快速跑时下肢肌肉工作特性及腘绳肌拉伤风险的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:利用环节互动动力学方法计算快速跑时下肢各关节肌力矩、惯性力矩、外力矩、重力矩,并量化各关节角度变化和下肢各肌群功率,以提升快速跑时下肢各关节动力学的理解;量化快速跑时下肢单块肌肉长度变化和速度变化,探讨快速跑时最优化算法中反映快速跑时人体神经肌肉系统最优控制的目标函数和算法,以静态最优化算法估算出肌肉力量(应力),并进一步量化单块肌肉单位面积功率及做功总和,结合快速跑完整步态中下肢各单块肌肉工作性质,尤其是运动过程中极易受伤的胭绳肌的工作状态及其在跑速中所扮演的角色以综合探讨其损伤机理及发生时相。
     研究方法:采集8名优秀短跑运动员在塑胶跑道上途中跑时完整步态的二维运动学数据(300 Hz)及与之同步的地面反作用力(1200Hz)数据和肌电图(1200Hz),利用环节互动动力学方法分析下肢各关节力矩,并量化各关节角度变化和下肢各关节肌群功率变化。基于受测对象个体的下肢骨性形态学参数和快速跑时下肢运动学二维参数,通过下肢肌肉功能模型计算机应用分析系统分别计算出受测对象快速跑时下肢主要肌肉长度变化、速度变化及对于各关节各伪力臂变化。建立简化下肢骨骼-肌肉二维模型,确立目标函数和约束方程,应用中尺度序列二次规划拟牛顿线性搜索算法将快速跑时关节肌力矩优化求解单块肌肉应力,并进一步计算肌肉单位面积功率和单位面积做功总量。
     研究结果:在支撑阶段,关节力矩起主要控制作用的为肌力矩和外力矩,肌力矩的主要作用为对抗地面反作用力矩。同时,从近端到远端关节依次出现角速度峰值和伸肌的正功率峰值;踝关节角速度峰值和肌肉功率峰值明显高于其它关节的角速度峰值和肌肉功率峰值,而膝关节肌群在整个支撑期功率远低于髋关节和踝关节肌群功率值。摆动阶段,关节力矩主要为肌力矩和惯性力矩,肌力矩则主要对抗惯性力矩做负功以控制动作。在快速跑完整步态中,髋关节伸肌群、膝关节屈肌群及踝关节跖屈群功率峰值均分别显著高于髋关节屈肌群、膝关节伸肌群及踝关节背屈肌群功率峰值,同时,髋关节伸肌群和膝关节屈肌做正功时功率峰值均显著高于其做负功时功率峰值,踝关节跖屈肌群做负功时功率峰值显著高于其做正功时功率峰值;双关节肌胭绳肌、股直肌和腓肠肌应力峰值、长度峰值、收缩速度峰值和做负功单位面积功率峰值均显著高于其他下肢骨骼肌;各肌肉均不同程度地作为拮抗肌在离心收缩且输出较大功率(做负功)对抗外力矩或惯性力矩。快速跑时不少双关节肌在同一时刻分别对两个关节做负功和正功;在摆动期中间阶段,胭绳肌在顺应性离心收缩时突然被激活并快速出现做负功功率峰值;摆动末期,出现胭绳肌长度、速度、应力峰值;触地瞬间,胭绳肌应力和单位面积功率快速增长至支撑期峰值;股二头肌长头的应力峰值、长度峰值、做负功的功率峰值和做负功的总和均显著高于半膜肌和半腱肌。
     研究结论:快速跑时,作用于身体各环节的外力和惯性力(还包括科氏力和离心力)对各关节肌群工作性质产生重要影响;髋关节伸肌群和膝关节屈肌群的快速主动收缩能力和踝关节跖屈肌群的退让性快速收缩能力在快速跑时极其重要;短跑的专项训练中,应充分重视下肢各相关肌群的在离心收缩情况下的做功能力;应挖掘与短跑时下肢肌肉复杂的工作特点相类似的下肢整体运动(多关节)的训练方法;下肢双关节肌为快速跑时最易受伤的肌肉;摆动期中间阶段、摆动末期及触动地瞬间为快速跑时易发生胭绳肌拉伤的时相;股二头肌长头是胭绳肌群最易拉伤的肌肉。
Research objectives:To work out lower-limb joints'muscle torque, inertial torque, contact torque and gravitational torque by using the method of intersegmental dynamics, and to quantify every joint's angular variation and lower-limb muscles' power, so as to promote the understanding of lower-limb joints dynamics in sprint running; To quantify lower-limb single muscle's length and speed variations in sprint running, and to study the objective function and arithmetic of optimization that reflect human body's optimal control of neuromuscular system in sprint running; To estimate muscle stress by using the method of static optimization, thus to further quantify every single muscle's unit power and power sum; To study the damage mechanism and time phase of easily-strained hamstring by analyzing every lower-limb muscle's working feature in the integral gait of sprint running, especially hamstring's working state and its role in sprint running.
