Ⅲ-Ⅴ族半导体MQW平面波导光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DWDM已成为光互联网信息传输层的主要技术平台,移动、卫星及光纤通信网络的融合是下一代互联网发展的必然趋势。光子集成光路(PICs)和光电集成电路(OEICs)是各类通信主干网节点和终端设备的关键模块。利用III-V族半导体多量子阱(MQW)材料的激子吸收非线性光学效应,可制成各类低功耗、超高速平面光波光路(PLC)单元,从而为研制PICs和OEICs奠定基础。本文围绕着III-V族半导体MQW-PLC中两个重要的单元器件:光调制器/开关(OM/S)和谐振腔滤波器(RF),开展理论分析、优化设计、材料生长、图形加工、样品制作以及测试分析等研究工作。
     第一章简要回顾了光网络、微波光子系统的发展过程以及PLC和PICs在其中的作用,全面概述了各类平面波导高速光调制器和光滤波器的研究进展,综述并评价了III-V族半导体MQW的性能、制作工艺和主要分析方法,提出了深入开展研究工作的规划和思路。
     第二章重点讨论了时域有限差分束传输法(TD-FD-BPM)、时域有限差分法(FDTD)及分析介质光波导的边界条件等问题,基于完全匹配层(PML)吸收边界条件,建立了分析平面光波导器件的二维、三维数值仿真模型和平台,为MQW-OM/S和RF光传输通道的优化设计提供了精确且高效的工具。
     第三章详细描述了高折射率差平面单谐振腔中光波激励、谐振、耗散的物理过程和基本特征,建立了各类谐振腔单元光路的系统分析模型和主要性能参数的完整表达式;建立了四端口谐振腔系统分析理论,给出了各端口传输系数的表达式;讨论和确定了GaAs/GaAlAs双异质结(DH)、GaAs/InGaAs-MQW和InP/InGaAsP-MQW脊波导结构参数以及耦合方式;基于3D-FDTD软件,优化设计出GaAs/GaAlAs-DH对称双、四矩形并联驻波RFs和单、串联跑道形行波RFs,GaAs/InGaAs-MQW单环以及InP/InGaAsP-MQW单矩形、混合型RFs。首次提出将多模干涉(MMI)波导等同于矩形谐振腔的构想,使其兼具多模干涉和谐振选频两种功能。首次提出具有多向传输通道和接口的谐振腔滤波系统的构想,并通过了数值仿真论证。
     第四章基于III-V族半导体MQW-OM/S的设计需求,系统讨论了MQW的物理特性,分析了电吸收系数与MQW结构参数的关系,设计了InP/InGaAsP-MQW波导结构,确定了结构参数及掺杂比等;分析了InP/InGaAsP-MQW脊波导及相关器件中光波传输;建立了行波(TW)电极准静态和直接时域近似分析模型,详细分析讨论了行波电极的调制特性,为确定互作用区位置和行波电极的设计、制作和测试提供了理论依据。提出了新型的2X1光双波合路平面波导OM/S单元器件结构,可对两路光信号共用单调制器/开关获得调制。
     第五章主要重点介绍了分子束外延生长技术,基于国内最先进的III-V族半导体材料生长工艺线,研制出10周期InGaAsP/InP应变多量子阱和相应包层的外延材料。对实验样品进行了10K温度下的PL光谱测试和双晶衍射测试,结果表明:阱层带隙波长为1520nm,阱层周期为17.1±0.3nm,与设计的标称值相符;量子阱层界面质量良好且与衬底匹配;该材料适于制成电吸收型调制器/开关。
     第六章首先讨论并制定了III-V族半导体MQW平面波导制作工艺归范和流程,着重提出一种制作金属电极的新方法,妥善解决了器件制作的难点;在我国先进的工艺线上,研制出7种平面波导RFs和2种平面波导OM/S芯片。建立了具有国际先进水平的81910A光子全参数测试系统,实现了裸片与单模光纤的高效耦合,9类器件裸片均在实验室内通过了光学性能和静电测试,实际测试结果与仿真设计结果符合较好。其中,InP/InGaAsP-MQW-MZ-OM/S在外加电压1.2-1.8v时,捕获到较强的电吸收效应,光功率变化率约为0.33/v;MMI型矩形RF获得比仅基于谐振腔的RF更理想的输出功率谱;InP/InGaAsP-MQW单矩形/环行混合RF滤波的性能优于同类非混合器件。
In the layer of optical internet information transportation, DWDM has become the chief technology. And the combination of the mobile, satellite and optical communications is the certain trend. Photonic Integrate Circuits (PICs) and Optical Electronic Integrate Circuits (OEICs) are the key module of all kinds of communication backbone net and terminal devices. Using the nonlinear effect of exciton absorption in Multiple Quantum Well (MQW) made ofⅢ-Ⅴfamily semiconductor, we can fabricate kinds of low power consumption and ultra high speed Planar Lightwave Circuit (PLC). This can be the fundament of PICs and OEICs. InⅢ-Ⅴfamily MQW-PLC,two important unit devices are studied: the Optical Modulator/Switch and Resonator Filter (RF). The work include theory analysis, optimization, material growth, graphic process, sample fabricate and test analysis.
     In the first chapter, the development of optical networks and microwave photonic system is reviewed as well as the application of PLC and PICs in the system. The research progress of all kinds of planar waveguide high speed optical modulators and optical filters are reviewed, the performance ,technics and analysis method ofⅢ-Ⅴfamily MQW are estimated. The plan and idea of deep research work are brought forward.
     The second chapter is mainly about Time Domain-Finite Difference-Beam Propagation Method (TD-FD-BPM), Finite Difference in Time Domain (FDTD) and the boundary conduction of medium optical waveguide, Perfect match Layer (PML) absorption boundary conduction. The founding of 2D and 3D planar optical waveguide numerical value simulation module and platform supplies a convenient tool for the optimization of MQW-OM/S and RF optical transmit way. In the third chapter, the optical excitation, resonance and loss in high index contrast planar single resonator are discussed in detail. The analysis module and the explicit expressions to main performance parameters of all kinds of resonate cavities are given. The theory of four ports resonate cavity is founded and the transmission coefficients of four ports are given. The ridge waveguide parameters and coupling way of GaAs/GaAlAs double heterojunction (DH) and InP/InGaAsP-MQW are selected. Optimizing the GaAs/GaAlAs-DH symmetrical double rectangles and four rectangles parallel connected standing wave RFs as well as single and series connected racetrack resonators, and GaAl/InGaAs-MQW single ring, InP/InGaAsP-MQW singlerectangle and mixed RFs. Multiple Mode Interference (MMI) waveguide is viewed as a rectangular resonator for the first time, and it can be used as multiple mode interference and resonator. Resonator filter system with multiple direction transmission ways and interface is proposed for the first time, and numerical value simulation confirms this.
     In the fourth chapter, on the demand ofⅢ-ⅤMQW-OM/S design, the physical characters of MQW are systematically discussed. The relationship between electroabsorption and MQW structure parameters is analysed and InP/InGaAsP-MQW waveguide structure is designed. The optical transmission analysis of InP/InGaAsP-MQW ridge waveguide and the unit device is given.
