低信噪比无线通信信号非合作接收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线信号的非合作接收是技术侦察中信息截获技术体系的一个重要而关键的组成部分。现代无线通信技术高速、低功率的发展趋势以及信息截获本身固有的特点,对信噪比门限低、抗信道衰落和失真能力强的非合作接收技术提出了迫切的需求。
     均衡与同步是失真信道下进行有效接收必须解决的两大关键问题。非合作接收应用背景下的均衡与同步一般比常规通信接收中的相关问题有更高的技术难度,而低信噪比、严重失真的无线信道条件则使这两个技术问题更具挑战性。本文主要围绕这一应用背景下的均衡和同步两大技术问题进行了研究与讨论。
     在绪论中我们阐述了本论文课题的应用背景。由于认清无线信道的特点有助于采取相应的信号处理措施从而提高接收系统的性能,因此在讨论具体的技术问题之前,绪论还概要地介绍了课题研究的重要基础之一——无线信道模型。
     要实现恶劣条件下的有效接收,关键在于采取全局最优或接近最优的检测算法。基于软信息的迭代检测是一种以现实可容忍的运算代价实现逼近全局最优接收性能的信号处理思想。它强调接收机中各级处理模块之间软信息的传递,并打破了接收机中各级处理模块之间信息单向流动的传统做法,在信道译码与其它模块之间形成信息交流的良性循环,大大地提高了接收机抗严重信道失真和噪声的能力,是本文研究方法的重要基础。本文第二章从最优检测的角度介绍了迭代处理思想的基本原理,并引出这一思想的两个重要基础:软输入软输出(SISO)处理和分级迭代处理。在此基础上,针对近十年来发展起来的迭代处理在通信接收中的几个应用,简要介绍了turbo编译码、turbo均衡、迭代多用户检测以及迭代解调映射等的原理。
     Turbo均衡是迭代处理思想在均衡领域中的成功应用。本文第三章首先描述了turbo均衡的通用结构,并就包括SISO映射、SISO逆映射及SISO译码在内的几个关键模块进行了深入详细的讨论。在SISO逆映射的讨论中,首次推导了针对Gray编码16QAM调制的均衡器外信息的简化计算公式。在关于SISO译码器外信息计算的讨论中,论文分析了常用计算方法的不合理性,提出一种新的译码器外信息计算方法。仿真结果表明,对于严重信道失真的高阶调制信号,采用该计算方法的turbo均衡具有十分明显的性能优势。
     基于已经给出的turbo均衡的通用结构,本文第三章在信道响应已知的恒参信道条件下,研究讨论了分别基于最小均方误差(MMSE)线性均衡器(LE)和MMSE软判决反馈均衡器(SDFE)的turbo均衡算法及其性能。其中,turbo MMSE-LE采用了基于MMSE准则的最优均衡算法,在低信噪比下抗严重信道失真的能力比传统均衡有了极大的提高。不过,由于这种算法需要大量矩阵求逆运算,因而实现复杂度较高。针对这一特点,论文还介绍了简化的turbo MMSE-LE,减少了算法中矩阵求逆的次数。在基于SDFE的turbo均衡方面,论文讨论了按MMSE准则设计的前向滤波器和反馈滤波器的频域形式,在此基础上通过IDFT得到均衡滤波器的时域近似,并从方便实现的角度对均衡器结构进行了改进。这种turbo SDFE在计算滤波器系数时只涉及简单的标量计算和存在快速算法的IDFT,因而运算量低,易于实现。不过仿真结果表明,按上述思想实现
Uncooperative receiving of wireless communication signals is a very important part of the information interception for technique based reconnaissance. Modern wireless communication, especially signal interception, which is characterized by low power and high transmission rate, urgently requires noncooperative receiving technologies with lower signal-to-noise-ratio threshold performance and better ability against serious channel distortion.Equalization and synchronization are key technologies for effective receiving of distorted signals. The implementations of equalization and synchronization in uncooperative receiver are usually more difficult than those in the conventional receivers, and the low SNR and severe distortion of wireless channel make them even more challenging. In this dissertation, we address the problems of equalization and synchronization under low SNR and harsh channel condition.In the exordium, the motivation of the thesis is presented. Since the knowledge of the channel is necessary for us to choose proper processing methods for effective detection and receiving, we also make a brief introduction to the frequently used models of wireless channel in the first chapter.Global optimum or near optimum detection is the only way to achieve effective receiving under harsh channel condition. The iterative detection method based on soft information is one of the ways to approach the global optimum performance at an acceptable cost of implementation complexity. In this thesis, we use iterative detection scheme to solve the problems of equalization.In iterative detection, the concatenated modules of the receiver make use of soft input and soft output (SISO) algorithms and exchange soft information of the transmitted bits. Other than the unilateral information transfer in a conventional receiver, the information transfer in an iterative detection is bidirectional, which makes it possible for the former module to benefit from the processing gain of the latter modules. As the iteration goes on, a benign circulation of soft information is set up and the performance of the receiver gradually approached the optimum bound. In chapter 2, the principle of iterative detection is discussed and several applications such as turbo coding and decoding, turbo equalization, iterative multi-user detection and iterative demodulation are introduced.In chapter 3, the universal structure of turbo equalization is presented. The modules including SISO mapping, SISO demapping and SISO decoding are discussed in detail, based on which we present our relevant contribution: a simplified algorithm for computation of extrinsic information of SISO equalization for Gray coded 16QAM and a new definition of the decoder's extrinsic information.The rest of chapter 3 investigates two turbo equalization algorithms on condition that the
    channel is static and the channel response is known. The first algorithm is based on minimum mean square error (MMSE) linear equalization (LE) and the other one is based on MMSE soft-decision-feedback-equalization (SDFE). Simulations show that both the algorithms outperform the conventional equalizers quite a lot. In turbo MMSE LE, the optimum equalization algorithm is exploited, involving lots of computation of matrix inversion, involved and thus a high complexity is resulted. In turbo SDFE, the feed-forward and feed-back filters are derived by the MMSE rule in frequency domain and then the filters in time domain are obtained by the use of IDFT. In the computation of filters in SDFE, only scalar computation and IFFT are needed, so it is very easy to be implemented. However, as shown in simulations results, the performance of turbo SDFE is inferior to that of turbo MMSE-LE by 2dB, which is resulted from the approximation processing in using filters with finite length instead of optimal filters with infinite length.In chapter 4, blind turbo equalization for time-invariant channel is investigated. Because training sequences are usually unavailable in uncooperative receiving, we have to perform turbo equalization without the help of training sequences. Blind equalization can be classified into two structures. The first uses adaptive filters to retrieve the transmitted symbols directly and the other performs channel response estimation and equalization in a relatively independent way. The second one is used in this thesis. Since the structure and SISO equalization algorithms have been fully discussed in chapter 3, the key problem is to fulfill blind channel estimation. Accordingly, we exploit iterative channel estimation that is based on recursive least square (RLS) algorithm with soft decisions as its reference signal. To obtain soft decisions for the first iteration, a blind equalization is proposed be used before the iterative channel estimation.The super exponential blind equalization is based on block data processing and has the ability to deal with severe channel distortion. Hence it is suitable for the initial equalization in the iterative channel estimation. After the initial blind equalization, SISO decoding