火星典型地貌特征知识的描述分类与识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火星(Mars),作为太阳系九大行星中自然地理环境与地球最为接近的类地行星之一,以其神秘的炽热外表,自古以来就吸引着人们的注意。本文研究以美国“火星环球观测者”(Mars Global Surveyor, MGS)计划获取的火星表面地形数据为主要研究对象,从理解、构建地貌景观的重要基础入手,采用归纳、综合的基本推理方法,分别借助定性和定量分析方法对火星典型地貌形态特征知识给予描述、分类与识别,以期为火星景观建模及其自然环境的进一步研究提供有益的参照。
     主要工作如下:
     1.研究火星基本地貌特征在不同语言环境下的描述方法(自然的和模型的),分别给出了基于定性方法和基于定量方法的火星典型地貌特征描述思路与途径。特别系统而全面地研究了开度在火星典型地貌特征知识描述、分类与识别工作中的具体作用,揭示了其作为有效表达地形地貌本质属性特征的实际应用意义和价值,创新性地将开度由概念产生时仅“用于地形地貌特征定量表达”的普通目的进一步拓展到自然景观实体分析、理解的现实研究目的;
     2.基于前人地表地貌已取得的研究成果和经验,针对相关领域尚未对火星典型地貌分类体系构建形成系统而统一认识的实际情况,提出了符合普通认知水平、具有较强适应能力的火星典型地貌类型划分体系。实践证明,本文提出的分体系在一定程度上克服了类似分类体系侧重定量化判别准则,类别结构定义“生硬”、“绝对”等不合理现象,能够明确、直接、方便地对研究对象进行有效表达,其结果也更符合普通认知水平的实际要求;
     3.针对基于影像数据资料火星典型地貌识别方法在实际应用中出现的问题与不足,以撞击坑地貌为主要研究对象,创新性提出和研究了基于高程特性的火星典型地貌特征识别方法。从最终的研究结果来看,与传统方法相比,基于高程特性的火星典型地貌识别方法在提高识别效率、减小研究者劳动强度等方面具有比较明显的优势,识别结果也能够满足特定观测尺度水平下的识别要求。
Mars is the fourth planet from the Sun and the outer-most of the four terrestrial world in the solar system. Named by the ancient Romans for their bloody god of war, Mars is for many people the most intriguing of all celestial objects.With the dawn of the Space Age,scientists of various research fields have got the chance to learning the planet's properties. Orbiters have performed large-scale surveys of much of the planet's surface,lander data have complemented these planetwide studies with detailed information on the specific sits,the Mars Global Surveyor spacecraft (NASA) is one of them. This research, based on the survey data of MGS program,includes three important matters, characterization,classification and identification of Mars topographic surface specific landform-characters,especially for the impact craters and valles-canyons.As the research results show,we really hope our research in these fields can help corresponding scientific researches.
     Our research mainly focus on:
     1.Characterization of Martian topographic characters. We study several methods of discribing Mars specific landforms (impact craters and valles-canyons),qualitatively and quantitatively. Especially, this research shows a quantitative notion of "Openness" as an objective and very efficacious character description method.Besides, we also find that "Openness" can be used in other situations, such as Martian landforms classification as well as identification, and it also plays a very important role in the overall research.
     2.1n the second research field, we study the method of constructing Martian terrain patterns and the way of quarternary landforms classification. Based on the discussion of role of landforms classification in modern soil survey and soil-landscape studies, according to some existing Martian classification patterns, this research addresses a new Mars landforms classes pattern. And we find that this pattern overcomes some obvious drawbacks of other ones, it shows a clear, as well as easy-understanding way to interpret Mars specific landforms.
     3.Based on the special survey data attributes, we study the method of identification impact craters quantitatively,objectively and efficiently. Traditionally, the descriptive morphology has been used to study and categorize different types of martian landscapes.Various researchers have manually collected data sets of crater locations and characteristics,but such works are laborious process,and the results are incomplete. In order to overcoming these shortcomings, this research brings up a quantitative crater-detection technique. According to the final results, we find that it significantly speeds up the rate of building the data sets and provides means for an objective and repeatable process for performing the analysis.
引文
[1]陈述彭主编.地球信息科学[M].北京:高等教育出版社.2007
    [2]陈涛,艾廷华.多边形骨架线与形心自动搜索算法研究.武汉大学学报.信息科学版,2004,29(5):443~446.
    [3]杜瑞颖,刘镜年.面状地物名称注记的自动配置研究.测绘学报,1999,28(4):365~368.