     The Traveling Wave (TW) electrode quasi-static and direct time domain module are established, and the traveling wave modulate character is analysed in detail. This is the theory base of confirming the inter effect location and the design as well as fabrication and test of traveling wave electrode. A novel structure of 2×1 optical double waves combine planar waveguide OM/S unit device, which can serves as a modulator for two optical signal, is presented.
     Technology of Molecular Beam Epitaxy (MBE) is introduced in chapter five. InGaAsP/InP strain MQW and the relevant cladding layer are fabricated based on inland top levelⅢ-Ⅴsemiconductor processing line. Under temperature of 10K, the PL spectrum and double-crystal diffraction are taken measurement. The results show, that the band gap wavelength in well layer is 1520 nm, and the period of well layers is 17.1±0.3 nm, which accord with the label value. The quantum well layer has a good quality interface and is matching with the substrate. The material is suit for electroabsorption modulator/switch.
     In chapter six, the processing flow forⅢ-Ⅴsemiconductor MQW planar waveguide is established, a new method to fabricate metal electrode is proposed to solve the fabrication problem. Seven kinds of planar waveguide RFs and two kinds of OM/S are manufactured on inland advanced processing line. The international advanced 81910A photon all parameters test system is established, which can provide efficient coupling for naked chip and single mode fiber. The naked chips of nine kinds of devices are tested for optical and static performance in lab. The results show a good unification with simulating result. When InP/InGaAsP-MQW-MZ-OM/S under a bias of 1.2-1.8V voltage, there is a strong electroabsorption effect, optical power varies 0.33/V. The MMI rectangular RF gets a better output than normal RF. InP/InGaAsP-MQW mixed RF of single rectangular and ring shows better performance than unmixed RF.
引文
[1] Peter Tomsu, Christian Schmutzer. Next Generation Optical Networks——The Convergence of IP Intelligence and Optical Technologies. 北京:清华大学出版社 2002.12
    [2] F. Masetti, D. Chiaroni, R. Dragnea, et al. High-speed high-capacity packet-switching fabric: a key system for required flexibility and capacity. Journal of Optical Networking, 2003.7, 2(7) 255-265
    [3] Behrouz A. Forouzan, Sophia Chung Fegan. TCP/IP Protocol Suite. 北京:清华大学出版社 2000.12
    [4] John Y. Wei. Advances in the Management and Control of Optical Internet. IEEE Journal on Selected Areas in Communications, 2002.5, 20(4) 768-785
    [5] R. Srinivasan, Arun K. Somani. Dynamic Routing in WDM Grooming Network. Photonic Network Communications, 2003, 5(2) 123-135
    [6] P.H. Ho, H.T.Mouftah. A Novel Distributed Protocol for Path Selection in Dynamic Wavelength-Routed WDM Networks. Photonic Network Communications, 2003, 5(1) 23-32
    [7] A. J. Seeds, Microwave photonics. IEEE Trans. Microwave Theory Tech, 2002,50(3):877–887.
    [8] A. Narasimha, X. J. Meng, M. C. Wu, et al. Tandem single sideband modulation scheme for doubling spectral efficiency of analogue fiber links. Electron. Lett, 2000, 36(13): 1135–1136.
    [9] C. Lim, A. Nirmalathas, D. Novak, et al. Technique for increasing optical spectral efficiency in millimetre-wave WDMfibre-radio. Electron. Lett, 2001, 37(16): 1043–1045.
    [10] T. Kuri, K. Kitayama. Novel photonic downconversion technique with optical frequency shifter for millimeter-wave-band radio-on-fiber systems. IEEE Photon. Technol. Lett, 2002, 14(8): 1163–1165.
    [11] T. Kuri, K. Kitayama, Y. Ogawa. Fiber-optic millimeter-wave uplink system incorporating remotely fed 60-GHz-band optical pilot tone. IEEE Trans Microwave Theory Tech, 1999, 47(7): 1332–1337.
    [12] T. Kuri, K. Kitayama, A. St?hr, et al. Fiber-optic millimeter-wave downlink system using 60GHz-band external modulation. J. Lightwave Technol, 1999, 17(5): 799–806.
    [13] Toshiaki Kuri, Ken-ichi Kitayama, Yasunori Ogawa, et al. Fiber-Optic Millimeter-Wave Downlink System Using 60 GHz-Band External Modulations. J Lightwave Technol., 1999, 17(5): 799-807.
    [14] R. Schuh, D. Wake, and E. Sundberg. A simple linearity analysis for active distributed antenna systems using W-CDMA signals. Int. Top.Meeting Microwave Photonics Tech. Dig. (MWP’01), Long Beach, 2001,A, Oct. 7–10
    [15] Hideaki Ohtsuki, Katsutoshi Tsukamoto, Shozo Komaki. BER Improvement Effect of Optical Delay Insertion in ROF Ubiquitous Antenna Architecture for Wireless CDMA System. J Lightwave Technol, 2003, 21(12): 3203-3208.
    [16] H. Harada, K. Sato, and M. Fujise, A radio-on-fiber based millimete-wave road-vehicle by a code division mulitiplexing radio transmission scheme—Symmetry between uplink and downlink. Proc. ITST’2001, Oct. 47–52.
    [17] W. Freude, G. Chakam, and V. Hurm. Microwave photonics for broadband wireless access. Proc. Photonics ’98, IIT Delhi, Dec. 14–18,1998, pp. 217–22.
    [18] S. Tedjini, A. Ho-Quoc, and D. A. M. Khalil. All-optical networks as microwave and millimeter-wave circuits. IEEE Trans. Microwave Theory Tech., 1995,43(3): 2418–2434.
    [19] R. Schuh and D. Wake. Distortion of W-CDMA signals over optical fiber links. , Int. Top. Meeting Microwave Photonics Tech. Dig.(MWP’99), Melbourne, Australia, Nov. 17–19, 1999, pp. 9–12
    [20] Lucent Technologies. System analysis, component selection and testing consideration for 1310 nm analog fiber-opticCATV applications, in Application Note, June 1998.
    [21] R. Benjamin and A. J. Seeds. Optical beamforming techniques for phased array antennas. Inst. Elec. Eng. Proc.—H, 1992, vol. 139, pp.526–534.
    [22] Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa. Optical processor for mulitbeam microwave array antennas. Electron. Lett, 1996, 32(9): 822–824.
    [23] K. Kiatayama. Architectural considerations of radio-on-fiber millimeter-wave wireless access systems. in Proc. 1998 URSI Int. Symp. Signals, Systems, and Electron. (ISSSE’98), Pisa, Italy, Invited Paper, Sept. 1998, pp. 378–383.
    [24] Q. Z. Liu, R. Davies, R. I. MacDonald. Fiber optic-microwave link with monolithic integrated optoelectonic up-converter. IEEE Photon Technol Lett, 1995, 7(5): 567–569.
    [25] A. Paolella, S. Malone, T. Berceli, et al. MMIC compatible lightwave-microwave mixing technique. IEEE Trans Microwave Theory Tech, 1995, 43(3): 518–522.