and SISO mapping, the initial soft decision can be obtained and the channel estimation can be bootstrapped. In the succeeding iteration, RLS algorithm exploits the soft-decision of the previous iteration as the input signal. The channel parameters of SISO equalization are also refreshed in every iteration. As the reliability of the soft-decisions become better and better, the resultant channel estimation become more and more accurate. Simulation results show that the proposed blind turbo equalization can perform effectively.Chapter 5 addresses the equalization issues of frequency-selective fading channel.In conventional communications, training sequences are often necessary for channel probing, especially when the channel is severely fading. Generally, only blind technologies are effective in most of the uncooperative receiver. However, when the communication standard is known, it is possible and reasonable for the receiver to exploit training sequence to improve its performance. Hence we firstly discussed the training sequence aided channel estimation. There are two periods in channel estimation: the initial period and the iterative period. In the initial estimation, channel response is assumed to be static and the estimation obtained in the training
    period is used for the overall sequence. In the iterative period, the RLS based channel estimation takes the soft-decision as its input signal and the channel parameter of SISO equalization is updated symbol by symbol.Chapter 5 lays emphasis on the blind equalization of fading channel. A blind equalization algorithm based on Monte Carlo methods is used. In most Bayes detection problems, a multi-dimension integration or summation with extremely high complexity is usually involved, thus one has to resort to some numerical approaches for computation. Monte Carlo methods are one kind of such numerical approaches and Gibbs sampler is one of the most commonly used Monte Carlo methods. The Gibbs sampler in general form is firstly described and then the blind equalization based on the method is discussed. In Gibbs sampler equalization, the distribution of transmitted symbols and channel response are simultaneously computed in an iterative way. When the iteration converges, the estimations of the symbols and channel response can be obtained. This algorithm can only deal with time-invariant channel. However, being different from most of the blind algorithms, it is able to fulfill data recovery and channel estimation based on very short data segment. Bearing the fact in mind that the fading channel can be well approximated by a static channel in a very short period, we propose to divide a long faded data frame into a number of short segments and assume a static channel within each segment and then use Gibbs sampler equalization algorithm on them. What's more, because Gibbs sampler is a typical SISO algorithm, it is easy to substitute it into the turbo equalization structure given in chapter 3 to fulfill turbo equalization for frequency-selective fading channel. Simulations results demonstrating performance of the equalization are also presented.Carrier synchronization is another key problem in uncooperative receiver. Though there have been many achievements about this issue, most of them are designed for high or medium SNR. When SNR is low, these methods often fail to achieve good synchronization. Therefore, chapter 6 is contributed to carrier synchronization for MPSK modulation signals with low SNR.Firstly, an NDA carrier frequency offset estimator based on auto-correlation of the signal's nonlinear transformer is discussed. For a tinny frequency offset, this estimator can approach MCRB at low SNR. However, the frequency range within which it can perform effectively is limited because phase wrapping and error will occur when frequency offset is beyond the range. Towards to this problem, we propose an improved estimator, in which the frequency out of the range is coarsely measured and then is shifted so that the residual frequency is within the range and thus can be effectively estimated. Simulations show that the improved estimator performs much better than several other commonly used estimators when SNR is low.Secondly, we investigated carrier phase recovery method for MPSK signals with low SNR. In a transmitting system with an error control coding, the likelihood ratio output of the SISO decoder can reflect the carrier phase error and thus can be exploited to construct a performance function for carrier phase recovery. Based on this performance function, we
    propose a phase searching method that can achieve high estimation accuracy at relatively low computation cost. As demonstrated by simulation results; this carrier phase recovery method performs well at low SNR and can overcome phase ambiguity problem that other methods often suffer from.SISO channel decoding is the topic of chapter 7. Channel decoding is very important for receiving signal with low SNR. It is also a key part of iterative detection. In iterative processing such as turbo equalization; iterative multi-use detection and iterative demodulation; the SISO decoder is different from the one used for error control. For example; the input of turbo equalization only consists of a priori information of the coded bits whereas the common decoding algorithm often takes both channel observation and a priori information as input. The output of decoder in turbo equalization consists of log-likelihood-ratio of all coded bits other than only LLR of information bits in the common decoder. According to these differences; we describe the log-MAX-MAP decoding algorithm for convolutional code; which is suitable for iterative processing. Because the description is not based on assumption of certain code; it is also suitable for decoding of non-systematic codes.
引文
[1] J.G. Proakis, Digital Communications [M]. New York: McMraw-Hill, Third edition, 1995.
    [2] 沈芝慧等.通信系统工程.北京:电子工业出版社,2002.
    [3] G.. B. Giannakis et al., editors. Signal Processing Advances in Wireless and Mobile Communications, Vol. 1, Trends in Channel Estimation and Equalization. Prentice Hall, Upper Saddle River, NJ, 2000.
    [4] G.. B. Giannakis et al., editors. Signal Processing Advances in Wireless and Mobile Communications, Vol. 2, Trends in Single- and Multi-user Systems. Prentice Hall, Upper Saddle River, NJ, 2000.
    [5] X. Wang, H. V. Poor. Wireless Communication systems: advanced techniques for signal reception. Pearson Education, 2004.
