机车车辆系统中减振控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铁路已经进行了六次大提速,随着速度的提高,日益加剧的列车振动问题已严重影响到受电弓/接触网的受流质量和旅客列车运行的舒适性。就受电弓/接触网的受流问题而言,由于接触网是由接触线构成的,对这样的弹性结构很难用一套试验设备来进行其动态性能的模拟和研究,因此大部分弓网试验都是在现场进行的,一些室内试验要么太复杂而难以实现,要么太简单而无法真实模拟。计算机模拟技术的快速发展使得将接触网系统的数学模型与受电弓的实物模型结合在一起,形成一个新的混合模拟试验系统成为可能。在这个混合模拟试验系统中,受电弓是实物(可测试其动态特性),而接触网是一个理论模型,其动态特性通过一套伺服系统来实现,这样的一套混合模拟试验系统不仅可以模拟受电弓在实际运行条件下的性能,还可以分析不同接触网对受电弓动态特性的影响。而列车平稳性又分为垂向平稳性和横向平稳性两个方面,好的垂向运行平稳性相对较易实现,但横向运行平稳性往往不佳,被动悬挂系统的局限性愈来愈明显,主动悬挂和半主动悬挂控制是改善列车横向运行平稳性的有效方法。
     针对列车受电弓/接触网的动态特性和列车横向运行平稳性,本文主要开展了以下研究工作:
     (1)受电弓/接触网半实物/半虚拟混合模拟试验系统的研究:采用对接触网理论模型进行实时仿真计算的方法来虚拟接触网,将该虚拟接触网与真实受电弓通过液压伺服作动器连接在一起,组成一个虚实结合的混合模拟试验系统,采用这样的方法来开展弓/网系统的研究,为弓/网系统的动态特性研究和参数优化提供了一个崭新的研究手段。
     (2)受电弓/接触网振动主动控制问题的研究:针对铁路机车受电弓系统存在的振动问题,提出了一种基于模糊技术的旨在抑制振动的主动控制方案。在对弓/网系统特征进行分析的基础上,设计开发了以工控机为主控器件的受电弓主动模糊控制系统,并以SS7型机车受电弓为对象进行了试验研究。试验结果表明:采用主动控制技术以后,受电弓弓头接触压力波动值大大降低,弓网系统的运行品质得到了明显改善。
     (3)在对传统的以迭代为基础的道路模拟器试验方法进行分析研究基础上,提出一种“基于自适应滤波器”的模拟轨道不平顺的新方法:采用自适应有限脉冲响应滤波器的多通道逆向控制方法及其自适应滤波器的实现方法,使多通道振动台模拟试验系统的响应逼近于期望响应信号,并且给出了利用此算法进行的模拟结果曲线。试验结果表明,采用这种方法控制振动台模拟试验系统,精确地再现了期望响应信号,满足了试验系统的要求。
     (4)在对传统主动控制策略进行分析的基础上,提出了一种基于车体横向加速度和作用力直接反馈的双环全主动控制策略,该控制方法既克服了直接以加速度为控制目标而出现的跑偏问题,又使得控制系统具有稳定、快速的特征。
     (5)针对车辆系统的复杂性、非线性性和时变性,从简单实用出发,提出了基于车体质量参数在线辩识和模糊PID控制算法相结合的控制策略,使得减振控制系统能够在不同运营条件下均能够获得较好的减振效果。
     (6)在应用微控制技术可实现的基础上,提出变结构阻尼的概念和实现方法,并对变结构阻尼器的可实现域、示功图进行了分析、研究和仿真。
     (7)在半主动控制系统中引入载荷反馈回路,克服了阻尼器参数变化对减振效果的影响。
     (8)完成了列车横向主动、半主动悬挂控制试验系统软硬件的设计和组建工作。在牵引国家重点实验室滚动振动试验台上,对试验车进行了原车被动悬挂试验、去掉原车阻尼的被动悬挂试验、基于各种控制策略和方法以及各种执行机构条件下的对比试验研究。
Six times of raising speed of railways has already been carried out in China. But with increase of speed, the vibration problem of the train becomes more serious, which affects the current-collection quality of pantograph and ride quality of the train. Since the catenary is composed of cables, the dynamic behavior of such a string structure is difficult to be simulated by a test facility. Therefore, most of the pantograph-catenary tests were carried out under field conditions. Some indoor experiments either were too complex to be executed, or were too simple to give expected results. The rapid progress in computer simulation techniques in recent years reveals the possibility of incorporating mathematical model of the catenary system with the physical model of the pantograph system to form a unified hybrid experimental system. In the hybrid simulation test system, the pantograph is real and its dynamic behavior can be tested. While the catenary is a theoretical model and its dynamic behavior is realized by a servo hydraulic system. Such a hybrid simulation test facility possesses the ability of not only simulating the running behavior of pantograph, but also analyzing the influence of different catenary on pantograph behavior. The ride quality of the train includes vertical and lateral directions. Good vertical ride quality is relatively not difficult to be achieved, but the lateral ride quality is always not satisfactory. The limitation of the passive suspension system turns to be more and more obvious. The use of active and semi-active suspension systems is an efficient way to improve the lateral ride quality.
