高压直流输电线路保护与故障测距原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直流输电线路保护和故障测距是直流输电工程保护系统的重要组成部分,担负着快速检测和清除线路故障的任务,其运行性能将直接影响直流输电系统和电网的安全运行。统计研究表明直流输电线路已成为直流输电系统中故障率最高的元件,而直流输电线路保护的正确动作率只有50%。我国直流输电工程的发展位于世界前列,但对现有直流输电线路保护与故障测距装置核心技术的掌握仍然不足,缺乏系统的理论支持,已投运直流输电工程的保护系统大多采用ABB和SIEMENS两家公司的技术路线。提高我国高压直流输电线路保护与故障测距的理论水平和加快直流保护系统的自主研发势在必行。
     现己投运的直流输电线路主保护易受雷电、换相失败等暂态过程的干扰,耐受过渡电阻能力有限,判据门槛值整定计算复杂。国内外学者致力于对现有直流输电线路主保护进行改进或提出新型主保护原理,其中部分保护新原理存在理论不完备、保护判据所用信号能量小、对装置采样率要求高、缺乏整定依据或整定计算依赖仿真结果等问题。高压直流输电线路故障测距所采用的原理可分为行波法和故障分析法。目前运行中的直流输电线路故障测距装置均采用行波原理,行波故障测距的可靠性在高阻接地故障和波头识别失败时受限。基于故障分析法的故障测距原理性能稳定,故障测距精度一般没有行波法高,部分原理耐受过渡电阻能力有限。
     全面深入的高压直流输电系统故障暂态分析可为直流输电线路保护与故障测距原理的研究工作奠定基础。本文研究了高压直流输电系统故障暂态特性分析需要考虑的影响因素,深入分析了相应影响机理,给出了仿真案例实现方案,并对直流线路电气量的暂态特征进行分析;提出了耐受过渡电阻能力强、判据门槛值整定不依赖于仿真计算的高压直流输电线路主保护原理和可靠性良好、测距精度高、耐受过渡电阻能力强的直流输电线路双端行波故障测距新算法。主要研究内容及结论如下:
     (1)高压直流输电系统故障暂态特性研究。
     现有直流输电系统故障暂态分析相关内容大多作为线路保护与故障测距研究的考虑因素出现在文献的理论分析和仿真验证中,受文献篇幅和考查内容所限。本文从直流输电线路保护与故障测距角度出发,开展了较为全面的高压直流输电系统故障暂态特性分析。对直流输电系统的基本控制原理和控制系统的分层结构进行研究,分析了控制系统对故障暂态的响应时间和电气量的故障稳态值;研究了两端双极直流输电系统多种可能运行方式的运行条件与控制策略,并对不同故障前运行方式下直流线路故障电压电流的暂态特征进行了对比分析;分析了直流滤波环节的阻抗特性及其对故障后暂态过程的影响,提出在直流输电线路故障暂态电压电流信号的低频带特征分析中,可将直流滤波器和平波电抗器视为固定阻抗;分析了故障类型、故障位置和过渡电阻值对直流线路故障电压电流暂态特征的影响;研究直流输电线路的雷电放电计算模型,给出了雷击暂态仿真中雷电流源、杆塔模型、绝缘子闪络模型和输电线路模型的仿真建模方法,对故障性雷击和雷击干扰下直流线路电压电流的暂态特征进行了分析;研究了直流输电系统换相失败的形成机理、判断标准和单双极换相失败的仿真方法,分析了换相失败情况下直流线路电压电流的暂态特征。以上工作可为后续高压直流输电系统故障暂态分析研究提供直接有效的参考,为直流输电线路保护与故障测距原理研究奠定基础。
     (2)考虑故障选极的高压直流输电线路保护原理研究。
     分析了故障后直流输电线路电压突变量的暂态幅值特征,发现故障极线路的电压突变量幅值大于健全极,且电压突变量的积分值能够更好地体现这一特征;提出了利用两极线路电压突变量积分值的比值构造的故障选极判据,给出了判据门槛值整定方法;分析了故障后直流输电线路电流突变量的暂态极性特征,发现故障极线路两端电流突变量的极性在区内故障时相反,在区外故障时相同;提出了利用故障极线路两端电流突变量极性构造的区内故障判据,并采用平稳小波变换提取电流突变量的极性。由此构成的高压直流输电线路主保护满足选择性和速动性的要求,判据门槛值整定方法简洁且不依赖于仿真计算;在10kHz及以上的采样频率范围内均可实现;只需对端电流突变量的极性信息,对通信通道的可靠性要求较低,尤其适用于需要选择故障极的情况。
     基于中国银东±660kV直流输电工程的实际参数,本文建立了±660kV高压直流输电系统的PSCAD仿真模型,利用仿真数据验证了考虑故障选极的高压直流输电线路保护原理在不同故障情况下的动作特性。仿真结果表明,该保护原理在两端双极直流输电系统的多种运行方式下能够快速选出故障极和判别直流输电线路保护区内故障,耐受过渡电阻能力强,可实现高压直流输电线路的全线速动保护。
     (3)基于电压和电流突变量方向的高压直流输电线路保护原理研究。
     考虑故障选极的直流输电线路保护一般在极-极故障这一罕有情况发生时不能正确工作,因此,本文提出了直接判别直流线路保护区内故障的直流输电线路保护原理。对故障后直流线路电压和电流突变量的暂态特征分析发现,直流输电线路两端电压和电流突变量的方向在直流输电线路保护区内故障和区外故障时不同;通过将电压和电流突变量在一段时间内的积分值与设定门槛值比较,提出了电压和电流突变量的方向判据;通过比较线路两端电压和电流突变量的方向,提出了基于电压和电流突变量方向的高压直流输电线路保护原理。该保护原理的判据门槛值整定不依赖于仿真计算;仅利用线路两端电压和电流突变量的方向信息便可准确识别直流输电线路保护区内故障,对通信通道的可靠性要求不高;不需要进行采样数据同步处理;电压和电流突变量方向判据仅计算5ms数据窗内的积分值,对数据计算速度和采样频率要求较低,采样频率为10kHz及以上时即可满足保护判据计算要求。
     利用±660kV高压直流输电系统的PSCAD仿真数据对该保护原理在不同故障情况下的动作特性进行了验证。该保护原理在直流线路保护区内故障性雷击、高阻接地故障和极-极故障时能准确动作,在雷击干扰和线路保护区外故障等情况下不误动,能实现直流输电线路的全线准确速动保护,适用于双极直流输电系统的多种运行方式,实用性强。
     (4)高压直流输电线路双端行波故障测距新算法研究。