    [6] 郑辉.信息截获技术及理论基础.内部资料,2001年.
    [7] 罗利春.无线电侦察信号分析与处理.北京:国防工业出版社,2003年.
    [8] 李有根.短波通信新技术.北京:解放军出版社,1997.
    [9] 张尔扬等.短波通信技术.北京:国防工业出版社,2002.
    [10] 胡中豫等.现代短波通信.北京:国防工业出版社,2003.
    [11] 何非常等.军事通信.北京:国防工业出版社,1989.
    [12] S. Haykin, Ed., Blind Deconvolution. Englewood Cliffs, NJ: Prentice-Hall, 1994.
    [13] Bello, P. A.: 1963, Characterization of randomly time-variant linear channels, IEEE Trans. Communication Systems 11(4), 360-393.
    [14] R. Steele, and L.Hanzo, Ed., Mobile Radio Communications: Second and Third-Generation Cellular and WATM Systems, 2nd edn, John Wiley & Sons Ltd, Chichester, UK. 1999.
    [15] A.F. Molisch, Wideband Wireless Digital Communications, Prentice-Hall, Upper Saddle River, NJ, USA.Molisch, 2001.
    [16] G.B. Giannakis and C. Tepedelenliglu. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proc. IEEE, 86(10):1969-1986, Oct. 1998.
    [17] C. C. Watterson, J. R. Juroshek, and W. D. Bensema, Experimental con-firmation of an HF channel model, IEEE Trans. Communication Technology COM-18(6), 792-803,1970.
    [18] R. H. Clarke, A statistical theory of mobile-radio reception, Bell Syst. Tech. J. 47, 957-1000, 1968.
    [19] C. Jakes, William, ed. Microwave Mobile Communications, New York, IEEE Press, 1974.
    [20] Jeruchim, C. Michel, Balaban, Philip et al, Simulation of Communication Systems, Second edition, New York, Kluwer Academic/Plenum, 2000.
    [21] C. Berrou, A. Glavieux, P. Thitimasjshima, Near Shannon limit error-correction coding and decoding: turbo-codes (1). Proc. IEEE ICC'1993, pp. 1064-1070, 1993.
    [22] K. M. Chugg, A. Anastaspoulos and X. P. Chen. Iterative detection: adaptivity, complexity reduction and applications. Kluwer Academic, 2001.
    [23] 刘东华.Turbo码原理与应用技术.北京:电子工业出版社,2003.
    [24] Chris Heegard, S. B. Wicker. Turbo coding. Kluwer Academic, 1999.
    [25] J. Hagenauer, The turbo principle: Tutorial introduction and state of the art, Proc. Int. Symp. on Turbo Codes and Related Topics, ENST Bretagne, Brest, France, pp. 1-11, 1997.
    [26] H. Poor, An Introduciton to Signal Deteciton and Estimation, 2nd ed. New York: Springer-Verlag, 1994.
    [27] S. ten Brink, Convergence of iterative decoding, Electron. Lett., vol. 35, pp. 806-808, May 1999.
    [28] S. ten Brink, Convergence behavior of iteratively decoded parallel concatenated codes, IEEE Trans. Commun., vol. 40, pp. 1727-1737, Oct. 2001.
    [29] J. Forney. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference, IEEE Trans. Information Theory IT-18(3), 363-378. 1972.
    [30] L. R. Bahl,, J.Cocke, F. Jelinek and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Information Theory IT-20, 284-287, 1974.
    [31] A. J. Viterbi, An Intuitive justification and a simplified implementation of the MAP decoder for convolutional codes. IEEE JSAC, vol. 16, no.2, pp. 260-264, 1998.
    [32] J. Hagenauer, E. Offer, L. Papke, Iterative decoding of binary block and convolutional codes. IEEE Trans. 1996, IT-42(3): 429-445.
    [33] J. Hagenauer, P. Hoeher, A viterbi algorithm with soft-decision outputs and its applications. IEEE GLOBECOM' 1989, pp. 1680-1686,1989.
    [34] C. Douillard, A. Picart, P. Didier, et al. Iterative correction of intersymbol interference: turbo-equalization. European Trans. Telecommun., 1995, 6(5): 507-511.
    [35] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, "Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding," IEEE Trans. Inform. Theory, Vol. 44, pp. 909-926, May 1998.
    [36] 朱旭红,卢学军,卓天真等译.宽带CDMA:第三代移动通信技术.人民邮电出版 社,2000年.
    [37] T. R. Giallorenzi, S. G. Wilson. Multiuser ML sequence estimator for convolutionally coded asynchronous DS-CDMA systems. IEEE Trans. Commun., vol. 44, No. 8, pp. 997-1007, Aug. 1996.
    [38] X. Wang, H. Vincent, H. Poor. Iterative (Turbo) soft interference cancellation and decoding for coded CDMA. IEEE Trans. Comm., 1999, 47(7): 1046-1061.
    [39] M. C. Reed, C. B. Schlegel, P. D. Alexander et al. Iterative multiuser detection for CDMA with FEC: near single user performance. IEEE Trans. Commun., vol. 46, no. 12, pp. 1693-1699, Dec. 1998.
    [40] P. Hoeher, J. Lodge. Turbo DPSK: Iterative differential PSK demodulation and channel decoding. IEEE Trans. Commun., 1999,47(6): 837-843.
    [41] S. t. Brink, J. Speidel, R.H. Yan, Iterative demapping and decoding for multilevel modulation. IEEE Globecom'98, 1998:579-584.
    [42] G. Bauch, V. Franz, A comparison of soft-in/soft-out algorithms for "turbo-detection", Proc. 5th Int. Conf. on Telecommunications, Porto Carras, Greece, pp. 259-263, 1998.
    [43] W.H. Gerstacker and R. Schober, Equalization Concept for EDGE, IEEE Trans. Wireless Commun., Vol. 1, no.1, pp. 190-199, Jan. 2002.
    [44] A. O. Berthet, B. S. nal and R. Visoz, Iterative Decoding of Convolutionally Encoded Signals Over Multipath Rayleigh Fading Channel, IEEE J. Select. Areas Commun., Vol. 19, no. 9, pp. 1729-1743, Sept. 2001.