     Research methods:Eight excellent sprinters'two-dimensional kinetic data (300 Hz) and the data of the ground's counterforce (1200Hz) are collected in integral gait in their maximum velocity sprint running on a synthetic surface track. In addition, this research applies the approach of intersegmental dynamics to analyze the torque of every lower-limb joint, and to work out the variations of joints angle and muscles power. Based on every examinee's lower-limb skeletal morphological parameter and his two-dimensional kinetic parameter in sprint running, this research tries to work out respectively length and speed variations of lower-limb major muscles and tension arm variation of every joint by utilizing the method of computer analyzing system of the muscular function model of human lower extremity. In addition, this research also builds a two-dimensional lower-limb musculoskeletal model, establishes objective function and constraint equation, and applies mesoscale sequential quadratic programming pseudo-newton for linear search algorithm to optimize muscle's torque, thereby working out single muscle's stress, and further works out muscle unit power and its total power.
     Research results:During the support phase it is muscle torque and contact torque that take control, and the main function of muscle torque is to withstand contact torque. Meanwhile the peak value of angular velocity and that of the extensor muscle's positive power emerge in turn from proximal end to distal end. During that phase the ankle's peak values of angular velocity and muscle power are obviously higher than those of other joints, while the power of knee muscles is much lower than that of hip and ankle muscles. During the swing phase the main joint torques are muscle torque and inertial torque, and muscle torque controls action by acting negatively on inertial torque. In the complete gait of sprint running the peak values of the powers of hip extensor muscles, knee flexor muscles and ankle plantar flexion muscles are apparently higher than those of hip flexor muscles, knee extensor muscles and ankle dorsiflexion muscles. And in the mean time when hip extensor muscles and knee flexor muscles are doing positive work, their peak values of powers are evidently higher than the time when they are doing negative work, and when ankle plantar flexion muscles are doing negative work its peak value of power is obviously higher than the time when they are doing positive work. During every phase the stress value of such two-joint muscles as HAM, RF and GAS is higher than that of the other muscles that do work, and in the integral gait their peak value of stress and the negative work they accumulate in a single gait(the per unit negative work in a single gait) are higher than those of the other muscles. As a kind of antagonistic muscle, every muscle, to some extend, fights against contact torque and inertial torque when it contracts eccentrically and does negative work. In sprint running, some joint muscles do positive work and negative work to two joints at the same time. In the middle phase of swing, hamstring will be triggered abruptly in its compliance eccentric contraction and its peak value of power of negative work emerges immediately. In the telophase of swing peak values of hamstring's length, speed and stress appears. At the moment of touching the ground hamstring's stress and per unit power increase quickly to the peak values in support phase, and the peak values of biceps femoris'stress, length and power of doing negative work and sum of negative work are obviously higher than those of semimembranosus and semitendinosus
     Research conclusions:In sprint running, external and inertia forces acting on joints of human body (including Coriolis force and centrifugal force) greatly influence the working nature of joint muscles. In the support phase, an outstanding runner can successfully transfer energy to ankle joints, that is, from proximal end to remote end, which strengthens its power on the ground, thus to keep his running speed in a better way. The main function of knee joints is to keep the height of gravity center and deliver energy from hip joint to ankle joint. In sprint running, it is very important of the active swift contractility of hip extensor muscles and knee flexor muscles, and of ankle plantar flexion muscles'passive swift contractility. For that reason, in the specialized training of sprint running, great importance should be attached to lower-limb muscles' ability of doing work under the circumstances of eccentric contraction. Meanwhile, trainers should try to find out a new training method that is similar to the complicated working feature of lower-limb muscles in sprint running. The research also finds out that lower-limb two-joint muscles are most easily strained in sprint running, that in sprint running hamstring is easily strained in the middle phase and telophase of swing and at the moment of touching the ground, and that long head of biceps femoris muscle is the most easily strained muscle in hamstring muscles.
引文
[1]方勇.对竞技体育运动中肌肉损伤探讨[J].哈尔滨体育学院学报,2002,20(73):143-144.
    [2]宫本庄.通过下肢肌电观察对短跑途中跑技术和专门力量训练中一些问题的探讨[J].田径,1985(2):55.
    [3]郭庆芳.肌肉疲劳时表面肌电图与其深层运动单位、积分、频谱的变化—肌肉疲劳研究之二[D].国家体委体育科学研究所论文选编,1983.
    [4]Fletcher R实用最优化方法[M].游兆永,等译.天津:天津科技翻泽出版社,1990
    [5]胡宗祥.慢跑下肢技术动作的生物力学研究[D].北京体育大学博十毕业论文,2008.
    [6]侯曼.大白鼠腓肠肌被动拉伸的力学性质的研究[D].上海体育学院85届硕士论文.
    [7]何建平.田径运动中肌肉损伤原因的再认识[J].西安体育学院学报,2002,19(1):60-61.
    [8]黄达武.软性塑胶跑道对短跑途中跑及其部分专项力量训练手段技术的影响研究[D],武汉体育学院硕十毕业论文,2006.
    [9]姜建华,董晓虹.不同蹬地动作下肢诸肌群拉伤率的比较[J].浙江体育科学21(2):42-45,1999.
    [10]井兰香,刘宇,田石榴.不同负重超等长练习下肢各关节作用分析[J],体育科学,2009,29(5):50-53.
    [11]刘宇.人体多关节运动肌肉控制功能的生物力学分析[M].台北:中国文化大学出版部,1999.
    [12]刘宇Biomechanical Analysis of Hamstring Injury[R]上海国际运动医学论坛大会主报告,2007.10.
    [12]李庆.短跑运动员腿部屈伸肌在不同专项运动阶段中的作用和时序关系。第10届全国运动会科学论文报告会主题发言,2005.
