by metal patches and via holes, Progress in Electromagnetic Research Symposium 2003: 26.
    [7] G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, Cylindrical electromagnetic band gap structures for base station antennas, IEEE International symposium on Antennas and Propagation 2004, Monterey CA, USA.
    [8] T. Kim, and C. Seo, A novel photonic band-gap structure for low-pass filter of wide stop-band, IEEE Microwave Guided Wave Lett., 2000, 10(1):13-15.
    [9] I. Rumsey, Melinda Piket-May and P. Keith Kelly, Photonic band-gap structure used as filters in microstrip circuits. IEEE Microwave Guided Wave Lett., 1998, 8(10): 336-339.
    [10] K. M. Shum, Q. Xue, and Chi Hou Chan, Novel microstrip ring hybrid incorporating a PBG cell, IEEE Microwave Wireless Compo. Lett., 2001, 6: 258-260.
    
    [11] Michael J. Hill, Richard W. Ziolkowski, and John Papapolymerou, A high-Q reconfigurable planar EBG cavity resonator, IEEE Microwave Wireless Compo. Lett.,2001,6:255-257.
    
    [12] Tae-yeoul Yun and Kai Chang, One-dimensional photonic bandgap resonators and varactor tuned resonators, 1999 IEEE MTT-S Digest, 1629-1632.
    [13] V. Radisic, Y. Qian and T. Itoh. Broadband power amplifier using dielectric photonic bandgap structure, IEEE Microwave Guided Wave Lett., 1998, 8(1):13-14.
    [14] F. R. Yang, Y. Qian, R. Coccioli, and T. Itoh, A novel low-loss slow-wave microstrip structure, IEEE Microwave Guided Wave Lett., 1998, 8(11):372-374.
    [15] Y. Horri, and M. Tsutsumi, Suppression of the harmonic radiation from the PBG microstrip antenna, 1999 IEEE MTT-S, 724-727.
    [16] Dan Sievenpiper, Lijun Zhang, Romulo F. Jimenez Broas, Nicholas G Alexopolous, and Eli Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. On Microwave Theory and Techniques, vol. 47, Nov. 1999: 2059-2074.
    [17] M. P. Kesler, J. G Maloney and B. L. Shirley. Antenna design with the use of photonic bandgap materials as all dielectric planar reflectors, Microwave Opt. Tech. Lett., 1996,11(3): 169-174.
    [18] Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch and T. Itoh, A microstrip patch antenna using novel photonic band-gap structures, Microwave Journal, 1999, 42(11):66-76.
    [19] R. Gonzalo, P. de Maagt and M. Sorolla, Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap structures. IEEE Trans. On Microwave Theory Techniques, 1999,47 (11): 2131-2138.
    [20] R. Coccioli, F. R. Yang, Aperture coupled patch antenna on UC-PBG substrate, IEEE Trans. On Microwave Theory and Techniques, vol. 47, Nov. 1999: 2123-2130.
    [21] P. Maagt, R. Gonzalo, Y. C. Vardaxoglou, and J. M. Baracco, Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications, IEEE Trans. on Antennas Propag., vol. 51, no. 10, pp. 2667-2677, Oct. 2003.
    [22] E. R. Brown, C. D. Parker, and E. Yablonovitch, Radiation properties of a planar antenna on a photonic-crystal substrate, J. Opt. Soc. Amer. B., vol. 10, pp. 404-407, Feb. 1993.
    [23] H. Y. D. Yang , E. Yablonovitch, Photonic band-gap materials for high-gain printed circuit antennas,AP-45, No.1, 1997,pp: 185-187.
    [24] C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, An electromagnetic bandgap resonator antenna, IEEE Trans. On Antennas Propag., vol. 50, no. 9, pp.1285-1290, Sep. 2002.
    [25] S. Enoch, B. Gralak, and G. Tayeb, Enhanced emission with angular confinement from photonic crystals, Appl. Phys. Lett., vol. 81, no. 9, pp. 1588-1590, Aug. 2002.