    [45] A. Duel-Hallen and C. Heegard, Delayed Decision Feedback Sequence Estimation, IEEE Trans. Commun., Vol. 37, pp 428-436, May 1989.
    [46] M.V. Eyuboglu and S.U. Qureshi, Reduced-State Sequence Estimation with Set Partitionning and Decision Feedback, IEEE Trans. Commun., Vol. 36, pp. 13-20, Jan. 1988.
    [47] G. Bauch and N. Al-Dhahir, Iterative Equalization and Decoding with Channel Shortening Filters for Space-Time Coded Modulation, in Proc. IEEE VTC 2000, Vol. 4, pp. 1575-1582, 2000.
    [48] B. Penther, D. Castelain and H. Kubo, A Modified Turbo Detector for Long Delay Spread Channels, in Proc. 2nd Int. Symp. turbo Codes & Related Topics, pp. 196-199, Brest, France, May 1997
    [49] A. Berthet, R. Visoz, P. Tortelier, Sub-optimal turbo-detection for coded 8-PSK signals over ISI channels with application to EDGE advanced mobile system, Proc. 11th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, PIMRC 2000, Vol. 1, IEEE, London, UK, pp. 151-157, 2000.
    [50] A. Berthet, B. Penther, R. Visoz and J. J. Boutros, A new reduced complexity turbo-detector for highly selective long delay spread ISI channels: A solution for 4G mobile systems, Proc. 53rd IEEE., VTC 2001 Spring, Vol. 3, IEEE, Rhodes, Greece, pp. 1654-1658, 2001.
    [51] E. Tungsdsaguan, and R.M. Rajatheva, Turbo equalization with sequential sequence estimation over multipath fading channels, IEEE Communications Letters 6(3), 93-95, 2002.
    [52] L. Hanzo, T. H. Liew and B. L. Yeap, Turbo Coding, Turbo Equalization and Space-Time Coding for Transmission over Fading Channels, JohnWiley & Sons Ltd, Chichester, UK, 2002.
    [53] S. Vishwanath, M. Mansour and A. Bahai, Complexity based design for iterative joint equalization and decoding, Proc. 55th IEEE VTS Vehicular Tech. Conf., VTC 2002 Spring, Vol. 4, IEEE, Birmingham, AL, USA, pp. 1699-1704, 2002.
    [54] M. Tüchler, J. Hagenauer, Linear time and frequency domain turbo equalization, Proc. 53rd IEEE VTS Vehicular Tech. Conf., VTC 2001 Spring, Vol. 2, IEEE, Rhodes, Greece, pp. 1449-1453, 2001.
    [55] M. Tüchler, R. Koetter, A. C. Singer, Turbo equalization: Principles and new results, IEEE Trans. Communications 50(5), 754-767, 2002.
    [56] M. Tüchler, A. C. Singer, R. Koetter, Minimum mean squared error equalization using a priori information, IEEE Trans. Signal Processing 50(3), 673-683, 2002.
    [57] A. Dejonghe, L.Vandendorpe, Turbo-equalization for multilevel modulation: An efficient low-complexity scheme, Proc. IEEE Int. Conf. on Communications ICC 2002, Vol. 3, IEEE, New York, NY, USA, pp. 1863-1867, 2002.
    [58] A. Dejonghe, L. Vandendorpe, Bit-interleaved turbo equalization over Static frequency-selective channels: constellation mapping impact. IEEE. Trans. on Commun. vol. 52, No. 12, pp. 2061-2065, Dec. 2004.
    [59] L-H. Liu, P. Li. An extending window MMSE turbo equalization algorithm, IEEE Signal Processing Letters, vol. 11, No. 11, pp. 891-894, Nov. 2004.
    [60] N. Al-Dhahir, J. Cioffi. MMSE decision feedback equalizers and coding: finite length Results. IEEE Trans. Information Theory, vol. 41, No.4, pp. 961-976, 1995.
    [61] A. Gersho, T. L. Lim, Adaptive cancellation of intersymbol interference for data transmission, Bell Syst. Tech. J. 60(11), 1997-2021, 1981.
    [62] C. Laot, R. L. Bidan and D. Leroux. Low Complexity MMSE turbo equalization: a possible solution for EDGE. IEEE Trans. Wireless Communication, 2004.
    [63] R R. L. Bidan, C. Laot and D. Leroux. Real time MMSE turbo equalization on the TMS320C5509 fixed-point DSP. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP 2004.
    [64] A. Glavieux, C. Laot, J. Labat, Turbo equalization over a frequency selective channel, Proc. Int. Symp. on Turbo Codes & Related Topics, ENST Bretagne, Brest, France, pp. 96-102, 1997.
    [65] D. D. Falconer, A. U. Sheikh, E. Eleftheriou, M. Tobis, Comparison of DFE and MLSE receiver performance on HF channels, IEEE Trans. Communications COM-33(5), 484-486, 1985.
    [66] P. K. Shukla, L. F. Turner, Examination of an adaptive DFE and MLSE/near-MLSE for fading multipath radio channels, IEE Proc. Pt. Ⅰ 139(4), 418-428, 1992.
    [67] P. Strauch, C. Luschi, A. M. Kuzminskiy, Iterative channel estimation for EPGRS, Proc. 52nd IEEE VTS Vehicular Tech. Conf., VTC 2000 Fall, Vol. 5, IEEE, Boston, MA, USA, pp. 2271-2277, 2000.
    [68] 彭岳星,王维新等.频选快衰落信道的Turbo均衡算法.电子学报,vol.31,No.4,pp.498-501,2003年4月.
    [69] C. Langlais, M. Hélard, Optimization of the equalization and the interleaving in turbo-equalization for a frequency-selective fading channel, Proc. IEEE Int. Conf. on Communications, ICC 2002, Vol. 3, IEEE, New York, NY, USA, pp. 1868-1872, 2002.
    [70] C. Laot, A. Glavieux, J. Labat, Turbo equalization: Adaptive equalization and channel decoding jointly optimized, IEEE J. Sel. Areas in Communications 19(9), 1744-1752, 2001.