    [13]李诚志,黄宗成.短跑下地动作的生物力学分析[J].体育科学,1987,7(1):58-60
    [14]曲绵域.实用运动医学[M]北京:北京科学技术出版社,1996
    [15]潘朝晖,王剑利,蒋萍萍.足部三维有限元模型的建立及应用进展[J].中国康复,2004,(6):375-377
    [16]舒彬.实验性肌肉拉伤的修复过程及高分子凝胶中药制剂对该过程的影响,1994年全国运动疗法学术会议论文汇编,1994
    [17]单大卯.人体下肢肌肉功能模型及其应用的研究[D].上海体育学院博士学位论文,2003.
    [18]施宝兴.短跑途中跑运动员支撑腿关节肌肉生物力学特性的研究[D].上海体育学院博士学位论文,2003.
    [19]魏书涛,刘宇,钟运健等.短跑支撑期股后肌损伤的动力学分析[J],中国运动医学杂志,2009,28(6):639-643.
    [20]王人成,杨年峰,朱长虹等.人体下肢摆动相冗余肌力分析[J].清华大学学报(自然科学版),1999,39(11):104-106.
    [21]王保成.跳跃中“退让”与“克制”训练效果的实验与分析[J].西安体育学院学报,1984,1(4):31-43.
    [22]伍勰,魏文仪,单大卯.下肢肌肉功能模型应用软件的开发与应用[J].医用生物力学,2008,23(3):229-233.
    [23]徐力,郭巧,陈海英.跑步运动下肢冗余肌力的优化求解和分析[J].北京理工大学学报,2004,24(10):869-873.
    [24]徐力,郭巧,陈海英.基于模拟退火算法的冗余肌力优化求解[J].北京生物医学工 程,2005,24(2):108-111.
    [25]袁庆成.短跑运动员下肢关节动态水平力的测试和分析[J].辽宁体育科技,1984,6(1):14-20.
    [26]严波涛.人体肌肉工作的运动生物力学测量和评价[J].西安体育学院学报,1992,9(3):62-72.
    [27]张胜年,陆爱云.骨骼肌急性拉伤后材料力学研究进展[J].上海体育学院学报,2000,24(1):33-37
    [28]张原.400 m跑下肢肌电活动规律探讨[J].武汉体育学院学报.2008,42(6):84-87
    [29]周里,陆爱云.大鼠骨骼肌模拟急性拉伤的生物力学实验研究[J].体育科学,1999,19(6)59-64.
    [30]章国峰.短跑运动员途中跑与部分力量练习手段的下肢肌电特征对比分析[D],北京体育大学硕十毕业论文,2009.
    [31]Abraham LD, Loeb GE. The distal hindlimb musculature of the cat[J]. Experimental Brain Research,198558:580-593.
    [32]Agre JC. Hamstring injuries:Proposed aetiological factors, prevention, and treatment[J]. Sports Med,1985,2(1):21-33.
    [33]Alexander RM. A minimum energy cost hypothesis for human arm trajectories[J]. Biological Cybernetics,1996 76:97-105.
    [34]Alexander RM, Bennett-Clark HC. Storage of elastic strain energy in muscle and other tissues[J]. Nature,1977,265:114-117.
    [35]Andersson EA, Nilsson J, Thorstensson A. Intramuscular EMG from the hip flexor muscles during human locomotion[J]. Acta Physiol Scand,1997,161:361-70.
    [36]An K-N, Kaufman KR, Chao EYS. Estimation of muscle and joint forces. In:Allard, P., Stokes, I.A.F., Blanchi, J.P. (Eds.), Three-Dimensional Analysis of Human Movement[J]. Human Kinetics, Champaign, IL,1995:201-214.
    [37]An K-N, Ueba Y, Chao, EYS. Cooney, W.P., Linscheid, R.L. Tendon excursion and moment arm of index finger muscles[J]. Journal of Biomechanics,1983,16:419-425.
    [38]An K-N, Kaufman KR, Chao EYS. Physiological considerations of muscle force through the elbow joint[J]. Journal of Biomechanics,1989,22:1249-1256.
    [39]Askling CM, Tengvar M, Saartok T, Thorstensson A. Acute first-time hamstring strains during high-speed running:A longitudinal study including clinical and magnetic resonance imaging findings[J]. Am J Sports Med,2007,35(2):197-206.
    [40]Basmajian JV, DeLuca CJ. Muscles alive:their functions revealed by electromyography (5th ed.)[M]. Williams & Wilkins, Baltimore.1985.
    [41]Barry D, Ahmed AM. Design and performance of a modified buckle transducer or the measurement of ligament tension[J]. Journal of Biomechanical Engineering,1986,108:149-152.
    [42]Bean JC, Chaffin DB, Schultz AB. Biomechanical model calculation of muscle contraction forces:a double linear programming method[J]. Journal of Biomechanics,1988,21:59-66.
    [43]Belli A, Kyrolainen H, Komi P. Moment and Power of Lower Limb Joints in Running[J]. Int J Sports Med,2002,23:136-141.
    [44]Best T, McElhaney J, Garrett W, Myers B. Axial Strain Measurements in Skeletal Muscle at Various Strain Rates[J]. Journal of Biomechanical Engineering,1995,117:262-265.
    [45]Bezodis IN, Salo AIT, Kerwin DG. Joint Kinetics in Maximum Velocity Sprint Running[C]. In H.-J. Menzel and M.H. Chargas (Eds). Proceedings of the ⅩⅩⅤth Symposium of the International Society of Biomechanics in Sports,2007:59-62. Ouro Preto, Brazil. ISBS.