    [26] N. Mineo, K. Yamada, K. Nakamura, S. Sakai, and T. Ushikubo. 60-GHz band electroabsorption modulator module. in Proc. OFC’98 Tech.Dig., San Jose, CA, Feb. 1998, vol. TuH4, pp. 287–288.
    [27] A. Bilenca, J. Lasri, G. Eisensteine, et al. Optoelectronic generation and modulation of millimeter wave in a single InP/GaInAs photo heterojunction bipolar transistor. IEEE Photon. Technol. Lett., 2000,12(9):1240–1242.
    [28] G. K. Gopalakrishnan, W. K. Burns, C. H. Bulmer. Microwave-optical mixing in LiNbO modulators. IEEE Trans Microwave Theory Tech, 1993, 41(): 2383–2391.
    [29] C.K. Sun, R. J. Orazi, S. A. Pappert. Efficient microwave frequency conversion using photonic link signal mixing. IEEE Photon Technol Lett, 1996, 8(): 154–156.
    [30] David J skellern, Terence M P Percival, Charles L ee. A mm-wave high speed w ireless LAN for mobile computing architecture and prototype modem codec implementation. Electronics Department. Macquarie University, Sydney N SW 2121 Australia, 1996
    [31] Alberto Bilenca, Jacob Lasri, Benny Sheinman. Millimeter-Wave Generation and Digital Modulationin an InGaAs/InP Heterojunction Phototransistor: Model and Experimental Characterization of Dynamics and Noise.J Lightwave Technol, 2001,19(9): 1340-1352
    [32] J. E. Bowers, C. A. Burrus, R. J. McCoy. InGaAs PIN photodetector s with modulation response to millimeter wavelengths. Electron Lett, 1985, 21(18): 812–814.
    [33] K. J.Williams, R. D. Esman, M. Dagenais. Nonlinearities in P-I-N microwave photodetectors. J Lightwave Technol, 1996,14(1):84–96.
    [34] U. Gliese. Multifunctional fiber-Optic microwave links based on remote heterodyne detection. IEEE Trans Microwave Theory Tech, 1998, 46(5): 458–468.
    [35] A. C. Lindsay, G. A. Knight, S. T. Winnall. Photonic mixers for wide bandwidth RF receiver applications. IEEE Trans. Microwave Theory Tech, 1993, 43(): 2311–2317.
    [36] Hiroyuki Toda, Tsukasa Yamashita, Toshiaki Kuri. Demultiplexing Using an Arrayed-Waveguide Grating for Frequency-Interleaved DWDM Millimeter-Wave Radio-on-Fiber Systems. J Lightwave Technlo, 2003,21(8): 1735-1742.
    [37] M. Sugiyama, M. Doi, S. Taniguchi et al. Driver-less 40Gb/s LiNbO modulator with sub-1V drive voltage. OFC 2002,PD FB6-2.
    [38] N. Anwar, S. S. A. Obayya, S. Haxha, et al .The Effect of Fabrication Parameters on a Ridge Mach–Zehnder Interferometric (MZI) Modulator J Lightwave Technol, 2002,20(5): 854-862.
    [39] Samuel Hopfer, Yosi Shani, David Nir. A Novel, Wideband, Lithium Niobate Electrooptic Modulator J Lightwave Technlo, 1998, 16(1): 73-78.
    [40] K. Noguchi, H. Miyazawa, and O. Mitomi. 40-Gbit/s Ti: LiNbO modulator with a two-stage electrode.” IECE Trans Electron, 1998, E81-C (8): 1316–1320.
    [41] W. R. Leeb, A. L. Scholtz, and E. Bonek. Measurement of velocity mismatch in traveling-wave electro-optic modulators. IEEE J. Quantum Electron, 1982, 18(6): 14–16.
    [42] R. C. Alferness, S. K. Korotky, E. A. Marcatili. Velocity-matching techniques for integrated optic traveling wave switch/modulators. IEEE J. Quantum Electron, 1984, 20(2): 301–309.
    [43] H. Y. Chung, W. S. C. Chang, and E. L. Adler. Modeling and optimization of travelling-wave LiNbO3 interferometric modulators. IEEE J. Quantum Electron, 1991, 27(3):608–617.
    [44] K. W. Hui, B. Y. Wu, Y. M. Choi, et al. “Design of modified phase reversal electrode in broad-band electrooptic modulators at 100 GHz. IEEE Trans. Microwave Theory Tech., 1997,45(1): 142–145.
    [45] G. P. Gopalakrishnan, W. K. Burns, R. W. McElhanon, et al. Performance and modeling of broadband LiNbOtraveling wave optical intensity modulators. J Lightwave Technol, 1994, 12(): 1807–1819.
    [46] S. J. Chang, C. L. Tsai, Y. B. Lin, et al. Improved electro-optic modulator with ridge structure in X-cut LiNbO3. J Lightwave Technol, 1999, 17(): 843–847.
    [47] K. Kawano, High-speed shielded velocity-matched Ti: LiNbO3 optical modulator. IEEE J Quantum Electron, 1993, 29(9): 2466–2475.
    [48] G. K. Gopalakrishnan, C. H. Bulmer, W. K. Burns, et al. 40 GHz, low-half-wave voltage Ti: LiNbO3 intensity modulator. Electron. Lett, 1992, 28(): 826–827.
    [49] R. G. Walker, I. Bennion, A. C. Carter. Low-voltage, 50Ω GaAs/AIGaAs travelling-wave modulator. Electron. Lett, 1989, 25(): 1549–1550.
    [50] Chung et al. Modeling and optimization of traveling-wave LiNbO3 Interferometric modulators. IEEE J Quantum Electron, 1991, 27(3):
    [51] E. L. Wooten, K. M. Kissa, A. Yi-Yan, et al. A review of lithium niobate modulators for fiber-opticcommunications systems. IEEE J Select Topics Quantum Electron, 2000, 6(2): 69–81.
    [52] M. M. Howerton, R. P. Moeller, J. Dubinger, et al. Fully packaged, broadband LiNbO modulator with low drive voltage. IEEE Photon. Technol. Lett, 2000, 12(7): 792–794.
    [53] Kwok Wah Hui, Kin Seng Chiang, Boyu Wu, et al. Electrode Optimization for High-Speed Traveling-Wave Integrated Optic Modulators J Lightwave Technol, 1998, 16(2): 232-239.
    [54] Lipscomb G F, lytel R S, Ticknor A J, et al. Nonlinear optical properties of organic materials J SPIE Conf, 1990, 1337 ∶2 3-29.
    [55] Y. Shi, W.Wang, J. Bechtel, A. Chen, et al. Fabrication and characterization of high-speed polyurethane-disperse red 19 integrated electro-optic modulators for analog system applications. IEEE J Select Topics Quantum Electron, 1996, 2(6): 289–299.
    [56] M. C. Oh, H. Zhang, C. Zhang, H. Erlig, et al. Recent advances in electro-optic polymer modulators incorporating highly nonlinear chromophore. IEEE J Select Topics Quantum Electron, 2001, 7(9): 826–835.