    [71] M. S. Yee, S. X. Ng, L. Hanzo, Iterative radial basis function assisted turbo equalization of various coded modulation schemes, Proc. 55th IEEE VTS Vehicular Tech. Conf., VTC 2002 Spring, Vol. 4, IEEE, Birmingham, AL, USA, pp. 1705-1709, 2002.
    [72] M. S. Yee, B. L. Yeap, L. Hanzo, Turbo equalization of convolutional coded and concatenated space time trellis coded systems using radial basis function aided equalizers, Proc. 54th IEEE VTS Vehicular Tech. Conf., VTC 2001 Fall, Vol. 2, IEEE, Atlantic City, NJ, USA, pp. 882-886, 2001.
    [73] L. Hanzo, C. H. Wong, M. S. Yee, Adaptive Wireless Transceivers: Turbo-Coded, Turbo-Equalized and Space-Time Coded TDMA, CDMA and OFDM Systems, John Wiley & Sons Ltd, Chichester, UK, 2002.
    [74] Wang, X. and Chen, R.: 2001, Blind turbo equalization in Gaussian and impulsive noise, IEEE Trans. Vehicular Technology 50(4), 1092-1105.
    [75] 江森,孙洪,李坪.一种新颖的用于Turbo均衡的均衡器.通信学报,vol 24,No.12,pp.9-14,2003.12.
    [76] S. Jiang, H. Sun, P. Li. Improvement on turbo equalization with LMMSE equalizer. 3rd Int. Symp. on Turbo Codes, pp. 307-310, 2003.
    [77] Y-E Yin, Y-F. Huang, M. Zhang Turbo equalization using probabilistic data association, Proc. of IEEE Globecom 2004. pp. 2535-2539.
    [78] D. Raphaeli, Y. Zarai, Combined turbo equalization and turbo decoding, Proc. Int. Symp. on Turbo Codes & Related Topics, ENST Bretagne, Brest, France, pp. 180-183, 1997.
    [79] B.L. Yeap, T. H. Liew, J. Hámorsk, L. Hanzo, Comparative study of turbo equalization schemes using convolutional, convolutional turbo, and block-turbo codes, IEEE Trans. Wireless Communications 1(2), 266-273, 2002.
    [80] S. ten Brink, Rate one-half code for approaching the Shannon limit by 0.1 dB, IEE Electronics Letters 36(15), 1293-1294, 2000.
    [81] M. Tüchler, J. Hagenauer, EXIT charts of irregular codes, Proc. Conf. Information Sciences and Systems, CISS 2002, Princeton University, N J, USA,pp. 748-753, 2002.
    [82] I. Lee, The effect of a precoder on serially concatenated coding systems with an ISI channel, IEEE Trans. Communications 49(7), 1168-1175, 2001.
    [83] K. R. Narayanan, Effect of precoding on the convergence of turbo equalization for partial response channels, IEEE J. Sel. Areas in Communications 19(4), 686-698, 2001.
    [84] P. Mangniez. Turo-equalization applied to trellis-coded-modulation IEEE VTC 1999. pp. 2556-2560.
    [85] E. Baccarelli, On the performance limits of TCM in fast-fading multipath channels with combined equalization/decoding, IEEE Trans. Communications 48(12), 1957-1964, 2000.
    [86] 李静,彭华,葛临东.多电平调制信号的turbo线性均衡.应用科学学报,已录用。
    [87] S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, Upper Saddle River, NJ, USA, 1996.
    [88] P. K. Shukla, L. F. Turner, Channel-estimation-based adaptive DFE for fading multipath radio channels, IEE Proc. Pt. I 138(6), 525-543, 1991.
    [89] S. McLaughlin, Adaptive equalisation via Kalman filtering techniques, IEE Proc. Pt. F 138(4), 388-396, 1991.
    [90] B. Farhang-Boroujeny, Channel equalization via channel identification for rapidly fading HF channels, Proc. IEEE Singapore Int. Conf. on Information Engineering '93, Vol. 2, IEEE, Singapore, pp. 563-567, 1993.
    [91] S. A.Fechtel, H. Meyr, An investigation of channel estimation and equalization techniques for moderately rapid fading HF-channels, Proc. IEEE Int. Conf. on Communications, ICC'91, Vol. 2, IEEE, Denver, CO, USA, pp. 768-772, 1991.
    [92] B. Widrow, J. M. McCool, M. G. Larimore et al. Stationary and nonstationary learning characteristics of the LMS adaptive filter, Proc. ofthe IEEE 64(8), 1151-1162, 1976.
    [93] E. Eleftheriou, D. D. Falconer, Tracking properties and steady-state performance of RLS adaptive filter algorithms, IEEE Trans. Acoustics, Speech and Signal Processing ASSP-34(5), 1097-1110, 1986.
    [94] F. M. Hsu, Square root Kalman filtering for high-speed data received over fading dispersive HF channels, IEEE Trans. Information Theory IT-28(5), 753-763, 1982.
    [95] D. Godard, Channel equalization using a Kalman filter for fast data transmission, IBM J. Res. Develop. pp. 267-273, 1974.
    [96] N. J. Bershad, S. McLaughlin, C. F. N. Cowan, Performance comparison of RLS and LMS algorithms for tracking a first order Markov communications channel, Proc. IEEE Int. Symp. on Circuits and Systems, Vol. 1, New Orleans, LA, USA, pp. 266, 1990.
    [97] A. P. Clark, R. Harun, Assessment of Kalman-filter channel estimators for an HF radio link, IEE Proc. Pt. F 133(6), 513-521, 1986.
    [98] S. J. Nowlan, G. E. Hinton, A soft decision-directed LMS algorithm for blind equalization, IEEE Trans. Communications 41(2), 275-279, 1993.
    [99] E. Baccarelli, R. Cusani, Combined channel estimation and data detection using soft statistics for frequency-selective fast-fading digital links, IEEE Trans. Communications 46(4), 424-427, 1998.
    [100] S. A. Fechtel, H. Meyr, Optimal linear interpolative channel estimation for TDMA-based personal mobile communications over frequency-selective channels, Proc. 45th IEEE VTS Vehicular Tech. Conf., VTC 1995, Vol. 1, IEEE, Chicago, IL, USA, pp. 321-325, 1995.