    [26] A. R.Weily, K. P. Esselle, B. C. Sanders, and T. S. Bird, Antennas based on 2-D and 3-D electromagnetic bandgap materials, in IEEE AP-S Int. Symp. Dig., 2003, pp. 847-850.
    [27] A. R. Weily, L. Horvath, et al, A planar resonator antenna based on a woodpile EBG material, AP-53.1, 2005, pp. 216-222.
    [28] G. S. Smith, M. P. Kesler, and J. G. Maloney, Dipole antennas used with all-dielectric,woodpile photonic band-gap reflectors: gain, field patterns, and input impedance,Microwave Opt. Technol. Lett., vol. 21, no. 3, pp. 191-196, May 1999.
    [29] F. Yang and Y. Rahmat-Samii, A low-profile circularly polarized curl antenna over an electromagnetic bandgap (EBG) surface, Microwave Opt. Technol. Lett., vol. 31, no. 4, pp.264-267, Nov. 2001.
    [30] F. Yang and Y. Rahmat-Samii, Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications, IEEE Trans. Antennas Propag., vol. 51, no.10,pp. 2691-2703, Oct. 2003.
    [31] J. S. Colburn and Y. Rahmat-Samii, Patch antennas on externally perforated high dielectric constant substrates, IEEE Trans. Antennas Propag., vol. 47, no. 12, pp.1785-1794, Dec. 1999.
    [32] United States Patent, Highly efficient planar antenna on a periodic dielectric structure,Patent number: 5386215, 1995.
    [33] Huang Yu David Yang, Surface waves of printed antennas on planar artificial periodic dielectric structures, IEEE trans. On Antenna and Propagation, vol. 49, Mar. 2001:444-450.
    [34] Sailing He, An explicit and efficient method for obtaining the radiation characteristics of wire antenna in metallic photonic bandgap structures, Microwave and Optical Technology Letters, vol.22 (20), July 2000.
    [35] P. Keith Kelly, Leo Diaz, Melinda Piket-May, and Ian Rumsey, Investigation of scan blindness mitigation using photonic band-gap structure in phased arrays, SPIE vol. 3436,July 1998:239-247.
    [36] A. R. Weily, K. P. Esselle, and B. C. Sanders, Photonic crystal horn and array antennas, Phys. Rev. E, vol. 68, no. 1, p. 16 609, Jul. 2003.
    [37] Z. Iluz, R.Shavit, and R. Bauer, Microstrip Antenna Phased Array With Electromagnetic Bandgap Substrate, IEEE Trans. Antennas Propag., vol. 52, no. 6, pp. 1446-1452, Jun.2004.
    [38] C. K. Chong et al., Bragg reflectors, IEEE Transactions on Plasma Science, 1992, 20(3):393-402.
    [39] E. Yablonovitch, T. J. Gmitter and K. M. Leung, Photonic Band Structure: The Face-Centered Cubic Case Employing Nonspherical Atoms, Physical Review Letters,1991, 67: 2295-2298.
    [40] M.Thevent, C.Cheype, A.Reineix, and B.Jecko, Directive Photonic-Bandgap Antennas,IEEE Trans. Microwave Theory Tech., vol.47, no. 11, Nov. 1999: 2115-2122.
    [41] G. Poilasne, P. Pouliguen, K. Mahdjoubi, C. Terret, Ph. Gelin and L. Desclos,Experimental radiation pattern of dipole inside metallic photonic bandgap material,Microwave and Optical Technology Letters, 1999,22(1): 10-16.
    [42] T.J.Ellis and GM.Rebeiz. MM-wave tapered slot antennas on micromachanined photonic bandgap dielectrics, IEEE MTT-s, Int. Microwave Symp.Dig. 1996: 1157-1160.