    [57] D. Chen, H. R. Fetterman, A. Chen, et al. Demonstration of 110 GHz electro-optic polymer modulators. Appl Phys Lett, 1997, 70(): 3335–3337.
    [58] Ma J, Lin S, Feng W, et al. Modeling photoleached optical polymer waveguides. J Appl Opt, 1995, 34 (24): 5352 - 5360.
    [59] Sihan Lin, Wei Feng, Brian Hooker R, et al. UV bleaching of polymers and polymeric directional couplers for optical interconnects. J. SPIE Conf, 1994, 2285 ∶4 15 - 423.
    [60] Singer K D, Garito A F. Measurements of molecular second-order optical susceptibilities using dc-induced second harmonic generation. J Chem Phys, 1981, 75(35): 72-76
    [61] Datong Chen. Demonstration of 110GHz electro-optic polymer modulators. J Appl. Phys. Lett, 1997, 70(25): 3335 - 3337.
    [62] Yongqiang Shi. Electro2optic polymer modulations with 0. 8V half-wave voltage. J Appl. Phys. Lett .2000, 77(1): 1-3
    [63] L ip scomb G F, L ytel R S, Th icker A J, et al. Development in organic electro-optic devices at lockheed. Proc SPIE,1990,1337:23~ 24
    [64] Lytel R S. Applications of electro-optic polymers to integrated optics. Proc SPIE,1990,1216:30~ 40
    [65] Aydin Yeniay, Renyuan Gao, Kazuya Takayama, et al. Ultra-Low-Loss Polymer Waveguides. J Lightwave Technol, 2004,22(1): 154-159.
    [66] Dingle R,Wiegmann W,Henry C H.Qantum states of confined carriersis very thin AlxGa1-xAs-GaAs-AlxGa1-xAsheterostructures. Phys Rev Lett, 1974, 33:827-830.
    [67] Chemla D C, Damen T C, Miller C A B, et al. J Appl Phys Lett, 1983,42:864
    [68] Wood T H, Burrus C A, Miller D A B, et al. J Appl Phys Lett, 1983,44:16
    [69] Kawamura Y, Wakita K, Itaya Y, et al. Electronics Letters, 1996,22(5): 242
    [70] A Yariv. Optical Electronics in Modern Communications New York :Oxford University Press, Oxford, 1997
    [71] Deok Ho Yeo, Kyung H. Integration of Waveguide-type Wavelength Demultiplexing Photoelectors by the Selective Intermixing of InGaAs/InGaAsP Quantum-Well Structure.IEEE J Quantum Electronics, 2001,37:824-829.
    [72] Woodward T K, Knox W H. Experimental studies of proton-implanted GaAs-AlGaAs multiple-quantum-well modulators for low-photocurrent applications IEEE J Quantum Electron, 1994,30(2): 2854-2865
    [73] 竹内博昭.集成有电吸收调制器的 DFB-LD 的新进展.J.信学技报,2000,100(427):19-31.
    [74] Saeko Oshiba, Koji Nakamura. Low-Drive-Voltage MQW Electroabsorption Modulator for Optical Short-Pulse Generation.J Lightwave Technol, 1998, 34(2): 277-281.
    [75] Iatemi do, Shigehisa. Ultra-high-speed multiple-quantum-well electronabsorption Modulators with integrated waveguides. J Lightwave Technol, 1996,14(9): 2026-2033.
    [76] S. Z. Zhang, Y.J. Chiu, P. Abraham, et al. 25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes. IEEE Photon Technol Lett, 1999,11(12): 191–193.
    [77] K. Yamada, K. Nakamura, H. Horikawa. Design of double-pass electroabsorption modulators with low-voltage, high-speed properties for 40 Gb/s modulation. J Lightwave Technol, 1997, 15(): 2287–2293.
    [78] Y. Akage, K. Kawano, S. Oku, et al. Wide bandwidth of over 50 GHz travelling-wave electrodeelectroabsorption modulator integrated DFB lasers. Electron. Lett, 2001, 37(): 299–300.
    [79] K. Kawano, M. Kohtoku, M. Ueki. Polarization-insensitive travelling-wave electrode electroabsorption (TW-EA) modulator with bandwidth over 50 GHz and driving voltage less than 2 V. Electron Lett, 1997, 33(): 1580–1581.
    [80] M. Whitehead, G. Parry. High-contrast reflection modulation at normal incidence in asymmetric multiple quantum well Fabry–Perot structure. Electron. Lett, 1989, 25(): 566–568.
    [81] R. H. Yan, R. J. Simes, L. A. Coldren. Electroabsorptive Fabry–Pérot reflection modulators with asymmetric mirrors. IEEE Photon. Technol. Lett, 1989,1(): 273–275.
    [82] K. Hu, L. Chen, A. Madhukar, et al. High contrast ratio asymmetric Fabry–Perot reflection light modulator based on GaAs/InGaAs multiple quantum wells. Appl. Phys. Lett, 1991,59(): 1108–1110.
    [83] S. J. B.Yoo, M. A. Koza, R. Bhat, et al. 1.5μm asymmetric Fabry–Perot modulators with two distinct modulation and chirp characteristics. Appl. Phys. Lett, 1998, 25(): 3246–3248.
    [84] C. C. Barron, C. J. Mahon, B. J. Thibeault. Millimeter-wave asymmetric Fabry–Perot modulators. IEEE J Quantum Electron, 1995, 31(8): 1484–1493.
    [85] C. C. Barron, M. Whitehead, K. K. Law, et al. k-band operation of asymmetric Fabry–Perot modulators. IEEE Photon. Technol. Lett, 4(5): 459–461.
    [86] S. Sanchez, C. De Matos, M. Pugnet. Instantaneous optical modulation in bulk GaAs semiconductor microcavities. Appl Phys Lett, 2001, 78(24):3779-3782.
    [87] Tarek A. Ibrahim, W. Cao, Y. Kim, et al. Lightwave Switching in Semiconductor Microring Devices by Free Carrier Injection. J Lightwave Technol, 2003, 21(12): 2997-3014.
    [88] J. A. Trezza, J. S. Powell, J. S. Harris, Jr., IEEE Photonics Technol. Lett. 9, 330, 1997
    [89] J. A. Trezza, M. C. Larson, S. M. Lord. J Appl. Phys., 1993,74:1972-.
    [90] Yasunori Miyazaki, Hitoshi Tada, Toshitaka Aoyagi, et al. Extremely Small-Chirp Electroabsorption-Modulator Integrated Distributed Feedback Laser Diode With a Shallow Quantum-Well Absorption Layer. J Quantum Electron, 2002, 38(8): 1075-1081
    [91] Manabu Matsuda, K. Morito, R. Sahara, et al. Penalty-free 10 Gb/s NRZ transmission over 100 km of standard fiber at 1..55μm with ablue-chirp modulator integrated DFB laser. IEEE Photon. Technol. Lett, 1996, 8(3):431–433.
    [92] Ken Morito, Kazuhiro Yamaji, Takuya Fujii, et al. A Novel Method for Designing Chirp Characteristics in Electroabsorption MQW Optical Modulators IEEE Photon Technol Lett, 1998,10(3): 364-367.