     分析了故障行波在直流输电线路上的传播特点,发现可用行波波头传播特性曲线表征故障行波在线路上的传播过程,联立直流输电线路本端和对端的行波波头传播特性曲线可计算出故障位置。本文通过检测沿线分布电流的初次突变时刻求出线路两端的行波波头传播特性曲线,提出了直流输电线路双端行波故障测距新算法及其实现策略。该故障测距算法无需另外增加测量点,对通道的可靠性要求不高,算法数据窗口短,可不受控制系统调整的影响。基于PSCAD的仿真结果表明,本文故障测距算法在两端双极直流输电系统的多种可能运行方式下,在线路全长范围内均能实现准确测距,故障点靠近线路中点时测距准确度升高,测距精度不受过渡电阻值和直流线路出口故障的影响,最大故障测距误差约为线路全长的0.1129%。相较于现有高压直流输电工程中应用的双端行波故障测距,虽然本文故障测距算法的计算过程较为复杂,但是其可靠性、抗干扰能力和耐受过渡电阻能力有显著提高,而故障测距误差与之基本相同,保留了行波故障测距原理定位精度高的优点。因此,本文故障测距算法可作为现有直流输电线路双端行波故障测距的有效补充。
     本文研究内容及成果对提高直流输电线路保护与故障测距理论水平有重要学术价值,可为构建快速可靠的直流保护系统、加快直流系统故障恢复速度和保护设备的自主研发等提供理论支持,选题具有工程实用意义。
As important parts of the protection system in HVDC (High Voltage Direct Current) projects, the protection and fault location for transmission lines have to detect and clear faults rapidly, and their operating performance will directly affect the safe operation of HVDC transmission systems and the grid. Statistical studies show that the HVDC transmission line had become a component with the highest failure rate in HVDC transmission systems. However, the correct action ratio of protections for HVDC transmission lines was only50%. Development of HVDC projects in China is at the forefront of the world, but we have few core technologies of existing protection and fault location devices for HVDC transmission lines, and there is lack of systematic theories. Protection systems in existing HVDC projects mostly adopted technologies of ABB and SIEMENS. Improvement of the theoretical level of protection and fault location for HVDC transmission lines and to speed up the independent R&D of HVDC protection system in China are imperative.
     The main protections for HVDC transmission lines being put into operation are vulnerable to disturbance of transient process, such as lightning and commutation failure, and have limited anti-grounding-impedance ability and complex setting calculation of criterion threshold value. Scholars are committed to improve the main protections for HVDC lines being put into operation or to propose novel main protection principles. Some of the proposed novel protection principles have shortcomings of incomplete theory, signal used in protection criterion having small energy, limited anti-grounding-impedance ability, high requirements of sampling frequency, lack of basis for setting calculation or the setting calculation depending on simulation results, etc. The currently methods for locating faults on HVDC transmission lines include traveling-wave-based methods and fault-analysis-based methods. Fault location devices for HVDC lines being put into operation adopted the traveling wave principle, and the reliability of traveling-wave-based methods will be limited for detection failure of the wavehead and high grounding impedance faults. Fault-analysis-based methods have stable performance. However, accuracy of fault-analysis-based methods is generally lower than the traveling-wave-based methods, some of which have limited anti-grounding-impedance ability.