    [43] Ramon Gonzalo, Peter de Maagt and Mario Sorolla, Enhanced patch antenna performance by suppressing surface waves using photonic bandgap structures [J]. IEEE Trans.Microwave Theory Tech, 1999,47(11): 2131-2138.
    [44] G. K. Palikaras, A. P. Feresidis, and J. C. Vardaxoglou, Cylindrical electromagnetic band gap structures for base station antennas, IEEE International symposium on Antennas and Propagation 2004, Monterey CA, USA.
    [45] T. Kim, and C. Seo, A novel photonic band-gap structure for low-pass filter of wide stop-band, IEEE Microwave Guided Wave Lett., 2000, 10(1):13-15.
    [46] Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch and T. Itoh, A microstrip patch antenna using novel photonic band-gap structures, Microwave Journal, 1999, 42(11):66-76.
    [47] Keven J. Golla, Broadband application of high-impedance ground planes. MS thesis,School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH,2001.
    [48] Romulo F. Jimenez Broas, Daniel F. Sievenpiper and Eli Yablonovitch, A high-impedance ground plane applied to a cellphone handset geometry, IEEE Trans. on Microwave Theory and Techniques, 2001, 49(7): 1261-1265.
    [49] M. Saville, Investigation of Conformal High-Impedance Ground Planes. MS thesis,School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH,2000.
    [50] R. F. Jimenez Broas, Experimental characteristics of high impedance electromagnetic surfaces in the microwave frequency regime, MS thesis, University of California at Los Angles, 1999.
    [51] F. Yang and Y. Rahmat-Samii, A low profile circularly polarized curl antenna over electromagnetic bandgap surface, Microwave and Optical Technology Letters, 2001, 31(3):165-168.
    [52] F. Yang and Y. Rahmat-Samii, Reflection phase characterization of the EBG ground plane for low profile wire antenna applications, IEEE trans. on Antenna and Propagation, 2003,51(10): 2691-2703.
    [53] F. Yang and Y. Rahmat-Samii, Microstrip antennas integrated with electromagnetic band-gap structures: a low mutual coupling design for array applications, IEEE Trans. on Antenna and Propagation, 2003, 51(10): 2936-2946.
    [54] D. Sievenpiper, J. Schaffner, R. Loo, G. Tangonan, S. Ontiveros and R. Harold, A tunable impedance surface performing as a reconfigurable beam steering reflector, IEEE Trans. on Antennas and Propagation, 2002, 50(3): 384-390.
    [55] F. R. Yang, K. P. Ma, Y. X. Qian and T. Itoh, A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit, IEEE Trans. on Microwave Theory and Techniques, 1999, 47(8): 1509-1514.
    [56] Roberto Coccioli, Fei-Ran Yang, Kuang-Ping Ma and T. Itoh, Aperture coupled patch antenna on UC-PBG substrate, IEEE Trans. on Microwave Theory and Techniques, 1999,47(11): 2123-2130.
    [57] Fei-Ran Yang, Kuang-Ping Ma, Yongxi Qian, and T. Itoh, A novle TEM waveguide using uniplanar compact photonic-bandgap structure, IEEE MTT-S Digest, 1999: 323-326.
    [58] Gonzalo R G. Coupling between patch antennas on Photonic Crystals [J]. In Proc.24th ESTEC Antenna Workshop, Noordwijk, the Netherlands, May 30-June 1, 2001: 6-10.
    [59] Iluz Z, Shavit R, Bauer R. Micro-strip Antenna Phased Array with Electromagnetic Bandgap Substrate [J]. IEEE trans. on Antenna and Propagation, 2004, 52(4): 1446-1453.
    [60] Alley. D. Interdigital capacitors and their applications to lumped-element microwave integrated circuits [J]. IEEE Trans on MTT. 1970,18(12): 1028-1033.
    [61] K. M. Leung and Y. F. Liu, Photonic band structures: the plane-wave method, Physical Review B, 1990,41(11): 10188-10190.