     Referring to the pantograph/catenary dynamic behavior and lateral ride quality of the train, the following main work has been done in the thesis:
     (1) Research on the pantograph/catenary hybrid dynamic simulation system: The catenary theretical model is used to undertake the real time simulation, and in the mean time, the virtual catenary and the actual pantograph are combined together through the hydraulic actuator. Then the pantograph/catenary dynamic interactions and parameter optimization can be studied by using this hybrid system.
     (2) Research on active vibration control for pantograph-catenary system: An active vibration control method based on fuzzy technology is put forward in order to reduce the locomotive pantograph. According to the characteristic analysis of the pantograph/catenary system, a fuzzy controller is designed to undertake real time fuzzy inference and operation. The pantograph behavior of SS7 locomotive is tested in laboratory, and the results show that the pantograph contact force fluctuation is greatly reduced by using active control technology, which considerably improves the pantograph/catenary operation behavior.
     (3) On the basis of analyzing the traditional iterative method for track irregularity simulation, a new method is proposed based on the adaptive filters: By adopting multi-channel inverse control with adaptive finite impulse response filters and the realization method for adaptive filters, the system response of multi-channel vibration testing system can approach the expected signals. And the simulation results are given by using this method, which indicate that the test simulation system by using this method can accurately reproduce the desired response and meet the test demand.
     (4) Based on the analysis of the traditional active control stragtegy, a new duo-loop active control strategy with direct feedback of carbody lateral acceleration and force is put forward. This control method not only overcomes the diverge problem caused by the direct acceleration feedback, but also ensures the stablility and rapid response of the control system.
     (5) In consideration of the complexity, nonlinearity and time varying of the vehicle system, an control strategy combined with on line identification of carbody inertia parameters and fuzzy-PID algorithm is put forward, which can achieve the good results in vibration reduction under different condition.
     (6) Based on the realizability of using micro-controller technology, the concept of the damper with variable structure and the realization method are proposed. The realizable field and dynamic characteristics of the damper are studied. The simulation shows that the semi-active damper with variable structure obviously has better performance than the traditional passive damper.
     (7) The load control loop is added into the semi-active control system, which can overcome the effect of damper parameter variation on vibration reduction.
     (8) The software and hardware of the test system for the train lateral active and semi-active suspensions are designed and constructed. By utilizing the roller test rig in the Traction Power State Key Laboratory of Southwest Jiaotong University, the comparison tests for a test vehicle under different test cases of passive suspension, active and semi-active suspensions with different control strategies are undertaken.
引文
[1]罗庆中.90年代世界电气化铁道弓网技术装备综述.电气化铁道,1998,2:31.
    [2]于正平,张弘,吴鸿标,昌月朝.高速电气化铁路接触网—受电弓系统的研究.中国铁道科学,1999,3:59-72.
    [3]黄墀才.德国高速铁路受电弓的发展.上海铁道科技,1999,2:47-49.
    [4]刘永红,何友全,肖建.高速铁路受电弓概况.电力自动化设备,2002,11:16-19.
    [5]梅志红,王冰容,邓文华.接触网受流质量综合评价手段的研究.华东交通大学学报,1997,12:13-19.
    [6]刘永红,周军.接触网—受电弓系统受流质量的评价分析.道标准设计,1999,4:45-49.
    [7]张卫华.准高速接触网动态性能的研究.西南交通大学学报,1997,32(2):187-192.
    [8]吴天行.弓一网高速动态受流仿真研究.铁道学报,1996,18(4):55-61.
    [9]梅桂明,张卫华.利用半实物半虚拟试验方法研究接触网参数对弓网接触力的影响.铁道学报,2004,2:33-39.
    [10]刘红娇,张卫华,梅桂明.基于状态空间法的受电弓主动控制的研究.中国铁道科学,2006,5:79-83.