    [46]Bezodis IN, Kerwin DG, Salo AI. Lower-limb mechanics during the support phase of maximum-velocity sprint running[J]. Med Sci Sports Exerc,2008,40(4):707-15.
    [47]Bidder T, Henao E, Lopez V, Vittoric, Winckler G. NSA Round Table:Sprinting[J]. New Studies in Athletics.1995,10 (1):13-22.
    [48]Bing Yu, Robin M Queen, Alicia N Abbey,YuLiu, Claude T Moorman, William E Garrett. Hamstring muscle kinematics and activation during overground sprinting[J]. Journal of Biomechanics,2008,41:3121-3126.
    [49]Bose NK, Liang P. Neural Network Fundamentals with Graphs, Algorithms, and Applications[M]. McGraw-Hill, New York.1996.
    [50]Briggs C, Chandraraj S. Variations in the lumbosacral ligament and associated changes in the lumbosacral region resulting in compression of the fifth dorsal root ganglion and spinal nerve[J]. Clinical Anatomy,1995,8:339-346.
    [51]Brandell BR. An analysis of muscle coordination in walking and running gaits[C]. In: Cerquiglini, A., Venerando, A., Wartenweiler, J. (Eds.), Medicine and Sport:Biomechanics Ⅲ, vol.8. Basel, Switzerland, Karger,1973:278-287.
    [52]Brooks S, Faulkner J. Severity of contraction-induced injury is affected by velocity only during stretches of large strain[J]. J Appl Physiol.2001,91:661-666.
    [53]Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union[J]. Am J Sports Med.2006,34(8): 1297-1306.
    [54]Brockett CL, Morgan DL, Proske U. Human hamstring muscles adapt to eccentric exercise by changing optimum length[J]. Med Sci Sports Exerc.2001,33:783-90.
    [55]Brukner P, Khan K, Coburn P. Predisposing factors in hamstring strain[C]. In Clinical Sports Medicine. Edited by Brukner, P., and Khan, K.,412-413,Sydney, McGraw Hill, 2001:412-413
    [56]Burkett LN. Causative factors in hamstring strains.Medicine and Science in Sports and Exercise[M],1970,2(1):39-42.
    [57]Butterfield, TA, W Herzog. Quantification of muscle fiber strain during in-vivo repetitive stretch-shortening cycles[J]. J. Appl. Physiol,2005,99:593-602.
    [58]Bullock D, Grossberg S, Guenther F. Neural network modeling of sensorymotor control in animals[M]. In Zelaznik, H.N. (Ed.), Advances in motor learning and control. Human Kinetics, Champaign, IL.1996:261-292.
    [59]Cavagna GA. Storage and utilization of elastic energy in skeletal muscle[J]. Exercise Sports Sci Rev.1977,5:89-129.
    [60]Challis JH. Static optimization lecture notes[M]. Kines 597C, Modeling in Biomechanics, The Pennsylvania State University,1999.
    [61]Challis JH, Kerwin, DG. An analytical examination of muscle force estimations using optimization techniques. Proceedings of the Institution of Mechanical Engineers[J]. Part H Journal of Engineering Medicine,1993,207:139-148.
    [62]Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting[J]. J Biomech,.2007,40(16):3555-62.
    [63]Clanton TO, Coupe KJ. Hamstring strains in athletes:Diagnosis and treatment[J]. J Am Acad Orthop Surg.1998,6:237-248.
    [64]Collins JJ. The redundant nature of locomotor optimization laws[J]. Journal of Biomechanics,1995,28:251-267.
    [65]Crowninshield RD. Use of optimization techniques to predict muscle forces[J]. Journal of Biomechanical Engineering,1978,100:88-92.
    [66]Crowninshield RD, Brand RA. The prediction of forces in joint structures:distribution of intersegmental resultants[J]. Exercise and Sport Sciences Reviews,1981,9:159-181.
    [67]Delecluse CH. Infuence of strength training on sprint running performance[J]. Sport Medicine.1997,24:147-156.
    [68]Dowling JJ. The use of electromyography for the noninvasive prediction ofmuscle forces. Current issues[J]. Sports Medicine,1997,24:82-96.
    [69]Ekstrand J, Gillquist J. Soccer injuries and their mechanisms:a prospective study. Med Sci Sports Exerc.1983,15(3):267-70.
    [70]Farley CT, Ferris DP. Biomechanics of walking and running:center of mass movements to muscle action[J]. Exercise Sports Sci Rev,1998,26:253-285.
    [71]Finni T, Komi PV, Lukkariniemi J. Achilles tendon loading during walking:application of a novel optic fiber technique[J]. European Journal of Applied Physiology.1998,7:289-291.
    [72]Flash T, Hogan N. The coordination of arm movements:an experimentally confirmed mathematical model[J]. Journal of Neuroscience,1985,5:1688-1703.
    [73]Frishbereg BA. An analysis of overground and treadmill sprinting[J]. Med Sci Sports Exerc,1983,15(6):478-85.
    [74]Garrett WE, Safran MR, Seaber AV, Glisson RR, Ribbeck BM. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure[J]. American Journal of Sports Medicine,1987,15:448-454.
    [75]Garrett W E. Jr. Muscle strain injuries[J]. Am. J. Sports Med,1996,24:32-38.