    [62] M. Plihal and A. A. Maradudin, Photonic band structure of two-dimensional systems: the triangular lattice, Physical Review B, 1991, 44(16): 8565-8571.
    [63] K. M. Leung and Y. F. Liu, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media, Physical Review Letters, 1990, 65(21): 2646-2649.
    [64] K.M. Ho, C. T. Chan, and C. M. Soukoulis, Existence of a Photonic Gap in Periodic Dielectric Structure, Physical Review Letters [J], vol.65, pp: 3152-3155, 1990.
    [65] Huang Yu David Yang, Characteristics of guided and leaky waves on multilayer thin-film structures with planar material gratings, IEEE Trans. On Microwave Theory and Techniques, vol. 45, Mar. 1997: 428-435.
    [66] Hung Yu David Yang, Rodolfo Diaz, and Nicolaos G. Alexopoulos, Reflection and transmission of waves from multilayer structures with planar-implanted periodic material blocks, Journal of the Optical Society of America B, vol.14, no.10, Oct. 1997: 2513-2521.
    [67] Harry Contopanagos, L. Zhang and G. Alexopoulos. Thin frequency-selective lattices integrated in novel compact MIC, MMIC and PCA architectures, IEEE Trans. on Microwave Theory and Techniques, 1998,46(11): 1936-1947.
    [68] L. Zhang, Numerical characterization of electromagnetic band-gap materials and applications in printed antennas and arrays, Ph. D. Dissertation, University of California at Los Angles, 2000.
    [69] L. Zhang and N. G. Alexopoulos, Finite-element based techniques for modeling of PBG materials, Electromagnetics, vol. 19, no. 3, pp.225-240, May/June 1999.
    [70] S. Fan, P. R. Villeneuve, J. D. Joasnnopoulos, Large omni-directional band gaps in metallo-dielectric photonic crystals, Physical Rieview B, vol.54, no 16, Oct. 1996:112454-11251.
    [71] M Thevenot, A. Reineix, and B. Jecko, A new FDTD surface impedance formulism to study PBG structures, Microwave and Optical Technology Letters, vol.18, no.3, June 1998:203-206.
    [72]Hung Yu David Yang,Finite difference analysis of 2-D photonic crystals,IEEE Trans.On Microwave Theory and Techniques,vol.44,Dec.1996:2688-2695.
    [73]A.Barcs,S.Helfert,and R.Pregla,Modeling of 2D photonic crystals by using the Method of Lines,in 4th International Conference on Transparent Optical Networks(ICTON),2002:45-48.
    [74]S.F.Helfert,The Method of Lines for the Calculation of Band Structures in Photonic Crystals,in 5th International Conference on Transparent Optical Networks(ICTON),2003:122-125.
    [75]P.H.Harms.R.Mittra,W.Ko,Implementation of the periodic boundary condition in the finite difference time-domain algorithm for FSS structures,IEEE Trans.On Antenna and Propagation,vol.42 1994:1317-1324.
    [76]J.A Roden,S.D.Gendney,M.P.Kesler,etc.,Time-domain analysis of periodic structures at oblique incidence:orthogonal and nonorthogonal FDTDimplementations,IEEE Trans.On Microwave Theory and Techniques,vol.46,no.4,1998:420-426
    [77]P.Keith Kelly,Leo Diaz,Melinda Piket-May,and Ian Rumsey,Investigation of scan blindness mitigation using photonic bandgap structure in phased arrays,SPIE vol.3436,July 1998:239-247.
    [78]H.Y.Yang,R.Diaz and N.G.Alexopoulos,Reflection and transmission of waves from multilayer structures with planar-implanted periodic material blocks,Journal of the Optical Society of America B,1997,14(10):2513-2521.
    [79]文舸一,徐金平,漆一宏,电磁场数值计算的现代方法,第六章,河南科学技术出版社,1994.
    [80]T.Itoh and W.Menzel,A full wave analysis method for open microstrip structures,IEEE Trans.Antenna and Propagation,vol.29,Jan,1981:63-68.