    [11]G.poetsch,J.evans,R.meisinger,W.kortum,w.baldauf,A.veitl and J.wallaschek.Pantograph-Catenary Dynamics and Control vehicle system dynamics,28(1997),pp.159-195.
    [12]F.resta,A.collina,f.fossati.Actively controlled Pantograph:an application.20011EEE/ASME international conference on advanced intelligent mechatronics proceedings 8-12.july 2001.como,italy.
    [13]郭京波,黄振晖,杨绍普.高速铁路弓网系统振动主动控制研究.石家庄铁道学院学报,2003,12:26-29.
    [14]陈位宫,Reinhold Meisinger.高速电动列车受电弓的主动控制,上海应用技术学院学报,2002,12:227-231.
    [15]王福天.车辆系统动力学,北京:中国铁道出版社,1996:10-170.
    [16]严隽耄.车辆工程,北京:中国铁道出版社,1993:25-228.
    [17]陈春俊,杨世杰,王开云.高速列车横向半主动悬挂系统建模研究及分析,振动与冲击,2006,8.
    [18]陈春俊,吴学杰,张卫华.列车横向主动悬挂广义预测控制研究,昆 明理工大学学报(理工版),2005,30(4A):5-48.
    [19]欧进萍.结构振动控制——主动、半计动和智能控制[M],北京:科学出版社,2003,11:258-330.
    [20]井口雅一,山川新二监修.自动车の最新技术事典.东京:朝仓书店,1993.
    [21]张庙康,胡海岩.车辆悬架振动控制系统研究的进展.振动、测试与诊断,1997,3:7-15.
    [22]Karnopp D.Vibration control using semi-active force generators.ASME J of Engineering for Industry,1974,96(2):619-626.
    [23]G W Celiniker,J Z Hedrick.Rail Vehicle Active Suspensions for Lateral Rial and Stability Improvement[J],Tranaction of the ASME,1982,104:100-106.
    [24]Hu Haiyan.Semi-active vibration control based upon a vibration absorber with adjustable clearance.Transaction of Nanjing University of Aeronautics and Astronautics,1996,13(2):135-141.
    [25]Hac A,Youn I,Chen N.Control of suspension for vehicles with flexible bodies:partⅡ—semi-active suspensions transportation systems.ASME,Dynamic Systems and Control Division,1994,(DSC54):93-113.
    [26]Hedlick J Z.Railway vehicle active suspension.Vehicle System Dynamics,1981,10:267-272.
    [27]Packer M B.Active ride control—a logical step from static vehicle attitude control.SAE Paper,780050.
    [28]Kaw akami H,Sato H,TabataMetal.Development of integrated system between active control suspension,active 4WS,TRC and ABS.SAE Technical Paper Series,920271,41-48.
    [29]Thompson A G,Davis B R.Tecbnical note on the lotus suspension patents.Vehicle System Dynamics,1991,6:381-383.
    [30]刘少军,饶大可,黄中华.车辆主动悬架系统及其控制方法,湘潭大学自然科学学报,2003,6:65-69.
    [31]刘少军.最优预见控制设计及在汽车主动悬架系统中的应用[J].中南工业大学学报,1997,28(2):67-70.
    [32]张汉全,肖建,汪晓宁.自动控制理论新编教程,成都:西南交通大学出版社,2000:200-300.
    [33]李辉,顾亮,刘琰.车辆半主动悬挂控制理论的研究,汽车科技,2002,2:26-28.
    [34]韩京清.控制理论——模型论还是控制论,系统科学与数学,1989,9(4):328-335.
    [35]Palkovics.Investigation on stability and possible chaotic motions in the controlled wheel suspension system[J].Vehicle System Dynamics,1992,21:269-296.
    [36]方子帆,邓兆祥,郑玲等.汽车半主动悬架系统研究进展,2003,27(1):46-51.
    [37]Ray,L aura R.Robust linear-optimal control laws for active suspension systems.Advanced Automotive Technologies——1991American Society of Mechanical Engineers,Design Engineering Divisison 1991,40:291-302.
    [38]Krto lica R,H rovat D.Optimal active suspension control based on a half-car modal:ananalyil solution.IEEE Transact ions on Automatic Control,1992,37(4):528-532.
    [39]李辉,顾亮,刘琰.车辆半主动悬挂控制理论的研究,汽车科技,2002,2:26-28.