     Depth fault transient analysis of HVDC transmission systems can lay the foundation for research on protection and fault location principles for HVDC transmission lines. In this paper, considering influence factors for fault transient characteristic analysis of HVDC transmission systems are studied, corresponding influence mechanisms are deeply analyzed; simulation cases and their implementation schemes are given, and transient characteristic analysis of electrical quantities on HVDC lines is carried out. Main protection principles for HVDC transmission lines are proposed, which have high anti-grounding-impedance ability, and their setting calculations of criterion threshold values do not depend on simulation results; a novel two-terminal traveling-wave-based fault location algorithm for HVDC transmission lines is presented, which has good reliability, high positioning accuracy and high anti-grounding-impedance ability. The main research contents and conclusions are as follows:
     (1) Research on fault transient characteristics of HVDC transmission systems.
     The existing related contents of fault transient analysis for HVDC transmission systems are mostly considered in theoretical analysis and simulation test of research on protection and fault location for lines, which are limited by the literature space and test contents. From the protection and fault location for HVDC transmission lines point of view, more comprehensive fault transient analysis of HVDC transmission systems is carried out in this paper. The basic control principles of HVDC systems and hierarchical structure of the control system are studied, response time of the control system to faults and steady values of electrical quantities after faults are analyzed; operating conditions and control strategies of various possible operation modes of both ends bipolar HVDC transmission systems are studied, and transient characteristics of fault voltages and currents on DC lines under different modes are compared; analysis of impedance characteristic of the DC filter link and its influence on the fault transient process are put forward, and it is pointed out that the DC filters and smoothing reactors can be taken as fixed impedances in characteristic analysis of low frequency of fault transient voltage and current signals on the DC lines; influence of fault types, fault positions and the values of grounding impedance on the transient characteristics of faults on DC lines are analyzed; calculation model of lightning discharge of DC transmission lines are studied, simulation modeling methods for lightning current source, tower, flashover model of insulators and transmission lines in lightning transient simulation are given, transient characteristics of voltages and currents on DC lines under lightning induced fault and lightning disturbance are analyzed; The formation mechanism and determination standard of commutation failure in HVDC systems and the simulation methods of monopolar and bipolar commutation failure are studied, analysis of transient characteristic of voltages and currents on DC lines for commutation failure is presented. This work can provide direct and effective reference for subsequent studies on fault transient analysis of HVDC transmission systems, and lays a foundation for the research on protection and fault location principles for HVDC transmission lines.
     (2) Research on the protection principle for HVDC transmission lines considering faulted pole selection.
     Transient amplitude characteristics of voltage fault components on DC lines are analyzed, and it is found that amplitudes of voltage fault components on faulted pole lines are larger than those on the healthy pole, as the integral values of voltage fault components can better reflect the characteristic. Criteria for faulted pole selection are proposed, using the ratio of amplitudes of voltage fault components on bipolar lines, and the setting method for threshold values of the criteria is also given. Transient polarity characteristics of current fault components on DC lines are analyzed, and it is found that polarities of current fault components at the two ends of faulted lines are opposite for internal faults, which are same for external faults. Polarities of current fault components at two terminals of the faulted line are used to propose the criteria for internal faults. The stationary wavelet transform is used to extract polarities of current fault components. The selectivity and rapidity of the proposed main protection for HVDC transmission lines are satisfied, and the setting method for threshold values is simple and does not depend on simulation results. The protection can be realized with a sampling frequency of10kHz and above, only needs the polarity information of the current fault components at the other end, and has low requirement for reliability of communication channel, which is especially applicable in need of faulted pole selection.
     Based on parameters of the±660kV Yindong HVDC transmission project in China, a PSCAD simulation model for the±660kV HVDC transmission system is built, and is used to test the performance of the protection principle for HVDC transmission lines considering faulted pole selection. Simulation results demonstrate that the protection can select the faulted line rapidly and distinguish internal faults under different operation modes of a two terminals bipolar HVDC transmission system. The protection has high anti-grounding-impedance ability and can realize high speed protection on the whole DC transmission line.
     (3) Research on the protection principle for HVDC transmission lines based on directions of voltage and current fault components.
     The protection for HVDC transmission lines considering faulted pole selection will not act correctly for line-to-line fault, which happens rarely. Therefore, this paper presents a protection principle that discriminates internal faults for HVDC transmission lines. Transient characteristic analysis of voltage and current fault components on DC lines shows that, the directions of voltage and current fault components measured at the two terminals of the DC lines are different for internal faults and external faults. Direction criteria for voltage and current fault components are proposed by comparing the integral values of voltage and current fault components in a period of time with setting threshold values; a protection principle for HVDC transmission lines based on directions of voltage and current fault components is proposed by comparing directions of voltage and current fault components measured at the two terminals of the DC lines. Setting calculations of threshold values in this protection do not depend on simulation results. Only the direction information of voltage and current fault components at both ends of the line are used to identify internal faults on the HVDC transmission lines, so this protection principle has low requirements on the communication channel. This protection principle does not need synchronization of sampling data. Criteria for directions of voltage and current fault components only calculate the integral values with a data window of5ms, and have low requirements on the data calculation speed and sampling frequency. A sampling frequency of10kHz and above can satisfy the calculation of criteria in the protection.