    [81]Lucio Vegni,Renato Cicchetti,and Pasquale Capece,Spectral dyadic Green's function formulation for planar integrated structures,IEEE Trans.Antenna and Propagation,vol.36,Aug,1988:1057-1065.
    [82]凌峰,方大纲,用谱域导抗法推导平面分层介质格林函数的一般表达式,微波学报,vol.12,Jun,1996:83-88.
    [83]方大纲,电磁理论中的谱域方法,安徽,安徽教育出版社,1996
    [84]David M.Pozar,Daniel H.Schaubert,Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds,IEEE Trans.Antenna and Propagation,vol.32,Oct,1984:1101-1107.
    [85]Huang Yu David Yang,Characteristics of guided and leaky waves on multilayer thin film structures with planar material gratings,IEEE Trans.Microwave Theory Tech.,vol.45,Mar.1997:428-435
    [86]方俊鑫,陆栋,固体物理,上海科学技术出版社,1981.
    [87]David M.Pozar,Daniel H.Schauberr,Analysis of an infinite array of rectangular micro-strip patches with idealized probe feeds[J],IEEE Trans Antenna Propag,32(1984),1101-1107.
    [88]J.T.Aberle and D.M.Pozar,Analysis of infinite arrays of probe-fed rectangular micro-strip patches using a rigorous feed model[J],IEE Proc.,136(1989),109-119.
    [89]Yunqi Fu,Naichang Yuan,Guohua Zhang,Compact High-Impedance Surfaces incorporated with interdigital Structure,Electronic letters,vol.40(5),Mar 2004:310-311.
    [90]C Puente,J Romeu,R Pous,X Garcia,F Benitez,Fractal multiband array antenna based on the Sierpinski gasket,Electron Lett.,vol.32,no.1,2004,1-2.
    [91]C P Baliarda,C B Borau,M N Rodero,J Robert,An iterative model for fractal antennas application to Sierpinski gasket antenana.IEEE Trans Antennas Propagat,2000,48(5):713-719.
    [92]J Chang,S Jung,S Lee.Triangular fractal antenna.Microwave Opt Techol Lett,2000,27(5):41-46
    [93]林宝勤,微波光子晶体电磁带隙特性研究,博士学位论文,国防科技大学,2006。
    [94]Anderson C M and Giapis K P.Larger Two-Dimensional Photonic Band Gaps.Phys.Rev.Lett.,1996,77(4):2949-2952
    [95]Carles Puente-Baliarda and Rafael Pous.Fractal Design of Multiband and low side-lobe Arrays,IEEE Trans.Antenna and Propagation.,1996,44:730-739
    [96]Sakoda K,Kawai N,Ito T et al.,Photonic bands of metallic systems.Ⅰ.Principle of calculation and accuracy.Phys.Rev.B,2001,64:045116
    [97]Z.Liu,J.J.Xu,and Z.F.Lin,Photonic Band Gaps in Two-Dimensional Crystals with Fractal Structure.Chin.Phys.Lett.,2003,20:516-518
    [98]H.A.Bethe,Thoery of diffraction by small holes,Physical Review,vol.66,1944:163-182
    [99]A.F.Stevension,Thoery of slots in rectangular waveguide,Journal of Applied Physics,vol.19,1948:24-38
    [100]A.A.Oliner,The impedance properties of narrow radiating slots in broad face of rectangular waveguide,IRE Trans.Antennas Propagat.,vol 5.1957:4-20
    [101]R.S.Elliott,The design of small slot arrays,IEEE Trans Antenna Propagat.,vol.,26,1978:214-219
    [102]A.J.Sangster and A.H.I.Mccormick,Theoretical design/systhesis of slotted waveguide array,IEE Proc-H,vol.136,1989:39-46
    [103]J.J.Gulick and R.S.Elliott,The design of linear and planar arrays of wavegudie-feed longitudinal slots,Electrmagnatics,vol.10,1990,327-347.