    [40]Bender,E.K.Optimum Linear Preview Control with Application to Vehicle Suspension.Journal of Basic Engineering Trans.ASME,1968,90(2):1213-1221.
    [41]周云山,钟勇.汽车电子控制技术,北京:机械工业出版社,2004,8:150-217.
    [42]Niklas Karlsson,Mohammed Dahleh,Davor Hrovat.Nonlinear active suspension with preview,Proceeding of the American Control Conference Arlington,2001,7:25-27.
    [43]席裕庚.预测控制,北京:国防工业出版社,1993,6:1-9.
    [44]诸静.智能预测控制及其应用,浙江:浙江大学出版社,2002,4:1-30.
    [45]舒迪前.预测控制系统及其应用,北京:机械工业出版社,2001,1:176-239.
    [46]张汉全,戴焕云,周斌,杨名利.H_∞与μ鲁棒控制方法在车辆主动悬挂中的应用,铁道学报,1997,15(5):121-128.
    [47]Shen T,Tamu K.State feedback Performance recovery via an observer in H_∞ robust control.Systems and control Letters,1993,21:463-474.
    [48]Francis B A,Zames G.On H_∞ Optimal Feedback controllers for Linear Multivariable Systems.IEEE Transaction on Automatic Control,1984,29:9-16.
    [49]申铁龙.H_∞控制理论及应用,北京:清华大学出版社,1996:1-274.
    [50]解学书,钟宜生.H_∞控制理论,北京:清华大学出版社,1994:1-65.
    [51]美多勉.H_∞制御,日本:昭晃堂,平成6:153-165.
    [52]Tohsiake Hirata,et al.H_∞ Control of Railroad Vehicle Active
    [53]Qin Li.利用模糊理论对大型客车主动悬架的预测控制International Of Vehicle Design.1998,19(2):187-198.
    [54]杨辉,王金章.模糊控制技术及其应用,南昌:江西科学技术出版社,1997,9:1-47.
    [55]Shiuh-Jer Huang,Wei-Cheng Lin.Adaptive Fuzzy Controller With Sliding Surface for Vehicle Suspension Control.IEEE Transactions on Fuzzy Systems,2003,11(4):550-559.
    [56]张庙康.车辆悬架模糊神经网络半主动振动控制系统的研究.振动、测试与诊断,1996,16(2):18-24.
    [57]Astrom K.J,Wittenmark B.On self-tuning regulators.Automatic,1973,9(2):185-199.
    [58]谢新民,丁锋.自适应控制系统,北京:清华大学出版社,2002,7:1-140.
    [59]冯纯伯,史维.自适应控制,北京:电子工业出版社,1986,6:1-203.
    [60]张汉全,肖建,汪晓宁.自动控制理论新编教程,成都:西南交通大学出版社,2000:200-300.
    [61]方敏,王峻等.汽车半主动悬架的自适应LQG控制,汽车工程,1997,19(4):200-205.
    [62]D.Karnopp,M.J.Crosby and R.A.Harwood.Vibration Control using Semi-Active Force Generator,ASME Journal of Engineering of Industry,1974:619-612.
    [63]侯忠生.非参数模型及其白适应控制理论,北京:科学出版社,1999,1:1-8.
    [64]方崇智,萧德云.过程辨识,北京:清华大学出版社,1988:1-120.
    [65]吴广玉.系统辨识与自适应控制,哈尔滨:哈尔滨工业大学出版社,1987,3:1-60.
    [66]杨承志.系统辨识与自适应控制,重庆:重庆大学出版社,2003:1-15.
    [67]李言俊,张科.系统辨识理论及应用,北京:国防工业出版社,2003,5:1-102.
    [68]徐丽娜.神经网络控制,北京:电子工业出版社,2003:1-50.
    [69]史忠科.神经网络控制理论,西安:西北工业大学出版社,2000:1-78.
    [70]王月明,曾京.车辆横向半主动悬挂的神经网络自适应控制,铁道学报,2002,24(4):34-37.
    [71]翁建生.车辆悬架振动的神经网络半主动控制,博士学位论文,南京航空航天大学,2001:1-30.
    [72]Kayaba IND Co.ltd,Automotive Suspension,Sankaido[S].1991(in Japanese).
    [73]刘少军.由高速ONPOFF阀操作的主动悬架系统及控制方法研究[J].汽车工程,1996,18(4).
    [74]刘少军,郭淑娟.高速ONPOFF电磁阀在汽车主动控制悬架系统中的应用[J].中南工业大学学报,1996,27(3).