     A PSCAD simulation model of the±660kV HVDC transmission system is used to test the performance of the protection under different fault conditions. The proposed protection acts accurately for lightning induced faults, high grounding impedance faults and line-to-line faults, and does not act for lightning disturbance and external faults. It can realize accurate and fast protection for the whole DC transmission line, being applicable for a variety of operation modes of bipolar HVDC transmission systems, with high practicability.
     (4) Research on a novel two-terminal traveling-wave-based fault location algorithm for HVDC transmission lines.
     Propagation characteristics of fault traveling wave on DC transmission lines are analyzed. It is found that a propagation characteristic curve of traveling wave head can be used to express the propagation process of fault traveling wave along the transmission line, and the fault location is calculated with propagation characteristic curves of traveling wave heads at the local and remote terminals of a DC line. To obtain propagation characteristic curves of traveling wave heads, initial surge arrival times of distribution currents along the DC line are detected. A novel two-terminal traveling-wave-based fault location algorithm for HVDC transmission lines is presented, which does not need additional measurements, and has low requirements of the reliability of channel. Since the data window of this algorithm is short, the algorithm will not be influenced by adjustment of the control system. Simulation results based on PSCAD show that the algorithm can realize accurate fault location on the whole DC line under various possible operation modes of two terminals bipolar HVDC transmission systems, and the location accuracy increases when the fault point is close to the middle of line when, as the location accuracy is not affected by the transition resistance value and close faults the on HVDC lines, with a maximum fault location error of0.1129%of the whole length of the DC line. Compared to the two-terminal traveling-wave-based fault location used in existing HVDC systems, calculation in the proposed fault location algorithm is more complex, but it is of better reliability, anti-interference and anti-grounding-impedance ability. It retains the advantage of high positioning accuracy of the existing two-terminal traveling-wave-based fault location method. Therefore, the fault location algorithm in this paper can be used as an effective supplement to the existing two-terminal traveling-wave-based fault location for HVDC transmission lines.
     Research contents and results in this paper can provide theoretical support for improvement of theory level of protection and fault location for HVDC transmission lines, construction of rapid and reliable protection system for HVDC transmission projects and independent R&D of protection devices. The work done by this thesis has important academic value and practice meanings.
引文
[1]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.
    [2]W. Long, S. Nilsson. HVDC transmission:yesterday and today[J]. IEEE Power and Energy Magazine,2007,5(2):22-31.
    [3]Narain. G. Hingorani. High-voltage DC transmission:a power electronics workhorse[J]. IEEE Spectrum,1996,33(4):63-72.
    [4]H. Takeda, H. Ayakawa, M. Tsumenaga, et al. New protection method for HVDC lines including cables[J]. IEEE Transactions on Power Delivery,1995,10(4):2035-2039.
    [5]邓国良.特高压直流输电系统发展综述[J].山西科技,2013,28(2):57-58.
    [6]舒印彪.中国直流输电的现状及展望[J].高电压技术,2004,30(11):1-2.
    [7]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998.
    [8]任祖怡,左洪波,吴小辰,等.用于安全稳定控制的高压直流极闭锁判据[J].电力系统自动化,2007,31(10):41-44.
    [9]任达勇.天广直流工程历年双极闭锁事故分析[J].高电压技术,2006,32(9):173-175.
    [10]梁旭明,吴巾克,冀肖彤.国家电网公司直流输电工程控制保护系统运行情况分析[J].电网技术,2005,29(23):7-10,17.
    [11]李智勇,张国华,张国威,等.2009年国家电网公司直流输电系统可靠性分析[J].电网技术,2010,34(11):77-80.
    [12]喻新强.国家电网公司直流输电系统可靠性统计与分析[J].电网技术,2009,33(12):1-7.
    [13]宋国兵,高淑萍,蔡新雷.高压直流输电线路继电保护技术综述[J].电力系统自动化,2012,36(22):123-129.
    [14]高锡明,张鹏,贺智.直流输电线路保护行为分析[J].电力系统自动化,2005,29(14):96-99.
    [15]张保会,孔飞,张嵩.高压直流输电线路单端暂态量保护装置的技术开发[J].中国电机工程学报,2013,33(4):179-185.
    [16]Aimin Li, Zexiang Cai, Qizhen Sun. Study on the dynamic performance characteristics of HVDC control and protections for the HVDC line fault[C]. in:Proceedings of IEEE PES General Meeting,2009:1-5.
    [17]罗德彬,汪峰,徐叶玲.国家电网公司直流输电系统典型故障分析[J].电网技术,2006,30(1):35-39.
    [18]叶猛,曹海艳,马国鹏.高压直流输电线路保护分析[J].南方电网技术,2008,2(6): 43-46.
    [19]Wang Gang, Li Haifeng, Zhao Jie, et al. A novel transient based protection for±800kV UHVDC transmission lines[C]. in:Proceedings of the 8th IEE International Conference on AC and DC Power Transmission,2006:281-284.
    [20]李振强,鲁改凤,吕艳萍.基于小波变换的高压直流输电线路暂态电压行波保护[J].电力系统保护与控制,2010,38(13):40-45.