    [104]吕善伟 任济时,波导缝隙天线耦合特性的研究,电子学报,vol.13,no.5,1985:92-101.
    [105]李建瀛,梁昌洪,矩形波导纵缝阵列的矩量法分析和设计,电子科学学报,vol.13,no.4,1998:408-432.
    [106]D.Sievenpiper,J.Schaffner,B.Loo,G.Tangonan,R.Harold,J.Pikulski,and R.Garcia,Electronic beam steering using a varactor tuned impedance surface,Proc.IEEE AP-S Dig.,vol.1,July2001:174-177.
    [107]A.S.Barlevy and Y.Rahmat-Samii,Characterzation of electromagnetic bandgap composed of multiple periodic tripods with interconnecting vias:concept,analysis and design,IEEE Trans Antenna Propagat.,vol.,49,Mar,2001:343-353
    [108]F.Yang and Yahya Rahmat-Samii,Microstrip antennas integrated with electromagnetic bandga structures:a low mutual coupling design for array applications,Microwave Theory and Techniques,2003,51(10):2936-2946.
    [109]S.B.Cohn.Properties of Ridged Waveguide.[J].Proc.IRE,1947,35(8):783-788.
    [110]J.R Pyle.The Cutoff Waveguide of TE_(10) Mode in Ridge Rectangular Waveguide of Any Aspect Ratio.[J].IEEE,Trans.,1966:MTT-14(4):175-184
    [111]Y.konishi.Simplified 13Gz Low-Noise Converter with Mounted Planar Circuit in Waveguide[J].IEEE,Trans.1974:MTT-22(4):451-454
    [112]J.P.Montgomery.The Complete Eigenvalue solution of Ridged Waveguide.IEEE,Trans.1971;MTT-19(6):547-555
    [113]Yozo Utsumi.Variational analysis of Ridged Waveguides Mode.[J].IEEE,Trans.1985.MTT-33(2):111-120
    [114]G.Y.Kim Computation of Waveguide modes for Arbitrary Cross-section..IEE,Proc.1990;137,Pt.H(2):145-149
    [115]M.Swamination.Computation of Cut-off Wave numbers of TE and TM Modes in Waveguide of Arbitrary Cross-section Using a Surface IntegralFormulation.[J].IEEE,Trans,1990:MTT-38(2):154-159
    [116]王长青,祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社,1994
    [117]Wenhua Yu,R.Mittra.A conformal FDTD algorithm modeling perfectly conducting of objects with curved shaped surfaceds and edges.[J].IEEE Antennas and Propagation Magazine,2000,42,(5):28-29
    [118]葛德彪,闫玉波著,电磁场时域有限差分法,西安:西安电子科技大学出版社,2002.
    [119]Guo-hua Zhang,Radiation characteristics improvement in waveguide-fed slot antenna with a high-impedance ground plane,Microwave and Optical Technology Letters,2005,45(2):176-179.
    [120]Sievenpiper D F.High-impedance electromagnetic surfaces with a forbidden frequency band[J].IEEE Trans.Microwave Theory Tech,1999,47(11):2059-2074.
    [121]E.Yablonovitch."Photonic band-gap structures" J Opt Soc Amer B 10(1993),283-295.
    [122]Coccoli R,Yang F,Itoch T.Aperture-coupled patch antenna on UC-EBG substrate[J].IEEE Trans.Microwave Theory Tech.1999,47(11):2123-2130.
    [123]Elliott R S.The Design of Small Slot Arrays.IEEE Trans.Antenna and Propagation,1978,26(2):214-219
    [124]Elliott R S.An Improved Design Procedure for Small Arrays of Shunt Slots.IEEE Trans.Antenna and Propagation,1983,31(1):48-53.
    [125]Elliott R S,Loughlin W R O.The designed of Slot Arrays Including Internal Mutual Coupling.IEEE Trans.Antenna and Propagation,1986,34(9):1149-1154.