    [93] K.Wakita, I.Kotaka, K.Yoshino, et al. Polarization-Independent Electroabsorption Modulators Using Strain-Compensated InGaAs-InAlAs MQW Strcutures IEEE Photonics Technol letts.1995, 7(12): 1418-1421.
    [94] F.Devaux, S.Chelles, A.Ougazzaden, et al Full Ploarization Insensitivity of a 20Gb/s Strained-MQW Electroabsorption Modulator IEEE Photon Technol Lett, 1994,6(10): 1203-1207.
    [95] Masaki Kato, Kunio Tada, Yoshiaki Nakano.Wide-Wavelength Polarization-Independent Optical Modulator Based on Tensile-Strained Quantum Well with Mass-Dependent Width, IEEE Photon Technol Lett,8(6): 785-788
    [96] K. Kawano, M. Kohtoku, M. Ueki, et al. Polarization-insensitive traveling-wave electrode electroabsorption (TW-EA)-modulator with bandwidth over 50 GHz and driving voltage less than 2 V. Electron. Lett, 1997,33(8): 1580–1581.
    [97] G. L. Li, S. K. Sun, S. A. Pappert, et al. Ultrahigh-speed traveling-wave electroabsorption modulator—Design and analysis. IEEE Trans. Microwave Theory Tech, 1999,47(7): 1177–1183.
    [98] V. Kaman, Y.J. Chiu, T. Liljeberg, et al. Integrated tandem traveling-wave electroabsorption modulators for> 100 Gbit/s OTDM applications. IEEE Photon. Technol. Lett, 2000,12(11): 1471–1473.
    [99] K. Ikeda, T. Kuri, and K. Kitayama. Simultaneous 3-band modulation 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals using a single electroabsorption modulator for radio-on-fiber systems. in IEEE MTT-S Int. Microwave Symp. Dig. 2003,vol.1: 261–264.
    [100] Jiyoun Lim, Young-Shik Kang, Kwang-Seong Choi. Analysis and Characterization of Traveling-Wave Electrode in Electroabsorption Modulator for Radio-on-Fiber Application. J Lightwave Technol, 2003, 21(12): 3004-3011.
    [101] S.Nojim, K.Wakita. Optimization of quantum well materials and structures for excitonic electroabsorption effects.Appl.Phys.Lett, 1988,53:1958-1960.
    [102] Hung Sik Cho, Paul R.Prucnal. Effect of Parameter Variations on the Performance of GaAs/AlGaAs Multiple-Quantum-Well Electroabsorption Modulators. IEEE J Quantum Electron, 1989,25(7): 1682-1691.
    [103] W. S. C. Chang. Multiple quantum well electroabsorption modulators for RF photonic links in RF Photonic Technology in Optical Fiber Links. Cambridge, U.K. Cambridge Univ. Press, 2002.
    [104] K. K. Loi, L. Shen, H. H. Wiede. Electroabsorption Waveguide Modulators at 1.3 m Fabricated on GaAs Substrates. IEEE Photon TechnloLett, 1997,9(9): 1229-1232.
    [105] Bin Liu, Jongin Shim, Yi-Jen Chiu. Analog Characterization of Low-Voltage MQW Traveling-Wave Electroabsorption Modulators. J Lightwave Technol., 2003,21(12): 3011-3020.
    [106] H.J.Havalon, T.Tucken, A.Hangleiter, et al Electron.Lett, 29(705), 1993
    [107] MiyaharaT. High-speed electroabsorption (EA) modulator modules using the flip-chip bonding (FCB) technique. OFC2001[C]. Anaheim: 2001.WDD67.
    [108] E.A.J.Marcatilli.Bends in optical dielectric waveguides.B.S.T.J.,1969,48:2103-2132
    [109] B.E.Little,S.T.Chu,H.A.Haus,et al.Mirorring Resonator Channel Dropping Filters.IEEE,J.Lightwave Technol.,1997,15(6):998-1006
    [110] B.E.Little,J.P.Laine,S.T.Chu. Surface-roughness-induced contradirectional coupling in ring and disk resonators.Opt.Lett.,1997,22:4-6
    [111] M.K.Chin,C.Youtsey,W.Zhao,et al.GaAs microcavity channel dropping filter based on a race-track resonator.IEEE,Photon.Technol.Lett.,1999,11(12):1620-1622
    [112] G.Griiffel,S.Arnold. Synthesis of variable optical filters using meso-optical ring resonator arrays .in Proc. IEEE LEOS Annu Meeting 2000,2:165-169,San Francisco,CA
    [113] D.G.Rabus,M.Hamacher,H.Heidrich,et al.Active and Passive Microring Rresonator Filter Applications in GaInAsP/InP. 2001 International Conference on Indium Phosphide and Realated Materials Conference Proceedings ,13th IPRM 14-18,May 2001,Nara,Japan
    [114] Sai T.Chu,Brent E.Little,Wugen Pan.et al.An Eight-Channel Add-Drop Filter Using Vertically Coupled Microring Resonators over a Cross Grid.IEEE Photon.Technol.Lett.,1999,11(6):691-694
    [115] B.E.Little,J.S.Foresi,E.R.Thoen,et al.Ultra-Compact Si-SiO2 Microring Resonator Optical Channel Dropping Filters.IEEE.Photon.Technol. Lett., 1998,30(4):549-552
    [116] Y.Ma,S.H.Chang,S.S.Chang,et al.Improved optical filter responses in cascaded InGaAsP/InP microdisk resonators.IEEE.Electron.Lett., 2001,37(9):564-566
    [117] Yong Ma,Gilbert Chang,Seoijin Park,et al.InGaAsP Thin-Film Microdisk Resonators Fabricated by Polymer Wafer Bonding for Wavelength Add-Drop Filters.IEEE.Photon.Technol. Lett.,2000,12(11):1495-1498
    [118] J.S.Foresi, P.R.Villeneuve, J.Ferrera, et al. Photonic-bandgap microcavities in optical waveguides.Nature,1997,390(6656):143-145
    [119] Payam Rabiei,William H.Steier,Cheng Zhang,et al.Polymer Micro-Ring Filters and Modulators.IEEE. J.Lightwave Technol., 2002,20(11):1968-1970
    [120] Causa F, Sarma J. A versatile method for analyzing paraxial optical propagation in dielectric structure. J Lightwave Technol, 2000, 18(10): 1445-1452.
    [121] Scarmozzino R, Gopinath A, Pregla R, et al. Numerical techniques for modeling guided-wave photonic devices. IEEE J Select Topics Quantum Electron, 2000, 6(1): 150-162.
    [122] Feit M D and Fleck J A, Jr. Analysis of rib waveguides and couplers by the propagating beam method. J Opt Soc Am, 1990, 7(1): 73-79.
    [123] Huang W P ans Xu C L. Simulation of three-dimensional optical waveguids by a full-vector beam propagation method. IEEE J Quantum Electron, 1993, 29(10): 2639-2649.
    [124] Henry C H and Verbeek B H. Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis. J Lightwave Technol, 1989, 7(2): 308-313.