    [76]Gerritsen K, van den bogert A, Hulliger M, Zernicke R. Instrinsic muscle properties facilitate locomotor control-a computer simulation study[J]. Motor Control.1998;2:206-220.
    [77]Gracovetsky S, Farfan F, amy C. A mathematical model of the lumbar spine using an optimized system to control muscles and ligaments[C]. Orthopedic Clinics of North America, 977,8:35-153.
    [78]Gregor RJ, Abelew TA. Tendon force measurements and movement control:a review[J]. Medicine and Science in Sports and Exercise,1994,26:1359-1372.
    [79]Griffiths RI. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle:the role of tendon compliance[J]. J. Physiol,1991,436:219-236.
    [80]Hahs DW, Stiles RN. Buckle muscle tension transducer:what does it measure? [J].Journal of Biomechanics,1989,22:165-166.
    [81]Hagan MT, Demuth HB, Beale MH. Neural Network Design[M]. Boston, PWS Publishing Company,1996.
    [82]Haykin S. Neural networks:a comprehensive foundation (2nd ed.) [M]. Prentice-Hall, Upper Saddle River, NJ,1999.
    [83]Heiderscheit BC, Hoerth DM, Chumanov ES, Swanson SC, Thelen BJ, Thelen DG. Identifying the time of occurrence of a hamstring strain injury during treadmill running:a case study[J]. Clin Biomech,2005,20:1072-1078.
    [84]Herzog W, Binding P. Mathematically indeterminate systems. In Nigg, B.M.,Herzog, W. (Eds.), Biomechanics of the musculo-skeletal system (2nd ed.) [M]. John iley & Sons, Chichester,1999:472-486.
    [85]Herzog W, Leonard.R. Validation of optimization models that estimate the forces exerted by synergistic muscles[J]. Journal of Biomechanics,1991,24:31-39.
    [86]Herzog W. Force-sharing among the primary cat ankle muscles[J]. European Journal of Morphology,1998,36:280-287.
    [87]Herzog W. Muscle properties and coordination during voluntary movement[J]. Journal of Sports Sciences,2000,18:141-152.
    [88]Herzog W. Muscle function in movement and sports[J]. Supplement to the American Journal of Sports Medicine,1996,24(6):14-19
    [89]Hoek van Dijke G.A, Snijders CJ, Stoeckart R, Stam HJ. A biomechanical model on muscle forces in the transfer of spinal load to the pelvis and legs[J]. Journal of Biomechanics,1999,32:927-933.
    [89]Hof AL. The relationship between electromyogram and muscle force[C]. Sportverletz Sportschaden,1997,11:79-86.
    [90]Hof AL. Muscle mechanics and neuromuscular control[J]. J Biomech.2003,36:1031-1038.
    [91]Hodgson, J.A., The relationship between soleus and gastrocnemius muscle activity in conscious cats a model for motor unit recruitment? [J]. Journal of Physiology,1983, 337:553-562.
    [92]Hogan N, Winters JM. Principles underlying movement organization:upper limb. In: Winters, J.M., Woo, S.L.-Y. (Eds.), Multiple Muscle Systems:Biomechanics and Movement Organization[C]. Springer-Verlag, New York.1990:182-194.
    [93]Hunter JP, Marshall RN, Mcnnair PJ. Segment-interaction analysis of the stance limb in sprint running[J]. Journal of Biomechanics.2004,37(9):1439-1446.
    [94]Ito A, Saito M, Sagawa K et al. Leg movement analysis of gold and silver medalists in mens 100m at the Ⅲ world championships in athletics[C]. In Bouisset M (ed) ⅪⅤth Congress of the International Society of Biomechanics,1993:624-625.
    [95]Jacobs R, Bobbert MF, Van Ingen Schenau G.J. Mechanical output from individual muscles during explosive leg extensions:The role of biarticular muscles[J]. Journal of Biomechanics,1996,29:513-523.
    [96]Jacobs R, Bobbert ME van Ingen Schenau GJ. Function of mono-and biarticular muscles in running[J]. Med Sci Sports Exerc.1993,25:1163-1173.
    [97]Jacobs R, van Ingen Schenau. Intermuscular coordination in a sprint push-off[J]. J Biomech. 1992,25:953-965.
    [98]Johnson MD, Buckley JG. Muscle power patterns inn the mid-acceleration phase of sprinting[J]. J Sports Sci,2001,19:263-272
    [99]Jonhagenl M, Ericson G, Nemeth E, Eriksson. Amplitude and timing of electromyographic activity during sprinting[J]. Scund J Med Sri Sports,1996,6:15-21
    [100]Kaufman KR, An K-N, Litchy WJ, Chao EYS. Physiological prediction of muscle forces. Ⅰ. Theoretical formulation[J]. Neuroscience,1991,40:781-792.
    [101]Komi PV. Relevance of in vivo force measurements to human biomechanics[J]. Journal of Biomechanics,1990,23(1):23-34.
    [101]Komi PV, Fukashiro S, Jarvinen M. Biomechanical loading of Achilles endon during normal locomotion[J]. Clinics in Sports Medicine,1992,11:521-531.
    [102]Komi PV, Belli A, Huttunen V, Bonnefoy R, Geyssant A, Lacour J.R. Opticfibre as a transducer of tendomuscular forces[J]. European Journal of Applied Pysiology,1996,72: 278-280.
    [103]Komi PV, Salonen M, Jarvinen M. In vivo measurement of Achilles tendon forces in man[J]. Medicine and Science in Sports and Exercise,1984,16:165-166.