    [126]Kim D Y,R.S.Elliott.A Design Procedure for slot Arrays Fed by Single Ridged Wave-guide.IEEE Trans.Antenna and Propagation.1988,36(11):1531-153.
    [127]鲁加国,樊德森.非对称单脊波导的积分方程法分析.微波学报,1998,14(2):108-115
    [128]Krishnakumar K.Miro-genetic algorithm for stationary and non-stationary function optimization[J].SPIE 1196,1989
    [129]Johnson J M,Y Rahmat-samii.Genetic algorithm and method of moment(GA/MOM):A novel integration for antenna design.IEEE AP-Sdigest.1997:1664-1667.
    [130]Boag A,Michielessen E,Mittra R.Design of electrically loaded wire antennas using genetic algorithm.IEEE Trans Antenna Propagation,May 1996 AP-44,5:687-695
    [131]Eric A Jones,William T Jones.Design of yagi antennas using genetic algorithms.IEEE Trans Antenna Propagation.Sep.1997,AP-45,9:1386-1392.
    [132]PYLE J R.The cutoff wavelength of the TE_(10) mode in ridged rectangular wave-guide of any aspect ratio.IEEE Trans on Microwave And Technology,April 1966,vol.MTT-14:175-183
    [133]卢万铮,电磁场数值分析,空军工程大学出版社,2002
    [134]Montgomery J P.On the complete eigenvalue solution of ridge wave-guide.IEEE Trans.Microwave Theory Tech.vol.MTT-19,pp547-555,June 1971
    [135]鲁加国,吴双桂,陈嗣乔.非对称单脊波导裂缝阵天线分析.电波科学学报,1998,13(4):388-392
    [136]Merrill I.Skolnik Radar Handbook,Publishing House of Electronics Industry,2003
    [137]梁昌洪,光子晶体微波器件的理论建模和数值分析,国家安全重大基础研究项目子专题年度总结报告,2003.11
    [138]Amity N,Galindo V,Wu C P,Theory and analysis of phased array antenna.NewYork:Wiley,1972
    [139]Fenn A,Thiele G A,Munk B A.Moment method analysis of finite rectangular waveguide phase arrays.IEEE Trans.on Antennas and Propagation,1982,30(2):554-564.
    [140]Scharstein R W.Mutual coupling in a slotted phased array:infinite in E-plane and finite in H-plane.IEEE Trans.on Antennas and Propagation,1990,38(8):1186-1191.
    [141]Sohtell E V,ScM.Mutual admittance between slots on a chlinder using the extended poynting vectoring method.IEE Proc,PtH,1986,133(3):238-240.
    [142]张贞卓,王湖庄,陈抗生.一种新型矩形波导裂缝天线的分析与设计.微波学报,1996,(1):42-49。
    [143]J.Y.Li,L.W.Li,C.H.Liang,P.S.Kooi,and M.S.Leong,Analysis of finite slot phased arrays fed by rectangular waveguides using mothod of moments,Microwave and Optical Technology Letters,vol.29,no.2,132-136,2002.
    [144]Y.Ranhmat Samii,On the question of computation of the dyadic green's function at the source region in waveguide and cavities,IEEE Trans.Microwave Theory Tech.,vol.23,762-765,1975.
    [145]郭燕昌,钱继曾,黄富雄,冯祖伟.相控阵和频率扫描天线原理,国防工业出版社,1978.
    [146]David M P.Scanning characteristics of infinite arrays of printed antenna subarrays[J].IEEE Trans.Antenna Propagation,1992,40(6):666-675.
    [147]Sergei P S and Per-Simon K.Blindness removal in Arrays of rectangular wave-guides using dielectrically loaded hard walls[J].IEEE Trans.Antenna Propagation,1998,46(4):546-550.