    [75]张庙康.车用自适应减震器.发明专利公报,1996,12(4):CN 1115366A.
    [76]张庙康.液力阻尼车用减震器.实用新型专利公报,1996,(45):CN 223932Y.
    [77]钱小勇,胡海岩.可调间隙的半主动吸振器及其实现,振动工程学报,2003,14(4):378-382.
    [78]李智超,耿艳萍等.一种可调阻尼减振器的设计与试验,合肥工业大学学报(自然科学版),1998,21(3):37-41.
    [79]欧进萍.结构振动控制——主动、半计动和智能控制[M],北京:科学出版社,2003,11:258-330.
    [80]赵云生.新型车辆减振技术,中国铁路,2002,6:35-28.
    [81]李幼德,宋大凤等.汽车可调阻尼半主动悬架控制器,吉林大学学报(工学版),2004,34(1):71-74.
    [82]冯雪梅,刘佐民.汽车液力减振器技术的发展与现状,武汉理工大学学报,2003,27(3):341-344.
    [83]董泽光 电流变液阻尼器用于车辆减振的智能控制研究 硕士论文武汉理工大学 2003 5.
    [84]姚国治等 电流变阻尼器用于振动控制的理论和实验研究 西北工业大学学报1997 15(1).
    [85]郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究——建模与直接自适应近控制,振动工程学报,2002,15(1):10-14.
    [86]Bossi G et a.Yidld stress magnetorheological and etectrorheologica fluids:A comparison between microscopic and macroscopic structural models[J],Rheol.1997,41(3):687-704.
    [87]Housner G W,Gergman L.A,et al.Structural Control:Past,Present and Future[J],ASCE Journal of Engineeing Mechanics,1997,123,(9):897-971.
    [88]王月明,张卫华.神经网络在车辆半主动控制中的应用,西南交通大学学报,2002,37(5):575-578.
    [89]孙作玉.基于动态递归神经网络的半主动控制结构响应预测,振动工程学报,2000,13(3):443-448.
    [90]丁问司,卜继玲,刘友梅.我国高速列车横向半主动悬持系统控制策略及控制方式,中国铁道科学,2002,23(4):2-7.
    [91]张开林.机车车辆横向平稳性主动控制的研究,博士学位论文,西南交通大学,1997,7:1-20.
    [92]佐佐木 君章.改善高速列车的横向乘坐舒适度——半主动悬挂减振装置的应用,中国铁道学报,2004,26(1):105-115.
    [93]王月明.高速客车半主动悬挂控制技术研究,博士学位论文,西南交通大学,2002,4:1-10.
    [94]陈春俊,吴学杰,张卫华.列车横向主动悬挂广义预测控制研究,昆明理工大学学报(理工版),2005,4:5-48.
    [95]戴焕云.车辆主动悬挂的鲁棒控制研究,博士学位论文,西南交通大学,1999,1:75-77.
    [96]张卫华,黄标,梅桂明基于虚拟样机技术的高速弓网系统研究铁道学报2005 4:30-35.
    [97]黄标,张卫华,梅桂明基于虚拟样机技术的受电弓/接触网系统研究系统仿真学报2004 10:2294-2316.
    [98]吴学杰,张卫华,梅桂明.受电弓/接触网半实物半虚拟混合模拟系统 的研究,铁道学报,2002,1:14-18.
    [99]张卫华,沈志云.接触网动态研究[J].铁道学报,199l,(4):26-33.
    [100]张卫华,沈志云.受电弓动力学研究[J].铁道学报,1993,(1):23-30.
    [10]WormleyD,SeeringW,Eppinger S,O'ConnorD.Dynamic Performance Charateristics of New Configuration Pantograph/Catenary Systems [R].Final Report,DOT/OST/P 34/85/023,1984.
    [102]Ro Paul I,Kim C,Kim H.Active suspension system using fuzzy logic control[C].In:Proceedings of America Control Conference IEEE.1993,(93):2252-2253.
    [103]Yo sh imurar.Active suspension of vehicle system using fuzzy logic[J].International Journal of System Science,1996,(2):215-219.
    [104]吴学杰,张卫华,扬世杰,梅桂明.应用于接触网/受电弓混合模拟试验台的计算机测控系统.计算机工程与应用,2002,12:213-216.
    [105]吴学杰,张卫华,梅桂明.模糊控制技术及其在接触网/受电弓混合模拟系统中的应用,计算机应用研究,2002,6:85-87.