    [104]Komi PV. Bosco C. Potentiation of the mechanical behaviour of human skeletal muscle through prestretching[J]. Acta Physiol Scand,1979,106:467-472.
    [105]Koike Y, Kawato M. Estimation of movement from surface EMG signals using a neural network model. In:Winters, J.M., Crago, P.E. (Eds.), Biomechanics and neural control of posture and movement[M]. Springer-Verlag, New York.2000:440-457.
    [106]Kotaro Sasaki, Richard R. Neptune. Differences in muscle function during walking and running at the same speed[J]. Journal of Biomechanics,2006,29(7):2005-2013
    [107]Koulouris G, Connell DA, Brukner P, Schneider-kolsky M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes[J]. Am J Sports Med,2007,35(9):1500-1505.
    [108]Krejci V, Koch P. Muscle and Tendon injuries in Athletes[M]. Edited, Chicago, Yearbook Medical Publishers,1979.
    [109]Kurokawa S, Fukunaga T, Fukashiro S. Behaviour of fascicles and tendinous structures of human gastrocnemius during vertical jumping[J]. J Appl Physiol,2001,90:1349-1358.
    [110]Kuitunen S, Komi PV, Kyro lainen H. Knee and ankle joint stiffness in sprint running[J].Med Sci Sports Exerc,2002,34(1):166-73.
    [111]Lan N. Analysis of an optimal control model of multi-joint arm movements[J].Biological Cybernetics,1997,76:107-117.
    [112]Latash ML. Control of human movement[M]. Human Kinetics Publishers, Champaign, IL. 1993.
    [113]Lieber RL, Friden J. Muscle damage is not a function of muscle force but active muscle strain[J]. J Appl Physiol,1993,74(2):520-6.
    [114]Lieber RL, Friden J. Mechanisms of muscle injury gleaned from animal models[M]. Am J Phys Med Rehabil,2002,81(11):S70-9.
    [115]Lieber RL, Friden J. Mechanisms of muscle injury after eccentric contraction[J]. J Sci Med Sport.1999,2(3):253-265.
    [116]Li L, Landin D, Grodesky J, Myers J. The function of gastrocnemius as a knee flexor at selected knee and ankle angles[J]. J Electromyogr Kinesiol,2002,12:385-390.
    [117]Liu Yu.(刘宇). Kinematik, Dynamik und Simulation des Leichtathletischen Sprints [Kinematics, dynamics and simulation of sprint running] [C]. Frankfurt am main:Verlag Peter Lang,1993.
    [118]Liu Yu (刘宇), Shi-Min Shih, Shi-Liu Tian, Yun-Jian Zhong, Li Li. Lower extremity joint torque predicted by using artificial neural network during vertical jump[J]. Journal of Biomechanics,2009,42:906-911
    [119]Liu MM, Herzog W, Savelberg HHCM. Dynamic muscle force predictions from EMG:an artificial neural network approach[J]. Journal of Electromyography and Kinesiology,1999, 9:391-400.
    [120]Lloyd DG, Buchanan TS. A model of load sharing between muscles and soft tissues at the human knee during static tasks[J]. Journal of Biomechanical Engineering,1996,118: 367-376.
    [121]Mann R, Sprague P. A kinetic analysis of the ground leg during sprint running[J]. Research Quarterly,1980,5:334-348.
    [122]Mann RV. A kinetic analysis of sprinting[J]. Med Sci Sports Exerc,1981,13(5):325-28.
    [123]Mann RA, Moran GT, Dougherty SE. Comparative electromyography of the lower extremity in jogging, running, and sprinting[J]. American Journal of Sports Medicine, 1986,14:501-510.
    [124]Mann R. Methods of sprint training from a biomechanical point of view[J]. New Studies in Athletics,1998,13(1)89-90.
    [125]Marnix G.J. Gazendam a, At L. Hof. Averaged EMG profiles in jogging and running at different speeds[J]. Gait & Posture,2007,(25):604-614
    [126]MacConaill, M.A. The ergonomic aspects of articular mechanics. In:Evans, F.G.(Ed.), Studies on the anatomy and function of bones and joints[M]. Springer Verlag, Berlin.Mccrory P, Bell S. Nerve entrapment syndromes as a cause of pain in the hip, groin and buttock. Sports Med.1999,27:261-74.
    [127]Magnusson S, Aagaard P, Simonsen E, Bojsen-Moller F. Passive tensile stress and energy of the human hamstring muscles in vivo[J]. Scandinavian Journal of Medicine & Science in Sports,2000,10:351-359.
    [128]Mero A, Komi PV. Electromyographic activity in sprinting at speeds ranging from sub-maximal to supra-maximal[M]. Med Sci Sports Exerc,1987:19:26C274.
    [129]Mero A, Komi P, Gregor R. Biomechanics of Sprint Running:A Review[J]. Sports Medicine,1992,13(6):376-392.
    [130]Meglan D, Berme N, Zuelzer W. On the construction, circuitry and properties f liquid metal strain gages[J]. Journal of Biomechanics,1988,21:681-685.
    [131]Morgan DL. New insights into the behavior of muscle during active lengthening[J]. Biophys J,1990,57(2):209-221.
    [132]Nathan H, Weizenbluth M, Halperin N. The lumbosacral ligament (LSL), with special emphasis on the "lumbosacral tunnel" and the entrapment of the 5th lumbar nerve[J]. Int Orthop,1982,6:197-202.