    [125] Marcuse D. Solution of the vector wave equation for general dielectric waveguides by the Galerkin method. IEEE J Quantum Electron, 1992, 28(2): 459-465.
    [126] Weisshaar A, Li J, Gallawa R L, et al. Vector and quasi-vector solutions for optial waveguide modes using efficient Galerkin’s method with Hermite-Gauss basis functions. J Lightwave Technol, 1995, 13(8): 1795-1800
    [127] Hwelett S J and Ladouceur F. Fourier decomposition method applied to mapped infinite domains: scalar analysis of dielectric waveguides down to modal cutoff. J Lightwave Technol, 1995, 13(3): 374-383.
    [128] Lo K M, Li E H. Solutions of the quasi-vector wave equation for optical waveguides in a mapped infinite domain by the Galerkin’s method. J Lightwave Technol, 1998,16(5): 937-944.
    [129] Stephen A.Campbell.The Science and Engineering of Microelectronic Fabricatioin second edition. Oxford University Press, Inc., 2001
    [1] S.T. Chu. Modeling of guided-wave optical structures by the finite-difference time-domain method. Ph.D. dissertion, University of Waterloo, Waterloo, Ont., Canada,1990
    [2] D. Yevick, “A guide to electric field propagation techniques for guided-wave optics.” Opt. Quantum Electron. , 1994, 26, S185-S197
    [3] P.L. liu, Q. Zhao, F. S. Choa. Slow-wave finite-difference beam propagation method. IEEE Photon.Technol. Lett.,1995, 7, 890-892.
    [4] Y. Chung, N. Dagli . An assessment of finite difference beam propagation method. IEEE Quantum Electron., 1990,8(4),1335-1339
    [5] F. Ma. Slowly varying envelope simulation of optical waves in time domain with transparent and absorbing boundary conditions. J. Lightwave Technol.,1997, 15, 1974-1985
    [6] J. Yamauchi, J. Shibayama, O. Sainto, O. Uchiyama, et al .Improved finite-difference beam propagation method based on the generalized Douglas scheme and its application to semivectorial analysis. J. Lightwave Technol. , 1996, 14, 2401-2406
    [7] J. Shibayama .Efficient time-domain finite-difference beam propagation method for the analysis of slab and circularly symmetric waveguides. J. Lightwave Technol., 2000,18, 437-442
    [8] G. R.Hadley. Transparent boundary condition for the beam propagation method. Opt. Lett, 1991, 16, 624-626
    [9] G. R.Hadley. Transparent boundary condition for the beam propagation method. IEEE Quantum Electron., 1992,28,363-370
    [10] R. L. Higdon. Absorbing boundary condition for difference approximation to the multidimensional wave equation. Math. Comput. , 1986, 47(176): 437-459
    [11] O. M. Ramahi. Complementary operators: A method to annihilate artificial reflections arising from the truncation of the computational domain in the solution of partial difference equations. IEEE Trans. Antennas Propagat. , 1995, 43, 697-704
    [12] C.Vassallo, F.Collino. Highly efficient transparent absorbing boundary conditions for finite difference beam propagation method at order four. J.Lightwave Technol.,1997, 15,1958-1965
    [13] 王长清,祝西里,“电磁场计算中的时域有限差分法”,北京大学出版社,1994
    [14] C.Vassallo, F.Collino. Highly efficient absorbing boundary conditions for the beam propagation method. J.Lightwave Technol.,1996 ,14,1570-1577
    [15] V. Betz, R. Mittra. A boundary condition to absorb both propagating and evanescent waves in a finite difference time-domain simulation,. IEEE Microwave and Guided Wave Lett. ,1993,3,182-184
    [16] K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Trans. Antennas Propagat.1966,14(3):302-307
    [17] Engquist.B,Majda.A. Absorbing boundary conditions for the numerical simulation of waves.Math.Comput.1977,31(139):629-651
    [18] Mur.G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations .IEEE Trans. Electromagn. Comput.,1981,23(4):377-382
    [19] Berenger.J.P. A perfectly matched layer for the absorption of electromagnetic waves. J.Comput.Phys., 1994,114(2):185-200
    [20] Berenger.J.P. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves.J.Comput.Phys.,1996,127(2):363-379
    [1]Christina Manolatou.Passive Components for Dense Optical Integration Based on High Index-Contrast. PhD Thesiw,MIT,2001.
    [2] Shuichi Suzuki,Yutaka Hatakeyama, Sai Tak Chu. Precise Control of Wavelength Channel Spacing of Microring Resonator Add-Drop Filter Array. IEEE J.Lightwave Technol., 2002,20(4): 745-761.
    [3] Shuichi Suzuki, Yasuo Kokubun. Ultrshort Optical Pulse Transmission Characteristics of Vertically Coupled Microring Resonator Add/Drop Filter. IEEE J.Lightwave Technol., 2001,19(2): 266-271.
    [4] Shuichi. Suzuki, K.Oda, Y. Hibino. Integrated-Optic Double-Ring Resonators with Wide Free Spectral Range of 100GHz. IEEE J.Lightwave Technol., 1995,13(8):1766-1771.
    [5] B. E. Little, J. S. Foresi, G. Steinmeyer et al. Ultra-Compact Si-SiO2 Microring Resonator Optical Channel Dropping Filters.IEEE Photon.Technol.Lett., 1998,10(4):549-551.
    [6] B. E. Little, S. T. Chu, H. A. Haus et al Microring Resonator Channel Dropping Filters.IEEE J.Lightwave Techno., 1997,15(6): 998-1005.
    [7] C. Manolator, M. J. Khan, Shanhui Fan et al. Coupling of Modes Analysis of Resonant Channel Add-Drop Filters.IEEE J. Quantum Electron. , 1999,35(9): 1322-1332.
    [8] C. Vassalo. Optical Waveguide Concepts. Adsterdam, New York: Elsever, 1991.
    [9] H.A.Haus.Waves and Fields in Optoelectronics. Prentice-Hall, Englewood Cliffs,NJ,1984.
    [10] H. A. Haus, Y. Lai. Theory of cascaded quarter wave shifted distributed feedback resonators. IEEE J.Quantum Electron.,1992,28(1):205-213.
    [11] C.Manolatou,M.J.Khan,S.Fan et al. Coupling of modes analysis of resonant channel add/drop filters.IEEE J.Quantum Electron.,1999,35(9):1322-1331.
    [12] Katsunari Okamoto.Fundamentals of Optical Waveguides. Academic Press, San Diego,2002.
    [13] 肖金标,孙小菡,张明德,丁东. 基于 GaAs/GaAlAs 条形光波导的定向耦合器分析,电子学报,2002,30(5):705~707.
    [14] 蔡纯,刘旭,等.GaAlAs/GaAs 平面波导串联矩形谐振腔滤波器的研究. 中国工程科学,2004,6(2):61-66.