    [101] N. Nefedov, M. Pukkila, Turbo equalization and iterative (turbo) estimation techniques for packet data transmission, Proc. 2nd Int. Symp. on Turbo Codes & Related Topics, ENST Bretagne, Brest, France, pp. 423-426, 2000.
    [102] R. Visoz, A. O. Berthet, A. Saadani, B. Penther, Turbo equalization and incremental redundancy for advanced TDMA systems, Proc. 53rd IEEE VTS Vehicular Tech. Conf., VTC 2001 Spring, Vol. 3, IEEE, Rhodes, Greece, pp. 1629-1633, 2001.
    [103] S. Tantikovit, A. U. H. Sheikh, M. Z. Wang, Code-aided adaptive equalizer for mobile communication systems, IEE Electronics Letters 34(17), 1638-1640, 1998.
    [104] C. H. Wong, B. L. Yeap, L. Hanzo, Wideband burst-by-burst adaptive modulation with turbo equalization and iterative channel estimation, Proc. 51st IEEE VTS Vehicular Tech. Conf., VTC 2000 Spring, Vol. 3, IEEE, Tokyo, Japan, pp. 2044-2048, 2000.
    [105] B. L. Yeap, C. H. Wong, L. Hanzo, Reduced complexity inphase/ quadrature-phase M-QAM turbo equalization using iterative channel estimation, IEEE Trans. on Wireless Communications, vol.2 no. 1, pp. 2-9, Jan. 2001.
    [106] K.-D. Kammeyer, V. Kühn, T. Petermann, Blind and nonblind turbo estimation for fast fading GSM channels, IEEE J. Sel. Areas in Communications 19(9), 1718-1728, 2001.
    [107] S. Song, A. C. Singer, K. M. Sung. Turbo equalization wiht an unknown channel. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP 2002, Vol. 3, IEEE, Orlando, FL, USA, pp. 2805-2808.
    [108] S. Song, A. C. Singer and K. M. Sung, Soft input channel estimation for turbo equalization. IEEE Trans. on Signal Proceswing, vol. 52, no. 10, OCT. 2004.
    [109] R. Otnes, M. Tuchler, Iterative channel estimation for turbo equalization of time-Varying frequency-selective channels. IEEE Trans. Wireless Commun., vol. 3, No. 6, pp. 1918-1923, Nov. 2004.
    [110] M. Tüchler, R. Otnes, A. Schmidbauer, Performance of soft iterative channel estimation in turbo equalization, Proc. IEEE Int. Conf. on Communications, ICC 2002, Vol. 3, IEEE, New York, NY, USA, pp. 1858-1862, 2002.
    [111] R. Otnes, M. Tüchler, Low-complexity turbo equalization for timevarying channels, Proc. 55th IEEE VTS Vehicular Technology Conf., VTC 2002 Spring, Vol. 1, IEEE, Birmingham, AL, USA, pp. 140-144, 2002.
    [112] R. Otnes, M. Tüchler, On iterative equalization, estimation, and decoding, Int. Conf. on Communications, ICC 2003, IEEE, Anchorage, AK, USA.
    [113] A. Lampe, Iterative multiuser detection with integrated channel estimation for coded DS-CDMA, IEEE Trans. Communications 50(8), 1217-1223.
    [114] J. Thomas, E. Geraniotis, Space-time iterative receivers for narrowband multichannel networks, IEEE Trans. Communications 50(7), 1049-1054.
    [115] M. Sellathurai, S. Haykin, TURBO-BLAST for wireless communications: Theory and experiments, IEEE Trans. Signal Processing 50(10), 2538-2546.
    [116] A. Anastasopoulos and K. M. Chugg, Adaptive soft-input soft-output algorithms for iterative detection with parametric uncertainty, IEEE Trans. Commun., vol. 48, pp. 1638-1648, Oct. 2000.
    [117] D. N. Godard, Self-recovering equalization and carrier tracking in two dimensional data communication systems, IEEE Trans. Commun., vol 60, pp. 275-296, Feb, 1980.
    [118] O. Shalvi and E. Weinsein, New creiteria for blind deconvolution of nonminumum phase systems (channels). IEEE Trans. Inform. Theory, vol. IT-36, pp. 312-321, March 1990.
    [119] Y. Sato. A Method of self-recovering equalization for multilevel amplitude-modulation systems. IEEE Trans. on Commun., vol. COM-23, no. 6, pp. 679-682, 1975.
    [120] A. Benveniste and M. Goursat. Blind equalizers. IEEE Trans. on Commun., vol. COM-32, no. 8, pp. 871-883, 1984.
    [121] G. B. Giannakis and J. M. Mendel, Identification on nonminumum phase systems using higher order statistics. IEEE Trans. Acoustics, Speech, Signal Processing, vol ASSP-37, 360-377, March 1989.
    [122] D. Hatzinakos and C. L. Nikias. Blind equalization using a tricepstrum based algorithm. IEEE Trans. Commun. Vol COM-39, pp. 669-681, May 1991.
    [123] B. Porat and B. Friedlander. Blind equalization fo digital communication channels using high-order moments. IEEE Trans. Acous. Speech Signal Proc., vol. ASSP-39, pp. 522-526, Feb. 1991.
    [124] J. K. Tugnait. Blind estimation and equalization of digital communication FIR channels using cumulant matching. IEEE Trans. Commun., vol COM-43, pp. 1240-1245, Part Ⅲ, Feb/March/April 1995.
    [125] L. Tong, G. Xu and T. Kailath, Blind identification based on second-order statistics: a time domain approach. IEEE Trans. on Information Theory, vol. 40, No. 2, pp. 340-349, 1994.
    [126] L. Tong and S. Perreau, Multichannel blind identificaiton: from subspace to maximum likelihood methods. Proc. IEEE, vol. 86, No. 10, Oct. 1998.
    [127] H. Liu, G. Xu, L. Tong and T. Kailath. Recent developments in blind channel equalization: from cyclostationarity to subspaces. Sig. Proc., vol 50, no. 1-2, pp. 83-99, April 1996.
    [128] E. Moulines, P. Duhamel, J. F. Cardoso and S. Mayrargue, Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. On Sig. Proco Vol. SP-43, pp. 516-525, Feb. 1995.