    [133]Nieminen H, Niemi J, Takala EP, Viikari-Juntura E. Load-sharing patterns in the shoulder during isometric flexion tasks[J]. Journal of Biomechanics,1996,28:555-566.
    [134]Nikolaou P K. et al. Biomechanical and histological evaluation of muscle after controlled strain injury[J]. Am. J. Sports Med,1987,15:9-13
    [135]Nigg BM, De Boer RW, Fisher V. A kinematic comparison of overground and treadmill running[J]. Med Sci Sports Exerc,1995,27(1):98-105.
    [136]Norman RW.A barrier to understanding human motion mechanisms:a commentary. In Skinner, J.S., Corbin, C.B., Landers, D.M., Martin, P.E., Wells, C.L. (Eds.), Future Directions in Exercise and Sport Science Research[C]. Human Kinetics, Champaign, IL. 1989:151-161.
    [137]Novacheck TF. Review paper:the biomechanics of running[J]. Gait and Posture, 1993,7:77-95
    [138]Nussbaum MA, Chaffin DB. Evaluation of artificial neural network modeling to predict torso muscle activity[J]. Ergonomics,1996,39:1430-1444.
    [139]Nussbaum MA, Chaffin DB, Martin BJ. A back-propagation neural network model of lumbar muscle recruitment during moderate static exertions[J]. Journal of Biomechanics, 1995,28:1015-1024.
    [140]Nussbaum MA, Martin BJ, Chaffin DB. A neural network model for simulation of torso muscle coordination[J]. Journal of Biomechanics,1997,30:251-258.
    [141]Olsewski J, Simmons E, Kallen F, Mendel F. Evidence from cadavers suggestive of entrapment of fifth lumbar spinal nerves by lumbosacral ligaments[J]. Spine,1991,16: 336-347.
    [142]Olney SJ, Winter DA. Predictions of knee and ankle moments of force in walking from EMG and kinematic data[J]. Journal of Biomechanics,1985,18:9-20.
    [143]Orchard J, Marsden J, Lord S, Garlick D. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers[J]. Am J Sports Med,1997,25(1): 81-85.
    [144]Orchard J. Intrinsic and extrinsic risk factors for muscle strains in Australian footballers[J]. Am J Sports Med,2001:300-303.
    [145]Orchard J, Seward J. Epidemiologhy of injuries in the asutralian Football League, seasons 1997-2000[J]. Br J Sports Med,2002,36(1):39-45.
    [146]Orchard J, Alcott E, James T, Farhart P, Portus M, Waugh S. Exact moment of a gastrocnemius muscle strain captured on video[J]. British Journal of Sports Medicine,2002, 36(3):222-223.
    [147]Pandy MG. An analytical framework for quantifying muscular action during human movement. In:Winters, J.M., Woo, S.L.-Y. (Eds.), Multiple Muscle Systems:Biomechanics and Movement Organization[C]. Springer-Verlag, New York.1990:653-662.
    [148]Pandy MG. Computer modeling and simulation of human movement[J]. Annual Review of Biomedical Engineering,2001,3:245-273.
    [149]Pedersen DR, Brand RA, Davy DT. Pelvic muscles and acetabular contact forces during gait[J]. Journal of Biomechanics,1997,30:959-965.
    [150]Prentice SD, Patla AE, Stacey DA. Artificial neural network model for the generation of muscle activation patterns for human locomotion[J]. Journal of Electromyography and Kinesiology,2001,11:19-30.
    [151]Prilutsky BI, Zatsiorsky VM. Optimization-based models of muscle coordination[J]. Exercise and Sport Sciences Reviews,2002,30:32-38.
    [152]Radin E, Simon S, Rose R. Practical Biomechanics for the Orthopaedic Surgeon[M]. Edited, New York, John Wiley,1979.
    [153]Ralph M.& Paul S. A kinetic analysis of the ground leg during sprint running[J]. Research quarterly for exercise and sport,1980,51 (2):334-348
    [154]Reber L, Perry J, Pink M. Muscular control of the ankle in running[J]. American Journal of Sports Medicine,1993,21:805-810.
    [155]Richard A, Brand Douglas R, Pedersen and James A, Friederich. The Sensitivity of Muscle Force Predictions to Changes in Physiologic cross-Sectional Area[J]. J.Biomechanics,1986, 19(8):589-596.
    [156]Schache AG, Wrigley TV, Baker R, Pandy M G. Biomechanical response to hamstring muscle strain injury[J]. Gait & Posture,2009,29:332-338.
    [157]Sepulveda F, Wells DM, Vaughan CL. A neural network representation of electromyography and joint dynamics in human gait[J]. Journal of Biomechanics,1993,26: 101-109.
    [158]Seif-Naraghi AH, Winters JM. Optimized strategies for scaling goal-directed dynamic limb movements. In:Winters, J.M., Woo, S.L.-Y. (Eds.), Multiple Muscle Systems: Biomechanics and Movement Organization[C]. Springer-Verlag, New York.1990:312-334.
    [159]Simonsen EB, Thomsen L, Klausen K. Activity of mono-and biarticular leg muscles during sprint running[J]. Eur J Appl Physiol Occup Physiol.1985,54(5):524-32.
    [160]S Jonhagen, MO Ericson G. Nemeth E, Eriksson. Amplitude and timing of electromyographic activity during sprinting[J]. Scund J Med Sri Sports,1996,6:15-21
    [161]Smith JL, Betts B, Edgerton VR. Rapid ankle extension during:selective rcruitment of fast ankle extensors[J]. Journal of Neurophysiology,1980,43:612-620.