    [15] 蔡纯,刘旭等.环形谐振腔 GaAlAs/GaAs 四端口滤波器的仿真与实验研究. 红外与毫米波学报,2005,24(1)
    [16] 蔡纯,刘旭等.Study of GaAlAs/GaAs Planar Lightwave Filters. Engineering Science, 2005,7(1)
    [17] Leuthold J, Joyner C H. Multimode interference couplers with tunable power splitting ratios. IEEE J. Lightwave Techno, 2001, 19(5): 700~707
    [1] Stefan Irmscher. Design ,Fabrication and Analysis of InP-InGaAsP Traveling-Wave Electro-Absorption Modulators.PhD Thesis ,Royal Institute of Technology(KTH) Department of Microelectronics and Information Technology,2003.
    [2] H.G.Bach, J.Krauser, H.P.Nolting, et al. Electo-optical light modulation in InGaAsP/InP double hteerostructure diodes. J.Appl. Phys. Lett., 1983, 42(8):692-694.
    [3] A.Alping, L.A.Coldren. Electrorefraction in GAAs and InGaAsP and its application to phase modulators. J.Appl. Phys., 1987, 61(7):2430-2433.
    [4] D.A.B.Miller, D.S.Chemla, T.C.Damen, et al. Band-Edge Electroabsorption in Quantum Well Structures:The quantum-Quantum Stark Effect. Phys. Rev. Lett., 1984, 53(22):2173-2176.
    [5] F.Bassani, G.P.Parravicini. Electronic States and Optical Transitions in Solids. Oxford Pergamon, 1975.
    [6] K.Nishii, T.Hiroshima. Enhancement of quantum confined Stark effect in a graded gap quantum well. Appl. Phys. Lett., 1987, 51:321-323.
    [7] M.Matsuura, T.Kamizato. Subbands and excitons in a quantum well in an electric field. Phys. Rev. B, 1986, 33:8385-8389.
    [8] G.Bastard, E.E.Mendez, L.L.Chang, et al. Variational calculations on a quantum well in an electric field. Phys. Rev.B., 1983, 28:3241-3245.
    [9] D.A.B.Miller, D.S.Chemla, T.C.Damen, et al. Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev.B., 1985, 32:1043-1060.
    [10] E.J.Austin, M.Jaros. Electronic structure of an isolated GaAs-AlGaAs quantum well in a strong electric field. Phys. Rev. B., 1985, 31:5569-5572.
    [11] J.A.Brum, G.Bastard. Electric-field-induce dissociation of excitons in semiconductor quantum wells. Phys. Rev. B., 1985, 31:3893-3898.
    [12] I.S.Gradshteyn, I.M.Ryzhik. Table of Integrals, Series and Products. New York Academic, 1980.
    [13] J.Singh, K.K.Bajaj, S.Chaudhuri. Theory of photoluminescence lineshape due to interface quality in quantum well structures. Appl. Phys. Lett., 1984, 44:805-807.
    [14] F.Y.Juang, J.Singh, P.Bhattacharya, et al. Field-dependent linewieths and photoluminescence energies in GaAs-AlGaAs multiquantum well modulators. Appl. Phys. Lett., 1986, 48:1246-1248.
    [15] S.Hong, J.Singh. Excitonic energies and inhomogeneous line broadening effects in In/AlAs/InGaAs modulator structures. Appl. Phys. Lett., 1987, 62:1994-1999.
    [16] J.Lee, E.S.Koteles, M.O.Vassel. Luminescence linewidths of excitons in GaAs quantum wells below 150K. Phys. Rev. B., 1986, 33:5512-5515.
    [17] Thoams H. Woods. Multiple Quantum Well(MQW) Waveguide Modulators. J.Lightwave Tech., 1988, 6(6):743-758.
    [18] S.Adachi. GaAs,AlAs,and AlxGa1-xAs:Material parameters for use in research and device applications. Appl. Phys. Lett., 1985, 58:1-29.
    [19] D.Amold, A.Ketterson, T.Henderson,J Klem, et al. Determination of the valence-band discontinuity between GaAs and (Al,Ga)As by the use of p+-GaAs-(Al,Ga)As-p-GaAs capacitors. Appl. Phys. Lett., 1984, 45:1237-1239.
    [20] H.Okumura, S.Misawa, S.Yoshida, et al. Determination of the conduction-band discontinuities of GaAs/AlGaAs interfaces by capacitance-voltage measurements. Appl. Phys. Lett., 1985, 46:365-379.
    [21] K.K.Loi, L.Shen, H.H.Wieder, et al. Electroabsorption Waveguide Modulators at 1.3μm Fabricated on GaAs Substrates. IEEE Photon. Technol. Lett., 1997, 9(9):1229-1232.
    [22] R.L.Moon, G.A.Antypas, L.W.James. Bandgap and lattice constant of GaInAsP as a function of alloy composition. J Electron. Mater., 1974, 3(3):635-644.
    [23] C.K.Williams, T.H.Gilisson, J.R.Hauser, et al. Energy bandgap and lattice constant contours of Ⅲ-Ⅴ quaternary alloys of the form AxBByCzD or ABxCyDz. J Electron. Mater., 1978, 7(5):639-646.
    [24] M.P.Krijn. Heterojunction band offsets and effective masses in Ⅲ-Ⅴ quaternary alloys. Semicond. Sci. Technol., 1991, 6(4):27-31.
    [25] S.Adachi. Bandgap and refractive indices of AlGaAsSb, GaInAsSb and InPAsSb:Key properties for a variety of the 2-4μm optoelectronic device applications. Appl.Phys., 1987, 61(10):4869-4876.
    [26] T.H.Glisson, J.R.Hauser, M.A.Litteljohn, et al. Energy bandgap and lattic constant contours of Ⅲ-Ⅴ quaternary alloys. Electron. Mater., 1978, 7(1):1-16.
    [27] M.Linnik, A.Christou. Design and Performance of a Vertical Cavity Surface Emitting Laser Based on Ⅲ-Ⅴ Quaternary Semiconductor Alloys for Operation at 1.55μm. IEEE Trans. Electron. Dev., 2001, 48(10):2228-2238.
    [28] L.A.Coldren, S.W.Corzine. Diode Lasers and Photonic Integrated Circuits. New York Jon Wiley&Sons, 1995.
    [29] J.Piprek. Semiconductor Optoelectronic Device-Introduction to Physics and Simulation. New York Academic, 2003.
    [30] N.K.Dutta, N.A.Olsson. Electroabsorption in InGaAsP-InP double heterostructures. IEEE Electron. Lett., 1984, 20(15):634-635.
    [31]J.P.Weber. Optimization of the carrier-induced effective index change in InGaAsP waveguide-application to tunable bragg filters. IEEE J. Quantum Electron., 1994, 30(8):1801-1816.
    [32] 陈福深. 集成电光调制理论与技术 国防工业出版社,1995
    [33] J.C.Yi, S.H.Kim, S.S.Choi,. Finit- element method for the impedance analysis of traveling-wave modulators. J. Lightwave Technol, 1990, 8:817-822.
    [34] H.Haga, M.Lzutsu, T.Sueta. LiNbO3 traveling-wave light modulator/switch with an etched groove. IEEE J. Quantum Electron, 1986, 22:902-906.
    [35] G.L.Li, C.K.Sun, S.A.Pappert, et al. Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis. IEEE Trans. Microwave Theory Tech., 1999, 47(7):1177-1183.