    [21]Li Zhenqiang, Lii Yanping. A novel scheme of HVDC transmission line voltage traveling wave protection based on wavelet transform[C]. in:Proceedings of International Conference on High Voltage Engineering and Application,2008:163-167.
    [22]王钢,罗健斌,李海锋,等.特高压直流输电线路暂态能量保护[J].电力系统自动化,2010,34(1):28-31.
    [23]李爱民,蔡泽祥,李晓华,等.高压直流输电线路行波保护影响因素分析及改进[J].电力系统自动化,,2010,34(10):76-80.
    [24]董鑫.高压直流输电线路行波保护的研究[D].吉林:东北电力大学,2008.
    [25]孙舒捷.高压直流输电系统仿真及其输电线路行波保护方案[D].上海:上海交通大学,2009.
    [26]李爱民,蔡泽祥,任达勇,等.高压直流输电控制与保护对线路故障的动态响应特性分析[J].电力系统自动化,2009,33(11):72-75.
    [27]束洪春,田鑫萃,董俊.±800 kV云广直流输电线路保护的仿真及分析[J].中国电机工程学报,2011,31(31):179-188.
    [28]张颖,邰能灵,徐斌.高压直流线路纵联行波方向保护[J].电力系统自动化,2012,36(21):77-80,97.
    [29]D.Naidoo, N.M.Ijumba. A protection system for long HVDC transmission lines[C]. in: Proceedings of IEEE PES 2005 Conference and Exposition in Africa,2005:150-155.
    [30]张保会,张嵩,尤敏,等.高压直流线路单端暂态量保护研究[J].电力系统保护与控制,2010,38(15):18-23.
    [31]高淑萍,索南加乐,宋国兵,等.高压直流输电线路电流差动保护新原理[J].电力系统自动化,2010,34(17):45-49.
    [32]宋国兵,周德生,焦在滨,等.一种直流输电线路故障测距新原理[J].电力系统自动化,2007,31(24):57-61.
    [33]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,2007.
    [34]宋国兵,蔡新雷,高淑萍,等.高压直流输电线路故障定位研究综述[J].电力系统保护与控制,2012,40(5):133-137,147.
    [35]高淑萍,索南加乐,宋国兵,等.基于分布参数模型的直流输电线路故障测距方法[J].中 国电机工程学报,2010,30(13):75-80.
    [36]廖凯,何正友,李小鹏.基于行波固有频率的高压直流输电线路故障定位[J].电力系统自动化,2012,36(18):1-6.
    [37]Peng Chengzong, Mladen Kezunovic. Fast distance relay scheme for detecting symmetrical fault during power swing[J]. IEEE Transactions on Power Delivery,2010,25(4):2205-2212.
    [38]O. M. K. K. Nanayakkara, A. D. Rajapakse, R.Wachal. Traveling-wave-based line fault location in star-connected multiterminal HVDC system[J]. IEEE Transactions on Power Delivery,2012,27(4):2286-2294.
    [39]陈平,牛燕雄,徐丙垠,等.现代行波故障测距系统的研制[J].电力系统自动化,2003,27(12):81-85.
    [40]段建东,张保会.行波启动元件的算法研究[J].中国电机工程学报,2004,24(9):30-36.
    [41]索南加乐,张健康,杨黎明,等.考虑频变参数的高压直流输电线路距离保护[J].电力系统自动化,2012,36(16):63-69.
    [42]李爱民.高压直流输电线路故障解析与保护研究[D].广州:华南理工大学,2010.
    [43]陈仕龙,束洪春,谢静,等.特高压直流输电线路故障暂态信号高频特性研究[J].电力系统保护与控制,2012,40(21):84-89.
    [44]束洪春,刘可真,朱盛强,等.±800特高压直流输电线路单端电气量暂态保护[J].中国电机工程学报,2010,30(31):108-117.
    [45]陈仕龙,张杰,毕贵红,等.基于小波分析的特高压直流输电线路双端电压暂态保护[J].电网技术,2013,37(10):2719-2725.
    [46]Han Kunlun, Cai Zexiang, Liu Yang. Study on protective performance of HVDC transmission line protection with different types of line fault[C]. in:Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2011:358-361.
    [47]张培东,何杰.高压直流输电线路纵联差动保护研究[J].电工技术,2008,29(11):32-24.
    [48]Hengxu Ha, Yang Yu, Ruipeng Yi, et al. Novel scheme of travelling wave based differential protection for bipolar HVDC transmission lines[C]. in:Proceedings of International Conference on Power System Technology,2010:1-6.
    [49]胡宇洋,黄道春.葛南直流输电线路故障及保护动作分析[J].电力系统自动化,2008,32(8):102-107.
    [50]邓本飞.天广高压直流输电线路保护系统综述[J].电力系统保护与控制,2008,36(19):71-74.
    [51]周翔胜,林睿.高压直流输电线路保护动作分析及校验方法[J].高电压技术,2006,32(9):33-37.
    [52]朱韬析,彭武.天广直流输电系统线路高阻接地故障研究[J].电力系统保护与控制,2009,37(23):137-140.