    [129] K. Abed Meraim, J. F. Cardoso, A. Gorokhov et al. On subspaee methods for blind identificaiton of single-input/mulitple-output FIR filters. IEEE Trans. Signal Processing, vol. 45, no. 1, pp. 42-55, Jan. 1997.
    [130] K. A. Meraim, P. Loubaton and E. Moulines, A subspace algoirhtm for certain blind identificaton problems. IEEE Trans. Information Theory, vol. 43, no. 2. pp. 499-511, March 1997.
    [131] G. Xu, H. Liu, L. Tong and T. Kailath. A least-squares approach to blind channel identification. IEEE Trans. On Sig. Proc., vol SP-43, pp. 2982-2993, Dec. 1995.
    [132] H. Zeng and L. Tong, Conections between the least-squares and sbuspace approaches to blind channel estimation. IEEE Trans. Signal Processing, vol. 44, pp. 1593-1596, June 1996.
    [133] Y. Hua. Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Trans. On Signal Processing, vol. 44, pp. 661-672, March 1996.
    [134] K. A. Meraim, E. Moulines and P. Loubaton. Prediction error method for second order blind identification. IEEE Trans. On Singal Processing. Vol. 45, no. 3, pp. 694-705, March 1997.
    [135] A. Gorokhov and P. Loubaton. Blind identification of MIMO-FIR systems a generalized linear prediction approach. Signal Processing, vol 73, pp. 105-124, 1999.
    [136] J. Tugnait. On linear predictors for MIMO channels and related blind idetification and equalization. IEEE Signal Processing Letters, vol.5, no. 11, 1998.
    [137] G-K. Lee, S.B. Gelfand and M.P. Fitz. Bayesian techniques for blind deconvlution. IEEE Trans. Commun., vol. COM-44, p. 826-835, July 1996.
    [138] N. Seshadri, Joint data and channel estimation using fast blind trellis search techniques. IEEE Trans. Conmmun., vol COM -42, pp. 1000-1011, March 1994.
    [139] Davis, L. M., Collins, I. B. and Hoeher, P.: 2001, Joint MAP equalization and channel estimation for frequency-selective and frequency-flat fast-fading channels, IEEE Trans. Communications 49(12), 2106-2114.
    [140] Vlahoyiannatos, S. and Hanzo, L.: 2001, Blind PSP-based turbo equalization, Proc. 53rd IEEE VTS Vehicular Tech. Conf., VTC 2001 Spring, Vol. 3, IEEE, Rhodes, Greece, pp. 1858-1862.
    [141] Anastasopoulos, A. and Chugg, K. M.: 2000, Adaptive soft-input soft-output algorithms for iterative detection with parametric uncertainty, IEEE Trans. Communications 48(10), 1638-1649.
    [142] G. k. Kaleh and R. vallet. Joint parameter estimation and symbol detection for linear or nonlinear unknown channels IEEE Trans. on Commun., vol 42, no. 7, pp. 2046-2413, July 1994.
    [143] C. Anton-haro, J. A. R. Fonollosa and J. R. Fonollosa. Blind channel estimaton and data detection using hidden Markov models. IEEE Trans. Sig. Porc., vol. 45, no. 1, pp. 241-246, Jan. 1997.
    [144] L. B. White, S. Perreau and P. Duhamel. Reduced complexity blind equalization for FIR channel input Markov model. IEEE ICC'95, vol. 2, pp. 993-997, 1995.
    [145] J. Garcia-Frias and J. D. Villasenor. Blind turbo decoding and equalization. IEEE VTC'1999, pp. 1881-1885, 1999.
    [146] R. R. Lopes and J. R. Barry. Blind iterative channel identification and equalization. Proc. IEEE Int. Conf. On Communications, ICC 2001, Helsinki, Finland.
    [147] O. Shalvi and E. Weinstein. Super-exponential metods for blind deconvolution. IEEEE Trans. Information Theory, vol. 39, No. 2, pp. 504-519, 1993.
    [148] C. Y. Chi, C. C. Feng and C. Y. Chen. Performance of Super-exponential algorithm for blind equalization. In Proceedings of 2000 IEEE Vehicular Technology Conference. pp. 1864-1868, 2000.
    [149] G. E. Bottomley and S. Chennakeshu. Unification of MLSE receivers and extension to time-varying channels. IEEE Trans. Commun. vol. 46, no. 4, pp. 464-472, Apr. 1998.
    [150] B. D. Hart and D. P. Taylor. Extended MLSE receiver for the frequency-flat fast-fading channel. IEEE Trans. Veh. Technol. vol. 46, no. 2, pp. 381-389, May. 1997.
    [151] G. Ungerboeck. Adaptive maximum likelihood receiver for carrier modulated data transmission systems. IEEE Trans. Commun. COM-22, no. 5, pp. 624-635, May. 1974.
    [152] Q. Dai and E. Shwedyk. Detection of band-limited signals over frequency-selective Rayleigh fading channels. IEEE Trans. Commun. vol. 42, no. 2-4, pp. 941-950, Feb./Mar./Apr. 1994.
    [153] D. W. Matolak and S. G. Wilson. Detection for a statistically known time-varing dispersive channel. IEEE Trans. Commun. Vol. 44 no. 12, pp. 1673-1682, Dec. 1996.
    [154] R. D. DeGroat. Noniterative subspace tracking. IEEE Trans. Signal Process., vol. 40, no. 3, pp. 571-577, Mar. 1992.
    [155] B. D. Hart and D. P. Taylor. Maximum-likelihood synchronization, equalization and sequence estimation for unknown time-varying frequency-selective Rician channels. IEEE Trans. Commun., vol. 46, no. 2, pp. 211-221, Feb 1998.
    [156] H. Kubo, K. Murakami, and T. Fujino. An adaptive maximum likelihood Sequence estimator for fast time-varying intersymbol interference channels. IEEE Trans. Commun., vol. 43(2/3/4), pp. 1872-1880, Feb./Mar./Apr. 1994.
    [157] H.-N. Lee and G. J. Pottie. Fast adaptive equalization/diversity combining for time varying dispersive channels. IEEE Trans. Commun., vol. 46, no. 9, pp. 1146-1162, Sep. 1998.