    [148]Hung Y and David Y.A double vector integral equation method for antenna interaction with photonic band-gap material[J].IEEE Trans.Antenna Propagation,1997,45(6):792-795.
    [149]Yang Fan and Rahmat-Ssmii Y.A low profile circularity polarized curl antenna over an electromagnetic band-gap(EBG) surface[J].Microwave Opt.Technology Letter,2001,31(4):264-267.
    [150]林宝勤,徐利军,袁乃昌.以各向异性介质为衬底的共面紧凑型光子带隙结构[J].物理学报,2005,54(8):3711-3715.
    [151]Zeev I,Reuven S and Reuven B.Micro-strip antenna phased array with electromagnetic band-gap substrate[J].IEEE Trans.Antenna Propagation,2004,52(6):1446-1453.
    [152]Fan Yang and Rahmat-Ssmii Y.Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications[J].IEEE Trans.Antenna Propagation,2003,51(10):2691-2703.
    [153]闫敦豹,高强,付云起.改进的宽带人工磁导体结构[J].电波科学学报,2005,20(5):586-589.
    [154]Mittra R,Chan C.H and Cwik T,Techniques for analyzing frequency selective surfaces-A review,Proceedings of the IEEE,1988,76(12):1593-1614.
    [155]Itoh T,Spectral domain immitance approach for dispersion characteristics of generalized printed transmission lines,IEEE Trans.Microwave Theory and Techniques,1980,28(7):733-736.
    [156]Hall R C and Mittra R.Scattering from a periodic array of resistive strips,IEEE Trans.on Antennas and Propagation,1985,33(9):1009-1011.
    [157]Glisson A W and Wilton D R,Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,IEEE Trans.on Antennas and Propagation,1980,28(5):593-603.
    [158](美)琼斯著,洪旗等译.隐身技术——黑色魔力的艺术.北京:航空工业出版社,1991
    [159](英)理查森著,魏志祥等译.现代隐身飞机.北京:科学出版社,1991
    [160](美)克拉特著,阮颍铮译.雷达散射截面——预估,测量和缩减.北京:电子工业出版社,1988
    [161]阮颖铮编著.雷达散射截面与隐身技术.北京:国防工业出版社,1998
    [162]夏新仁.隐身技术发展现状与趋势.中国航天,2002,(1):40-44
    [163]黄培康.隐身威胁与雷达反隐身.雷达四抗技术研讨会论文集,1991
    [164]刘志文,柯有安.雷达反隐身的若干问题与技术途径.现代雷达,1992,14(3):1-9
    [165]倪养华,薛麒麟.隐身目标的频率特性分析及其频域对抗技术探讨.上海交通大学科技交流室,1987
    [166]周文瑜,张长爱.天波超视距雷达反隐身技术.反隐身技术文集,1990,102-108
    [167]赵尚弘,杨晓铁,谢小平.宽带冲击雷达与反隐形技术.空军工程大学学报(自然科学版),2000,1(2):82-85
    [168]何建国,陆仲良,刘克成.超宽带雷达反隐身机理研究.国防科技大学学报,1997,19(1):70-76
    [169]W.B.Scott,L.Calif.UWB radar have potential to dectect stealth aircraft.Aviation Week &Space Technology,1989,(4):38-41
    [170]D.Moraitis and S.Auaud.Effect of radar frequency on the detection of shaped(low RCS)targets.IEEE International Radar Conference,1985
    [171]H.F.Harmutl.On the effects of absorbing materials on electromagnetic waves with large relative band width.IEEE Trans.EMC,1983.
    [172]R.L.Fante and M.T.McCormack.Reflection properties of the Salisbury screen.IEEE trans,on Antenna and Propagation,vol.36,1988:1443-1454.
    [173]金建铭著,王建国译,葛德彪校.电磁场有限元方法.西安电子科技大学出版社,1998.
    [174]莫锦军,隐身目标低频宽带电磁散射特性研究,博士学位论文,国防科技大学,2005。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700