    [36] R.E.Collin. Foundations for Microwave Engineering. New York, McGraw-Hill, 1992.
    [37] D.M.Pozar. Microwave Engineering. Massachusetts, Addison-Wesley, 1990.
    [38] R.Lewen, S.Irmscher, U.Eriksson. Microwave CAD Circuit Modeling of a Traveling-Wave Electro-Absorption Modulator. IEEE Trans. Microwave Theory Tech., 2003, 51(4):1117-1128.
    [1] Cao,A.Y., Bonding direction and surface structure orientation on GaAs(001). J. Appl. Phys., 1974, 47:2841-2849.
    [2] Cheng,K.Y.,Cho,A.Y.,Wagner,W.R.et al Molecular beam epitaxial growth of uniform In0.53Ga0.47As on InP with coaxial In-Ga oven. J. Appl. Phys., 1981, 52:1015-1013
    [3] Pashley,M.D.,Haberern,K.W., et al,Phys.Rev.Lett.,1988,60:2176-2179
    [4] Pashley,M.D.,Haberern,et al Semiconductor Interfaces at the Subnanometer Scale Kluwer Academic Publishers, Boston, 1993
    [5] Bhat.R,Koza.M.A, GaAs/GaInP superlattices growing by MOCVD.J Crystal. Grow., 1992,124(2):576-582
    [6]Chen.S, Growth of the InGaAs/InP heteromaterails and corresponding strain detemination. Phys. Dimens. Struct., 1995, 5(8):171-180
    [7] Katsuhiro Uesugi,Nobuki Morooka ,lkuo Suemune Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements, Appl. Phys. Lett.,1999,74(9):1254-1261
    [8] V.S.Speriosu,T.Vreeland,J.Appl.,1984,58:1591-1600
    [9] A.Mazuelas,A.Ruiz, Growth and characterization by x-ray diffraction of GaP/InP short-period super lattices J.Crystal. Grow., 1994, 135:123-127
    [10] L.Tapfer,K.Ploog, Improved assessment of structured properties of AlxGa1-xAs/GaAs heterostructures and super lattices by double-crystal x-ray diffraction. Phys.Rev.B,1986,33(8):5565-5568
    [11] V.S.Speriosu, Kinematical x-ray diffraction in nonuniform crystalline films :strain and damage. J. Appl. Phys., 1981, 52(10):6094-6099
    [12] C.R.Wie et al.,J.Appl. Phys.,1986,62:6094-6097
    [13] Wei Li,Markus Pessa,Jari Likonen, Lattice parameter in GaNAs epilayers on GaAs:Deviation from Vegare’s law. Appl. Phys. Lett., 2001, 78(19):2864-2869
    [1] Katz.A.Thomas,P.M.Chu,S.N.G.Lee et al.Au-Be/p-InGaAsP contact formed by rapid thermal processing . J.Appl.Phys.,1989,66:2056-2057.
    [2] Katz.A,Dautremont-Smith.W.C,Thomas.P.M et al.Pt/Ti/p-InGaAsP nonalloyed ohmic contact formed by rapid thermal processing . J.Appl.Phys.,1989,65:4319-4323.
    [3] Kirchner.P.D.,Jackson.T.N.,Petit.G.D., et al. Low-resistance nonalloyed ohmic contact to Si-doped molecular beam epitaxial GaAs. Appl.Phys.Lett.,1986,47:26-30.
    [4] Plmstrom.C.J., Galvin.G.J. Solid phase epitaxy of deposited amorphous Ge on GaAs. J. Appl. Phys. Lett. ,1985,47:815-816.
    [5] Katz.A.,Feingold.A.,Pearton.S.J.,et al Rapid thermal low-pressure chemical vapor deposition of SiOx films onto InP. Appl.Phys.Lett.,1991,59:579-582.
    [6] Chu.S.N.G.,Katz.A.,Boone.T., et al Interfacial microstructure and electrical properties of the Pt/Ti ohmic contact in p-In0.53Ga0.47As formed by rapid thermal processing . J.Appl.Phys.,1990,67:3754-3760.
    [7] Katz.A.,Chu.S.N.G.,Weir.B.E.,et al Temperature dependence of the resistance in the Pt/Ti nonalloyed ohmic contacts to p-InAs induced by rapid thermal processing . J.Appl.Phys.,1990,68:4141-4143.
    [8] Kuphal.E Low resistance ohmic contacts to n-and p-InP. Solid-State Electron..1981,24:69-78.
    [9] Auvray.P.,Guivarch.A.,Haridon.H.L.,et al Formation microstructure and resistance contacts Au-Ge/n-GaAs,Au-Ge/n-InP,Au-Zn/p-InP and Au-Be/p-InP. Thin Solid Films, 1985,127:39-68.
    [10] Erickson.L.P.,Waseem.A.,Robinson.G.Y.,Thin Solid Films,1974,64:421-424.
    [11] Weizer.V.G.,Fatemi.N.S.The influence of interstitial Ga and interfacial Au2P3 on the electrical and metallrugical behaviour of Au-contacted Ⅲ-Ⅴ semiconductors. J.Appl. Phys.,1991,69:8253-8259.
    [12] Fatemi.N.S.,Weizer.V.G The formation of low resistance electrical contacts to shallow junction InP devices without compromising emitter integrity. J.Electron.Mat.,1991,20:875-889.
    [13] O’Keefe.M.S.J.,Miles.R.E.,Howes.J.,SPIE Conf.Proceedings of the 1st Conference on InP and Related Materials,Norman,OK,136(1989).
    [14] Tseng.W.,Chistou.A.,Day.H.,et al Ohmic contacts to lightly doped n and p indium phosphide surfaces. J.Vac.Sci.Technol.,1981,19:623-625.
    [15] Teil.F.A.,Bacon.D.D.,Beuhler.E.,et al. J.Electrochem.Soc.,1977,124:317-322.
    [16] Schiavone.L.M.,Pritchard.A.A Ohmic contacts for moderately resistive p-type InP. J.Appl.Phys.,1975,46:452-453.
    [17] Tabatabaie-Alavi.K.,Choudhury.A.N.M.,Slater.N.J., et al Very low resistance ohmic contacts on p-type InP by direct plating. Appl. Phys.Lett.,1982,40:398-400.
    [18] Boos.J.B.,Kruppa.W Low-resistance AuZn gate ohmic contacts for InP JFET’s. Solid-State Electron.,1988,31:127-133.
    [19] Valois.A.J.,Robinson.G.Y Au/Be ohmic contacts to p-type indium phosphide. Solid-State Electron.,1982,25:973-977.
    [20] Kuphal.E Low resistance ohmic contacts to n-and p-InP. Solid-State Electron.,1981,24:69-75.
    [21] Ivey.D.G.,Bruce.R.,Piercy.G.R Electron microscopy characterization of Au/Ni contacts to p-type InP. J.Electron.Mat.,1988,7:373-380.
    [22] Dennis Derickson. Fiber Optic Test and Measurement [M]. New Jersey: Prentice-Hall Inc., 1998
    [23] Agilent Technologies. Agilent 光波测试与测量样本[M]. 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700