    [158] J. Thielecke. A soft-decision state-space equalizer for FIR channels. IEEE Trans. Commun., vol. 45, no. 10, pp.1208- 1217, Oct. 1997.
    [159] E. Baccarelli and R. Cusani. Combined channel estimation and data detection using soft statistics for frequency-selective fast fading digital links. IEEE Trans. Commun., vol. 46, no. 4, pp. 424-427, Apr. 1998.
    [160] M. K. Tsatsanis and G. B. Giannakis. Equalization of rapidly fading channels: Self recovering methods. IEEE Trans. Commun., vol. 44, no. 5, pp. 619-630, May 1996.
    [161] M. K. Tsatsanis and G. B. Giannakis. Subspace methods for blind estimation of time-varying channels. IEEE Trans. Signal Process., vol. 45, no. 12, pp. 3084-3093, Dec. 1996.
    [162] R. A. Iltis, J. J. Shynk, and Giridhar. Bayesian algorithms for blind equalization using parallel adaptive filters. IEEE Trans. Commun. Vol. 42, no. 3, pp. 1017-1032, Mar. 1994.
    [163] J. S. Liu. Monte Carlo Method for Scientific Computing. Springer-Verlag, New York, 2001.
    [164] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Vedag, New York, 1999.
    [165] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell., PAMI-6(11): 721-741, Nov. 1984.
    [166] A. E. Gelfand and A. F. W. Smith. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc., 85:398-409, 1990.
    [167] K. S. Chan, "Asymptotic behavior of the Gibbs sampler," J. Amer. Stat. Assoc., vol. 88, pp. 320-326, 1993.
    [168] J. S. Liu, A. Kong, and W. H.Wong, "Covadance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes.," Biometrika, vol. 81, pp. 27-40, 1994.
    [169] M. J. Schervish and B. P. Carlin, "On the convergence of successive substitution sampling," J. Computat. Graphical Statist., vol. 1, pp. 111-127, 1992.
    [170] M. A. Tanner and W. H. Wong, "The calculation of posterior distribution by data augmentation (with discussion)," J. Amer. Statist. Assoc., Vol. 82, pp. 528-550, 1987.
    [171] U. Mengali and A. N. D' Andrea, Synchronization Techniques for Digital Receivers, Plenum Press, NY, 1997.
    [172] H. Meyr, M. Moeneclaey and S. A. Fechtel, Digital communication receivers: synchronizaiton, channel estimation and signal processing, Wiley, NY, 1998.
    [173] C.Modet, M. L. Boucheret, and I. Buret. Carder recovery scheme for on-board demodulation suited to low E_b/N_o. Proc. GLOBECOM'98, 1998: 3432-3436,
    [174] A. D'Amico, A.N. D'Andrea, R. Reggiannini. Efficient Non-Data-Aided Carrier and Clock Recovery for Satellite DVB at Very Low Signal-to-Noise Ratios. IEEE Jou. Sel. Areas Commun., 2001, 19(12): 2320-2330.
    [175] V. Lottice, M. Luise. Carrier phase recovery for turbo-coded linear modulations. Proc. IEEE ICC2002, 2002:1541-1545.
    [176] V. Lottice and M. Luise, Embedding carrier phase recovery into iterative decoding of turbo-coded linear modulations. IEEE. Trans. on Commun. vol. 52, No. 4, pp. 661-669, Apr. 2004.
    [177] Li Zhang and Alister G. Burr, Iterative Carrier Phase Recovery Suited to Turbo-Coded Systems IEEE Transactions on wireless communications, vol. 3, No. 6, NOV. 2004.
    [178] W. Oh and K. Cheun. Joint decoding and carrier phase recovery algorithm for turbo codes[J]. IEEE Commun. Lett., 2001, 5(9): 375-377
    [179] Y. Rahamim, A. Freedman. Methods for carrier synchronization of short packet turbo coded signals. Porc. Int. Symp. on Personal, Indoor and Mobile Radio Communications, PIMRC2004.
    [180] A. J. Viterbi and A. M. Viterbi. Nonlinear estimatjion of a PSK-modulated carrier. IEEE Trans. 1983, IT-29(7): 543-551.
    [181] F. Mazzenga and G. E. Corazza, Blind least-squares estimation of carrier phase, Doppler shift and Doppler rate for M-PKS burst transmission. IEEE Communications Letters, vol. 2, no. 3, pp. 73-75, Mar. 1998.
    [182] D. C. Rife, R.R. Boorstyn, Single tone parameter estimation from discrete-time observations. IEEE Transactions on Information Theory. 1974, IT-20 (9): 591-598.
    [183] M. Ghogho, A. K. Nandi and A. Swami, Cramer-Rao Bounds and maximum likelihood estimation for random amplitude phase-modulated signals. IEEE Trans. Signal Processing, vol 47, no. 11, pp. 2905-2916, Nov. 1999.
    [184] O. Besson, M. Ghogho, and A. Swami, Parameter estimation for random amplitude chirp signals. IEEE Trans. Signal Processing, vol 47, no. 12, pp. 3208-3219, Dec. 1999.
    [185] M. Luise, R. Reggiannini. Carrier frequency recovery in all-digital modems for burst mode transmissions. IEEE Transactions on Communications, 1995, COM-43 (2): 1169-1178.
    [186] N.A. D'Andrea. The modified cramer-rao bound and its application to synchronization problems. IEEE Transactions on Communications, 1994, COM-42 (2): 1391-1399
    [187] S. N. Crozier. Low complexity frequency estimator with close-to-optimum performance. In Proceedings of 1993 Interational Conference on Universal Personal Communications, 1993,426~430
    [188] 彭华,李静,葛临东.一种非判决辅助前向结构载波频差估计方法.电子学报,2001,29(7):984-986.
    [189] S. Kay, A fast and accurate single frequency estimator, IEEE Transactions on acoustic Speech, Signal Processing, 1989, 37:1987-1990.
    [190] M. P. Fitz. Further results in the fast estimation of signal frequency. IEEE Transactions on Communications. 1994, COM-42 (2): 862-864
    [191] G. D. Fomey,. The Viterbi algorithm. Proc. IEEE, 61:268-278, March 1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700