    [53]黄佳胤,周红阳,余江.“3-21”天广直流线路高阻抗接地故障的分析与仿真[J].广东电力,2005,18(11):15-17.
    [54]韩昆仑,蔡泽祥,徐敏,等.直流线路行波保护特征量动态特性与整定研究[J].电网技术,2013,37(1):255-260.
    [55]刘登峰,李银红,石东源,等.高压直流输电系统直流保护整定预备量分析[J].电力系统自动化,2011,35(5):47-51.
    [56]罗海云,傅闯.关于贵广二回直流线路行波保护中电压变化率整定值的讨论[J].南方电网技术,2008,2(1):14-17.
    [57]艾琳,陈为化.高压直流输电线路行波保护判据的研究[J].继电器,2003,31(10):41-44.
    [58]韩昆仑,蔡泽祥,贺智.高压直流输电线路故障行波传播特性及其对行波保护的影响[J].电力系统保护与控制,2013,41(21):20-25.
    [59]李学鹏,全玉生,黄徐.数学形态学用于高压直流输电线路行波保护的探讨[J].继电器,2006,34(5):5-9.
    [60]曹继丰,王钢,张海凤.高压直流线路保护配置及其优化研究[J].南方电网技术,2008,2(4):101-103.
    [61]L. Shang, G. Herold, J. Jaeger, et al. High-speed fault identification and protection for HVDC line using wavelet technique[C]. in:Proceedings of IEEE Porto Power Tech Conference, 2001:1-5.
    [62]Zhang Nan, Kezunovic M. Transmission line boundary protection using wavelet transform and neural network[J]. IEEE Transactions on Power Delivery,2007,22(2):859-869.
    [63]K. Rajesh, N.Yadaiah. Fault identification using wavelet transform[C]. in:Proceedings of IEEE/PES Transmission and Distribution Conference & Exhibition,2005:1-6.
    [64]全玉生,李学鹏,马彦伟,等.基于小波变换的HVDC线路行波距离保护[J].电力系统自动化,2005,29(18):52-56.
    [65]S. Zhang, B. H. Zhang, M. You, et al. Realization of the transient-based boundary protection for HVDC transmission lines based on high frequency energy criteria[C]. in:Proceedings of International Conference on Power System Technology,2010:1-7.
    [66]Liu Xiaolei, A. H. Osman, O. P. Malik. Hybrid Traveling Wave/Boundary Protection for Monopolar HVDC Line[J]. IEEE Transactions on Power Delivery,2009,24(2):569-578.
    [67]Liu Xiaolei, A. H. Osman, O. P. Malik. Real-time implementation of a hybrid protection scheme for bipolar HVDC line using FPGA [J]. IEEE Transactions on Power Delivery,2011, 26(1): 101-108.
    [68]高淑萍,索南加乐,宋国兵,等.利用单端电流的高压直流输电线路全线速动保护[J].中国电机工程学报,2012,32(7):107-113.
    [69]Zheng Xiaodong, Tai Nengling, Yang Guangliang, et al. A transient protection scheme for HVDC transmission line[J]. IEEE Transactions on Power Delivery,2012,27(2):718-724.
    [70]郑晓冬.特高压直流输电线路保护新原理研究[D].上海:上海交通大学,2012.
    [71]索南加乐,侯卓,宋国兵,等.基于分布参数模型的高压直流输电线路距离保护[J].电力系统自动化,2011,35(8):53-57.
    [72]Suonan Jiale, Zhang Jiankang, Jiao Zaibin, et al. Distance protection for HVDC transmission lines considering frequency-dependent parameters[J]. IEEE Transactions on Power Delivery, 2013,28(2):723-732.
    [73]宋国兵,饶菁,高淑萍,等.基于补偿电压的高压直流输电线路单端电气量保护[J].电力系统自动化,2013,37(6):102-106,113.
    [74]O. M. K. K. Nanayakkara, A. D. Rajapakse, R.Wachal. Location of DC line faults in conventional HVDC systems with segments of cables and overhead lines using terminal measurements[J]. IEEE Transactions on Power Delivery,2012,27(1):279-288.
    [75]Chen Ping, Xu Bingyin, Li Jing. A traveling wave based fault locating system for HVDC transmission line[C]. in:Proceedings of International Conference on Power System Technology,2006:1-4.
    [76]谢菁,陈平.直流输电线路行波故障测距系统[J].山东理工大学学报,2006,20(3):47-50.
    [77]Kwon Young-Jin, Kang Sang-Hee, Lee Dong-Gyu, et al. Fault location algorithm based on cross correlation method for HVDC cable lines[C]. in:Proceedings of IET 9th International Conference on Developments in Power System Protection,2008:360-364.
    [78]Fernando H. Magnago, Ali Abur. Fault location using wavelets[J]. IEEE Transactions on Power Delivery,1998,13(4):1475-1480.
    [79]Pannala Krishna Murthy, Amarnath J, Kamakshiah S, et al. Wavelet transform approach for detection and location of faults in HVDC system[C]. in:Proceedings of 2008 IEEE Region 10 Colloquium and the Third ICIIS,2008:1-6.