    [106]吴学杰,张卫华,梅桂明,林建辉.接触网/受电弓振动主动控制问题的研究.振动工程学报,2002,1:36-40.
    [107]Fundamentals of the Hydropuls system(注:PL 100N型伺服作动器产品说明书).
    [108]何平,王鸿绪.模糊控制器的设计及应用.北京:科学出版社.1997:67-85.
    [109]Zdaeh L,Fuzzy sets.Information Control,1965;(8):353-358.
    [110]Lee C C.Fuzzy logic in control system s:fuzzy logic controller(partⅡ),IEEE SMC.1990;20(2):419-435.
    [110]李善友,李 军.模糊控制理论及其在过程控制中的应用.北京:国防工业出版社,1996:50-63.
    [111]Ying H.A nonlinear fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller.Automatic,1993;29(2): 499-505.
    [112]Stribersky A,Kienberger A,Wagner G,et al.Design and Evaluation of a Semi -Active Damping System for Rail Vehicles[J]Vehicle System Dynamics,1998,29:669-681.
    [113]Hiroshi Fujimoto,Masayuki Miyamoto,Youichi Shimamoto.Lateral Vibration of Shinkansen and it s Decreasing Measure[J].RTRI Report,1995,9(1):19 -24.
    [114]G N Sarma,F Kozin.An Active Suspension System Design for the Lateral Dynamics of a High speed Wheel-rail System[J],Journal of Dynamic Systems,Measurement,,and control.1971,86:233-241.
    [115]P K Sinha,D N Wormley,J K Hedrik.Rail Passenger Vehicle Lateral Dynamic Performance Improvement Through Active Control[J],Transaction of ASME,1978,100:271-283.
    [116]姚建伟,等.采用主动悬挂技术是改善机车横向动力学性能的有效途径之一[J].铁道机车车辆,2002,(增刊):177-179.
    [117]李辉,等.车辆半主动悬挂控制理论的研究[J].汽车科技,2002,(2):26-28.
    [118]张汉全,等.车辆主动悬挂的H_(∞)最优控制[J].铁道机车车辆,1996,(2):43-48.
    [119]郝晓枫,等.车辆主动悬挂的u鲁棒控制设计及其数模混合仿真研究[J].西南交通大学学报,2000,(5):522-525.
    [120]孟爱红,等.基于输出反馈的慢主动悬挂系统仿真研究[J].车辆与动力技术,2002,(3):36-40.
    [121]高海云,等.车辆主动悬挂系统建模与性能仿真[J].车辆与动力.技术,2001,(3):32-36.
    [122]铁道车辆动力学性能评定和试验鉴定规范,中华人民共和国国家标准,GB 5599-85.
    [123]方敏,王峻等.汽车半主动悬架的自适应LQG控制,汽车工程,1997,19(4):200-205.
    [124 孙建民.车辆主动悬挂控制技术研究,博士学位论文,哈尔滨工程大学,2003:1-90.
    [125]方子帆,邓兆祥,郑玲等.汽车半主动悬架系统研究进展,2003,27(1):46-51.
    [126]何表玮,林青等.Matlab在汽车半主动悬架仿真中的应用,机床与液压,2002,3:34-36.
    [127]顾仲权,马扣根,陈卫东.振动主动控制,北京:国防工业出版社,1997,11:1-222.
    [128]丁文镜.振动主动控制当前的主要研究课题,力学进展,1994,24(2):173-180.
    [129]孙求理.主动悬架的发展和技术现状,世界汽车,1996,5:4-6.
    [130]喻凡,郭孔辉.白适应悬架对车辆性能改进的潜力,中国机械工程,1998,6:67-70.
    [131]杨名利.摆式列车控制系统的试验及其鲁棒控制系统的研究,博士学位论文,西南交通大学,1998:1-60.
    [132]戴焕云.车辆主动悬挂的鲁棒控制研究,博士学位论文,西南交通大学,1999:1-120.
    [133]Astrom K.J,Wittenmark B.On self-tuning regulators.Automatic,1973,9(2):185-199.
    [134]庄继德,陈善华,张宝生.可切换半主动悬架的一种自适应控制策略,中国公路学报.1998,3:103-109.
    [135]吴学杰,王月明,张立民,戴焕云,陈春俊.高速成列车横向悬挂主动、半主动控制技术的研究,铁道学报,2006,28(1):50-54.
    [136]王月明,吴学杰,张卫华.基于统计最优的车辆悬挂半主动控制的研究,铁道车辆,2002,5:16-18.