    [4]高玄或.地貌基本形态的主客分类法[J].山地学报.22(3)2004.261-266.
    [5]高玄或.地貌类型混合法研究[J].地理与地理信息科学.22(2).2006.83-87.
    [6]高玄或,王青.地貌分类指标的钢柔性探索[J].世界科技研究与发展.28(3).2006.79-85.
    [7]关泽群,刘继琳.遥感图像解译[M].武汉:武汉大学出版社.2007.
    [8]胡静妍.地貌可视化及晕渲图制作系统的研究与实现[D].武汉:武汉大学.2005.
    [9]胡鹏,黄杏元,华一新.地理信息系统原理[M].武汉:武汉大学出版社.2000.
    [10]胡鹏,游涟,杨传勇等.地图代数[M].武汉:武汉大学出版社.2002.
    [11]胡鹏,杨传勇,吴艳兰等.新数字高程模型理论方法标准和应用[M].北京:测绘出版社,2007.
    [12]胡鹏,游涟,胡海.地图代数概论[M].北京:测绘出版社.2008.
    [13]李德仁,王树良,李德毅.空间数据挖掘理论与应用[M]北京:科学出版社.2006.
    [14]李少梅,孙群.计算机地貌晕渲的方法和实践[J].测绘学院学报.18(3).2002.65-67.
    [15]李少梅,孙群.数字制图中地貌晕渲技术的发展现状[J].测绘通报.2003.18-21.
    [16]李少梅.数字地貌晕渲理论与技术的研究[D].中国人民解放军信息工程大学.2004.
    [17]梅安新,彭望碌,秦其明等.遥感导论[M].北京:高程教育出版社.2002.
    [18]史建魁,刘振兴等.火星探测的科学意义(2004年科学发展报告)[M].中国科学院.北京:科学出版社.2004.
    [19]施祖辉.地貌晕渲法[M].北京:测绘出版社.1983.
    [20]孙家抦,舒宁,关泽群.遥感原理方法和应用[M].北京:测绘出版社.1999.
    [21]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社.2005.
    [22]王(?).地图注记知识与面状要素注记配置自动化研究[D].武汉大学:资源与环境科学学院.2006.
    [23]王(?).基于Gestalt原则的汉字注记配置规则与形式化表达研究[J].测绘学报.36(4),2007.457-462
    [24]王静,李秀彬,王秀兰等,土地资源遥感监测与评价方法[M].北京:科学出版社.2006.
    [25]王远飞,何洪林.空间数据分析方法[M].北京:科学出版社.2007.
    [26]吴樊,俞连笙.基于DEM的地貌晕渲图的制作[J].测绘信息与工程.28(1),2003.31-32.
    [27]吴艳兰.基于参考面的可视域计算方法[J].测绘信息与工程.2001.(1).19-21.
    [28]吴艳兰.地貌三维综合的地图代数模型和方法研究[D].武汉:武汉大学.2004
    [29]游雄.三维地貌表示方法的演进[J].测绘工程.9(4),2000.1-6.
    [30]俞连笙,王涛.地图整饰[M].北京:测绘出版社.1985.
    [31]周启鸣,刘学军.数字地形分析[M].北京:科学出版社.2006.
    [32]祝国瑞主编.地图学[M].武汉:武汉大学出版社.2004.
    [33]O.Abramov, McEwen A. An Evaluation of Interpolation Methods for Mars Orbiter Laser Altimeter(MOLA) Data [M]. University of Arizona. Lunar and Planetary laboratory.2004.
    [34]V.Ansan, N.Mangold,Ph.Masson et al. Topography of Valley Networks on Mars:Comparison between MOLA and HRSC DTM[J]. Lunar and Planetary Science ⅩⅩⅩⅧ(2007).#1660.
    [35]Victor R. Baker. Water and the Martian landscape[J].Nature. Vol.412.2001.228-236.
    [36]N.G.Barlow,.Crater size-frequency distributions and a revised martian relative chronology.Icarus,1988.75(2),285-305.
    [37]N.G.Barlow,T.L.Bradley.Martian impact craters:Correlations of ejecta and interior morphology with diameter, latitude,and terrain.Icarus,1990.87(1),156-179.
    [38]B.D.Bue,T.F..Stepinski Automated Classification of Landforms in Terra Cimmeria, Mars[J]. Lunar and Planetary Science XXXVI(2005).#1195
    [39]M.C.Bourke, M.Balme,R.A. Beyer et al.A Comparison of Methods Used to Estimate the Height of Sand Dumes on Mars[J].Geomorphology. Vol.81.2006,440-452.