    [162]Soechting JF, Bueno CA, Herrman U, Flanders M. Moving effortlessly in three dimensions: does Donders law apply to arm movements? [J]. Journal of Neuroscience,1995,15: 6271-6280.
    [163]Sofia Heintz. Muscular Forces from Static Optimization[M]. Technical Reports from Royal Institute of Technology.KTH Mechanics. SE-100 44 Stockholm, Sweden,2006:37-40.
    [164]Stanton P, Purdam C. Hamstring injuries in sprinting:the role of eccentric exercise[J]. J Orthop Sports Phys Ther,1989,10(9):343-349.
    [165]Taimela S, Osterman K, Kunjale U et al. Motor ability and personality with reference to soccer injuries[J]. Journal of Sports Medicine and Physical Fitness,1990,30(1):194-201.
    [166]Talbot JA,Morgan DL. The effects of stretch parameters on eccentric exerciseinduced damage to toad skeletal muscle[J]. J Muscle Res Cell Motil,1998,19:237-245.
    [167]Thelen DG, Chumanov ES, Hoerth DM, Best TM, Swanson SC, Li L, Young M, Heiderscheit BC. Hamstring muscle kinematics during treatmill sprinting[J]. Med Sci Sports Exerc,2005a,37(1):108-14.
    [168]Thelen DG, Chunmanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of Biceps Femoris Musculotendon Mechanics during the Swing Phase of Sprinting[J]. Med. Sci. Sports Exerc,2005b,37:1931-1938.
    [169]Transfeldt E, Robertson D, Bradford D. Ligaments of the lumbosacral spine and their role in possible extraforaminal spinal nerve entrapment and tethering[J]. J Spinal Disord,1993,6:507-512.
    [170]Tsirakos D, Baltzopoulos V, Bartlett R. Inverse optimization:functional and physiological considerations related to the force-sharing problem[J]. Critical Reviews in Biomedical Engineering,1997,25:371-407.
    [171]Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm movement.Minimum torque-change model[J]. Biological Cybernetics,1989, 61:89-101.
    [172]van der Helm FCT. A finite element musculoskeletal model of the shoulder mechanism[J]. Journal of Biomechanics,1994,27:551-569.
    [173]Van Don B. J. Hamstring injuries in sprinting. Ph.D. Dissertation[C]. The University of Iowa, Exercise Science, Iowa City,1998.
    [174]Vardaxis V, Hoshizaki TB. Power patterns of the leg during the recovery phase of the sprinting stride for advanced and intermediate sprinters[J]. Int J Sport Biomech, 1989,5:33-49.
    [175]Vaughan CL, Hay JG, Andrews JG. Closed loop problems in biomechanics:2. An optimization approach[J]. Journal of Biomechanics,1982,15:201-210.
    [176]Walmsley B, Hodgson JA, Burke RE. Forces produced by medial gastrocnemius and soleus during locomotion in freely moving cats[J]. Neurophysiology,1978,41:1203-1215.
    [177]Weimann K and Tidow G. Relative activity of the hip and knee extensors in sprinting-implications for training[J]. New Studies in Athletics,1995,10 (1):29-49.
    [178]Weber W, Weber E. Mechanik der menschlichen Gehwerkzeuge [Mechanics of human locomotion apparatus] [M]. Fisher-Verlag, Gottingen,1936.
    [179]Whittlesey SN & Hamill J. An alternative model of the lower extremity during locomotion[J]. Journal of Applied Biomechanics,1996,12:269-279.
    [180]Winters JM. Study movement selection and synergies via a synthesized neurooptimization framework[C]. In:Winters, J.M., Crago, P.E. (Eds.), Biomechanics and neural control of posture and movement. Springer-Verlag, New York,2000:458-474.
    [181]Winter DA. Biomechanics and Motor Control of Human Movement,4nd edn[M]. New York:John Wiley,2009.
    [182]Woods C, Hawkins RD, Maltby S, et al. The Football Association Medical Research Programme:an audit of injuries in professional football-analysis of hamstring injuries[J]. Br J Sports Med,2004,38(1):36-41.
    [183]Wood G. Biomechanical limitations to sprint running[J]. Medicine and Sports Sciences. 1987,25:58-71.
    [184]Worrell TW. Factors associated with hamstring injuries. An approach to treatment and preventative measures[J]. Sports Med,1994,17(5):338-345.
    [185]Yamamoto T. Relationship between hamstring strains and leg muscle strength. A follow-up study of collegiate track and field athletes[J]. J Sports Med Phys Fitness,1993, 33(2):194-199.
    [186]Zajac FE. Muscle and tendon:Properties, models, scaling, and application to biomechanics and motor control[J]. Critical Reviews in Biomedical Engineering,1989,17:359-411.
    [187]Zajac FE, Winters JM. Modeling musculoskeletal movement systems:Joint nd body segmental dynamics, musculoskeletal actuation, and neuromuscular control[M]. In:Winters, J.M., Woo, S.L.-Y. (Eds.), Multiple Muscle Systems:Biomechanics and Movement Organization. Springer-Verlag, New York.1990:121-148.
    [188]Zarins B, Ciullo JV. Acute muscle and tendon injuries in athletes[J]. Clin Sports Med.,1983,2(1):167-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700