    [137]吴学杰,杨世杰.应用于机车车辆横向减振控制中的计算机测控系统,中国测试技术,2004,6:60-62.
    [138]吴学杰.摆式列车倾摆伺服系统控制问题的研究,西南交通大学学报,2000,6:637-641.
    [139]刘晔,吴学杰.摆式列车倾摆伺服控制系统的研究,中国测试技术,2003,1:7-9.
    [140]梅红伟,吴学杰,商秋芳,庞维.基于PC104和CPLD的高速/多通道数据采集系统的设计与实现,现代电子技术,2007,5:152-154.
    [141]方艺,吴学杰.六自由度运动平台控制系统的神经网络优化,中国测试技术,2006,5:100-103.
    [142]庞维,吴学杰.应用于减振器试验台的测控系统,中国测试技术,2007,3:33-35.
    [143]高品贤.振动、冲击及噪声测试技术,成都:西南交通大学出版社,1992,4:22-40.
    [144]黄长艺,严普强.机械工程测试技术基础,北京:机械工业出版社,2004,2:159-181.
    [145]黄贤武,郑筱霞.传感器原理与应用,成都:电子科技大学出版社,2000,7:1-66.
    [146]步进机电有限公司,DMC300运动控制卡技术介绍(3.1版):1-30.
    [147]王学纪.功率运算放大器在压控电流源中的应用,国处电子元器件,1998.9:19-22.
    [148]Chang J C H and Soong T T.Structural Control Using Active Tuned Mass Dampers[J].ASCE Journal of Engineering Mechanics,1980,106:1091-1098.
    [149]KoboriTetal.ExperimentalStudyonActiveVariableStiffness System-Active Seismic ResponseControlledStructure[C].Proceedings of 4th World Congress Council on Tali Buildings and Urban Habitat,1990:561-572.
    [150]G N Sarma,F Kozin.An Active Suspension System Design for the Lateral Dynamics of a High speed Wheel-rail System[J],Journal of Dynamic Systems,Measurement,,and control.1971,86:233-241.
    [151]P K Sinha,D N Wormley,J K Hedrik.Rail Passenger Vehicle Lateral Dynamic Performance Improvement Through Active Control[J],Transaction of ASME,1978,100:271-283.
    [152]张昕,蒋通.考虑轨道不平顺的车-桥动力分析.力学季刊,2003,24(1):15-22.
    [153]王平.三轴角振动液压转台理论分析与实验研究.工学硕士学位论文.哈尔滨工业大学,2006.
    [154]程永金.道路模拟试验系统的关键技术-远程参数控制技术[J].试验技与试验机,2001,41(34):32-33.
    [155]杜永昌,管迪华,宋建.汽车道路模拟算法研究[J].公路交通科技,2001,18(6):33-37.
    [156]杜永昌.车辆道路模拟试验迭代算法研究[J].农业机械学报,2003,33(2):5-7.
    [157]王学军.汽车疲劳道路模拟试验远程参数控制系统(RPC)的研制 [D].清华大学,1993.
    [158]Garcia G E,Morshedi A M.Quadratic Programming Solution of Dynamic Matrix Control.Chem.Eng.Commun,1984,46(1):73-87.
    [159]Garcia G E,Morshedi A M.Quadratic Programming Solution of Dynamic Matrix Control.Chem.Eng.Commun,1984,46(1):73-87.
    [160]S.Daley and G.P.Liu.Active Control of Combustion Instabilities,UKACC International Conference on Control ' 98,1-4September 1998,416-421.
    [161]Clarke D W,Mohtadi C,Turfs P S.Generalized Predictive Control,Automotive,1987,23(2):137-162.
    [162]Rouhani R,Mehra R K.Model Algorithmic Control Basic Theoretical Properties.Automatica,1982,18(4):401-414.
    [163]Cutler C.R,Ramaker B.L.Dynamic Matrix Control——A Computer Control Algorithm.In:Proceedings of the 1980 Jiont Automatic Control Council,1980.WPS-B.
    [164]De Keyser,R.M.C,Van CauwenbergheA.R.Extended Prediction Self-adaptive Control.In:Barker H A,Young P C eds.Identification and System Parameter Estimation 1985 V.2.Oxford:Pergamon Press,1985:1255-1260.[159]Lelic M A,Zarrop M B.Generalized Pole Placement Self-tuning Controller[J].Control,1987,46(2):547-568
    [165]Garcia C E,Morari M.Internal Model Control,Ind,Engng Chem,Process Des.Dev.,1982,21(2):308-332.