    [80]王少荣,赵妍卉.双极HVDC输电线路行波故障定位[J].高电压技术,2007,33(7):124-128.
    [81]赵妍卉,王少荣.基于小波模极大值理论的HVDC输电线路行波故障定位方法的研究[J].继电器,2007,35(1):13-17.
    [82]王永治.基于小波模极大值的高压直流输电线路电弧故障定位[J].云南电力技术,2008, 36(2):1-4.
    [83]束洪春,张斌,张广斌.±800 kV直流输电线路雷击点与闪络点不一致时的行波测距[J].中国电机工程学报,2011,31(13):114-120.
    [84]束洪春,张敏,张广斌,等.±800 kV直流输电线路单端行波故障定位的红绿色彩模式检测[J].电工技术学报,2010,25(11):155-163.
    [85]束洪春,王超,张杰,等.基于形态学的HVDC线路故障识别与定位方法研究[J].电力自动化设备,2007,37(4):6-9.
    [86]束洪春,田鑫萃,张广斌,等.+800 kV直流输电线路故障定位的单端电压自然频率方法[J].中国电机工程学报,2011,31(25):104-111.
    [87]宋国兵,索南加乐,许庆强,等.基于双回线环流的时域法故障定位[J].中国电机工程学报,2004,24(3):24-29.
    [88]Suonan Jiale, Gao Shuping, Song Guobing, et al. A novel fault- location method for HVDC transmission lines[J]. IEEE Transactions on Power Delivery,2010,25(2):1203-1209.
    [89]Mohammad Farshad, Javad Sadeh. A novel fault-location method for HVDC transmission lines based on similarity measure of voltage signals[J]. IEEE Transactions on Power Delivery,2013,28(4):2483-2490.
    [90]黄雄,王志华,尹项根,等.高压输电线路行波测距的行波波速确定方法[J].电网技术,2004,28(19):34-37.
    [91]张怿宁,徐敏,刘永浩,等.考虑波速变化特性的直流输电线路行波故障测距新算法[J].电网技术,2011,35(7):227-232.
    [92]黄鑫,王永福,张道农,等.智能变电站IEC61588时间同步系统与安全评估[J].电力系统自动化,2012,36(13):76-80.
    [93]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004.
    [94]浙江大学直流输电科研组.直流输电[M].北京:电力工业出版社,1982.
    [95]M.Sato, N. Honjo, K. Yamaji, et al. HVDC converter control for fast power recovery after AC system fault[J]. IEEE Transactions on Power Delivery,1997,12(3):1319-1326.
    [96]C. W. Taylor, S. Lefebvre. HVDC controls for system dynamic performance[J]. IEEE Transactions on Power System,1991,6(2):743-752.
    [97]于春光.计及直流接入的交流系统故障计算方法研究[D].济南:山东大学,2012.
    [98]陶瑜,龙英,韩伟.高压直流输电控制保护技术的发展与现状[J].高电压技术,2004,30(11):8-10,17.
    [99]朱韬析,欧开健.高压直流输电系统线路接地故障过程研究[J].广东电力,2008,21(10):53-57.
    [100]束洪春,田鑫萃,董俊,等.利用电压相关性的±800kV直流输电线路区内外故障判 断方法[J].中国电机工程学报,2012,32(4):151-160.
    [101]束洪春,田鑫萃,张广斌,等.±800 kV直流输电线路的极波暂态量保护[J].中国电机工程学报,2011,31(22):96-104.
    [102]陈潜,张尧,钟庆,等.±800kV特高压直流输电系统运行方式的仿真研究[J].继电器,2007,35(16):27-32.
    [103]中国电力工程顾问集团中南电力设计院.40-B3801C-A01.宁东~山东±660kV直流输电工程±660kV青岛换流站初步设计.2009
    [104]刘振亚.±660kV直流输电技术[M].北京:中国电力出版社,2011.
    [105]Y. Zhang, N. Tai, B. Xu. Fault analysis and traveling-wave protection scheme for bipolar HVDC lines[J]. IEEE Transactions on Power Delivery,2012,27(3):1583-1591.
    [106]X. Zheng, N. Tai, J. S. Thorp. A transient harmonic current protection scheme for HVDC transmission line[J]. IEEE Transactions on Power Delivery,2012,27(4):2278-2285.
    [107]陈锡磊,朱韬析,周浩.高压直流线路低电压保护判据定值调整研究[J].电力系统保护与控制,2011,39(9):125-130.
    [108]张翠霞,葛栋,殷禹.直流输电系统的防雷保护[J].高电压技术,2008,34(10):2070-2074.
    [109]张纬钹,何金良,高玉明.过电压防护及绝缘配合[M].北京:清华大学出版社,2002.
    [110]张志刚.直流输电系统线路过电压的研究[D].武汉:华中科技大学,2006.
    [111]束洪春,张广斌,孙士云,等.±800kV直流输电线路雷电绕击与反击的识别方法[J].中国电机工程学报,2009,29(7):13-19.