    [166]黄正桥,吴学杰,商秋芳.远程参数自适应控制技术的研究,试验技术与试验机,2007,2:65-68.
    [167]王元丰,王颖,王东军.铁路轨道不平顺模拟的一种新方法,铁道学报,1997;19(6):110-115.
    [168]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟,西南交通大学学报,1999,34(2):138-142.
    [169]钱雪军.轨道不平顺的时域模拟法,2000,22(4):94-98..
    [170]星谷胜,常保琦.随机振动分析.北京:地质出版社出版社,1977:42-62.
    [171]侯忠生.非参数模型及其自适应控制理论,北京:科学出版社,1999,1:1-8.
    [172]方崇智,萧德云.过程辨识,北京:清华大学出版社,1988:1-120.
    [173]吴广玉.系统辨识与自适应控制,哈尔滨:哈尔滨工业大学出版社,1987,3:1-60.
    [174]杨承志.系统辨识与自适应控制,重庆:重庆大学出版社,2003:1-15.
    [175]李言俊,张科.系统辨识理论及应用,北京:国防工业出版社,2003,5:1-102.
    [176]周廷美,王仲范,刘成.道路模拟试验系统的多通道逆向控制方法[J].武汉汽车工业大学学报,1998,20(6):95-98.
    [177]徐凯,纪红,乐光新.一种改进的变步长自适应滤波器LMS算法[J].电路与系统学报,2004,9(4):115-117.
    [178]谷源涛,唐昆,崔慧娟,杜文.新的变步长归一化最小均方算法[J].清华大学学报(自然科学版),2002,42(1):15-18.
    [179]谭智勇,安锦文.基于LMS算法的自适应逆可重构控制系统[J].测控技术,1998,23(1):35-37.
    [180]高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析[J].电子学报,2001,29(8):1094-1097.
    [181]张贤达.现代信号处理(第二版)[M].清华大学出版社,2002.
    [182]谢胜利,何昭水,高鹰.信号处理的自适应理论[J].科学出版社,2006.
    [183]Glentis G O,Berberidis K,Theodoridis S.Efficient least squares adaptive algorithms for FIR transversal filtering[J].IEEE Signal Processing Magazine,1999,16(4):13-41.
    [184]Widrow B,Stearns S D.Adaptive Signal Processing.New York:Prentice-Hall,1985.
    [185]Long G Z,Ling F Y,Proakis J G.The LMS algorithm with delayed coefficient adaptation[J].IEEE Trans on Signal Processing,1989,37(9):1397-1405.
    [186]马伟富,雷勇,腾欢.自适应滤波器(LMS)算法及其在DSP上的实现[J].四川大学学报(自然科学版),2004,41(6):470-473.
    [187]赵红怡,张常年.数字信号处理及其MATLAB实现[M].化学工业出版社,2002.
    [188]吴光弼,祝林瑜.一种变步长LMS自适应算法[J].电子学报,1994,22(1):55-58.
    [189]范影乐,杨胜天,李轶.MATLAB仿真应用详解[M].人民邮电出版社,2001.
    [190]吴士昌,臧瀛芝.自适应控制[M].机械工业出版社,1990.
    [191]侯媛彬,汪梅等.系统辨识及其MATLAB仿真[M].科学出版社,2005.
    [192]李丽君,王华奎.一种改进的变步长LMS自适应滤波算法[J].现代电子技术,2006,7:7-12.
    [193]覃景繁,欧阳景正.一种新的变步长自适应滤波算法[J].数据采集与处理,1997,12(3):171-174.
    [194]陈凯,张平.一种新的变步长LMS自适应滤波算法[J].电子技术,2004.23:57-59.
    [195]叶华,吴伯修.变步长自适应滤波算法的研究[J].电子学报,1990,18(4):63-69.
    [196]张宇明,曹其新.一种时变非线性的自适应逆控制仿真[J].系统仿真学报,2006,18(3):760-761.
    [197]G L Plett.Adaptive inverse control of linear and nonlinear system using dynamic neural networks[J].IEEE Trans.On Neural NetWorks(S1045-9277),2003(14):360-376.
    [198]袁嫄,杨万全.一种改进的变步长LMS算法[J].现代电子技术,2006.20:110-112.
    [199]盛三元,王建华.一种新的变步长LMS自适应滤波算法[J].华东船舶工业学院学报(自然科学版),2002,16(3):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700