    [112]Shu Hongchun, Zhang Guangbin, Zhu Zizhao, et al. Modeling and simulation of lightning electromagnetic transient and identification of shielding failure and back striking in± 800kV UHVDC transmission lines[C]. in:Proceedings of Power and Energy Engineering Conference,2009:1-4.
    [113]束洪春,王永志,程春和,等.±800kV直流输电线路雷击电磁暂态分析与故障识别[J].中国电机工程学报,2008,28(19):93-100.
    [114]叶会生,何俊佳,李化,等.雷击高压直流线路杆塔时的过电压和闪络仿真研究[J].电网技术,2005,29(21):31-35.
    [115]阎俏.特高压输电线路继电保护问题研究[D].济南:山东大学,2012.
    [116]哈恒旭,于洋,张旭光,等.考虑频率相关参数的直流输电线路故障特征分析[J].电力系统自动化,2012,36(16):70-75.
    [117]陈红军.高压直流输电系统故障及控制策略[J].华中电力,2001,14:5-8,22.
    [118]Y. Z. Sun, Ling Peng, Feng Ma, et al. Design a fuzzy controller to minimize the effect of HVDC commutation failure on power system[J]. IEEE Transactions on Power Systems, 2008,23(1):100-107.
    [119]邵震.高压直流系统换相失败对交流侧继电保护的影响[J].南方电网技术,2007,1(1):77-80.
    [120]何朝荣,李兴源,金小明,等.高压直流输电系统换相失败判断标准的仿真分析[J].电网技术,2007,31(1):21-24.
    [121]郑传材,黄立滨,管霖,等.±800kV特高压直流换相失败的RTDS仿真及后续控制保护特性研究[J].电网技术,2011,35(4):14-20.
    [122]慈文斌.±660kV银东直流输电系统换相失败研究[D].山东大学.2011.
    [123]束洪春,朱盛强,田鑫萃,等.±800 kV特高压直流线路故障选极的极波面积比值法[J].高电压技术,2011,37(4):888-896.
    [124]王钢,李志铿,李海锋.±800kV特高压直流线路暂态保护[J].电力系统自动化,2007,31(21):40-43,48.
    [125]束洪春,张斌,张广斌,等.基于可拓融合的±800 kV直流输电线路雷击干扰识别方法[J].中国电机工程学报,2011,31(7):102-111.
    [126]M. Silva, D. Coury, M. Oleskovicz, et al. Combined solution for fault location in three-terminal lines based on wavelet transforms[J]. IET Generation Transmission & Distribution,2010,4(1):94-103.
    [127]Z. He, L. Fu, S. Lin, et al. Fault detection and classification in EHV transmission line based on wavelet singular entropy[J]. IEEE Transactions on Power Delivery,2010,25(4): 2156-2163.
    [128]李霖,杨洪耕,赵艳粉.基于二维离散平稳小波变换的短时电能质量扰动检测方法[J].电网技术,2007,31(11):49-53.
    [129]何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术,2004,28(21):17-21.
    [130]F. Perez, R. Aguilar, E. Orduna, et al. High-speed non-unit transmission line protection using single-phase measurements and an adaptive wavelet:zone detection and fault classification[J]. IET Generation Transmission & Distribution,2012,6(7):593-604.
    [131]U. D. Dwivedi, S. Singh. Enhanced detection of power quality events using intra and interscale dependencies of wavelet coefficients[J]. IEEE Transactions on Power Delivery, 2010,25(1):358-366.
    [132]N. Elkalashy, M. Lehtonen, H. Darwish, et al. Dwt-based detection and transient power direction-based location of high-impedance faults due to leaning trees in unearthed MV networks[J]. IEEE Transactions on Power Delivery,2008,23(1):94-101.
    [133]危韧勇,刘春芳.基于小波理论的超高压输电线路故障定位与选相方法[J].中国电机 工程学报,2000,20(5):85-88.
    [134]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005.
    [135]S. Mallat, W. L. Hwang. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory,1992,38(2):617-643.
    [136]支联合,谭素敏,支羽光.基于快速平稳小波变换的特征提取方法分析fMRI数据[J].中国生物医学工程学报,2012,31(4):620-624.
    [137]张楠,陈潜,王海军,等.直流线路纵差保护算法的改进及仿真验证[J].南方电网技术,2009,3(4):56-59.
    [138]刘丽芳.高压直流输电系统的通信[J].电力系统通信,2002,(12):1-3,6.
    [139]国建宝.宁东直流输电对山东电网影响的仿真研究[M].济南:山东大学,2009.
    [140]徐敏,蔡泽祥,刘永浩,等.基于宽频信息的高压直流输电线路行波故障测距方法[J].电工技术学报,2013,28(1):259-265.
    [141]司大军,束洪春,陈学允.一种基于行波测距的输电线路接地故障距离保护方案[J].电工技术学报,2003,18(3):65-69.
    [142]董新洲,葛耀中,贺家李.波阻抗方向继电器的性能分析[J].电力系统自动化,2001,25(11):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700