    [40]G.Caldarelli,P.De Los Rios,M.Montuori et al. Statistical Features of Drainage Basins in Mars Channel Networks[J].The European Physical Journal (B). Vol,38.2004.387-391.
    [41]R.A.Craddock,T.A.Maxwell,A.D.Howard,Crater morphology and modification in the Sinus Sabaeus and Margaritifer Sinus region of Mars[J]. J.Geophys.Res.,1997.102(E6),13321-13340.
    [42]R.A.Craddockand,T.A.Maxwell,Resurfacing of the martian highlands in the Amenthes and Tyrrhena region[J].J. Geophys.Res.,1990.95(B9),14265-14278.
    [43]R.A.Craddock,T.A.Maxwell.Geomorphic evolution of the martian highlands through ancient fluvial processes[J].J.Geophys.Res.,1993.98(E2),3453-3468.
    [44]Eric Chaisson,Steve Mcmillan.Astronomy Today.Vol.1 The Solar System (Fourth Edition)[M]. Upper Saddle River,New Jersey:Prentice Hall..2002.
    [45]F.M.Costard,The spatial distribution of volatiles in the martian hydrolithosphere.Earth Moon and Planets,1989.45,265-290.
    [46]J.B.Garvin,J.J.Frawley.Geometric properties of martian impact craters:Preliminary results from the Mars Orbiter Laser Altimeter[J]. Geophys.Res.Lett.,1998.5(24),4405-4408.
    [47]J.B.Garvin,S.E.H,J.Sakimoto,J.Frawley,et al.North polar region craterforms on Mars:Geometriccharacteristics from the Mars Orbiter Laser Altimeter[J],Icarus,2000.144(2),329-352.
    [48]Stephan Gehrke, Marita Wahlisch, Hartmut Lehmann et al. Cartography with HRSC on Mars Express-The New Series"Topographic Image Map Mars 1:200,000"[J]. Vortrage 23, Wissenschaftlich-Technische Jahrestagung der DGPF, Band 12, Bochum 2003. S.451-458.
    [49]S.Ghosh,T.F.Stepinski.Automatic Mapping of Martian Landforms Using Segmentation-based Classification[J]. Lunar and Planetary Science XXXVIII(2007).#1200.
    [50]Randolph L. Kirk. Mars[J].Photogrammetric Engineering and Remote Sensing. Vol.45.2005. 1111-1127.
    [51]T.Hare,J.Skinner Jr. E. Liszewski et al. Mars Crater Density Tools:Project Report[J].Lunar and Planettary Science XXXVII.2006.2398-2399.
    [52]R.O.Kuzmin,N.N.Bobina,E.V.Zabalueva,et al,Structural inhomogeneities of the martian cryosphere.Solar System Res.,1988.22,121-133.
    [53]I.Molloy,T.F.Stepinski.Automatic mapping of valley networks on Mars[J]. Computer & Geosciences.2007,33(6). pp728-738.
    [54]G.Neukum. And the HRSC Co-Investigator and Experiment Team,2002:The High Resolution Stereo Camera of Mars Express.-ESA Special Publication, SP-1240.
    [55]Gregory A Neumann, Maria Zuber, David E.Smith. MOLA Experiment Gridded Data Record SoftwareInterface Specifications (MOLA EGDR SIS) Version3.0.[S]. Goddard Space Flight Center,NASA.2003.
    [56]Dumke A. Spiegel M. Schmidt R. et al.Generation of High-Resolution Digital Terrain Models and Ortho-Image Mosaics of Mars, on the Basis of Mars-Express HRSC Data.[J].Geophysical Research Abstracts.2008. Vol.10 EGU2008-A-08811.
    [57]Liz Roberts. Geomorphic Comparison of Volcanoes on Earth and Mars:Implications for Plate Tectonics[EB/OL].Arkansas-Oklahoma Center for Space and Planetary Sciences.2004.
    [58]D.J.Roddy,N.K.Robertson,C.L.Mardock,Digital inventory of martian impact craters,ejecta blankets,and selected morphologic parameters.Lunar Planet.Sci.ⅩⅦ,1986.718-719.
    [59]D.J.Roddy,N.R.Isbell,C.L.Mardock,et al,I.Martian impact craters.ejecta blankets,and related morphologic features:Computer digital inventory in Arc/Info and Arcview format. Lunar Planet.Sci.ⅩⅩⅨ,abstract 1874(CD-Rom).1998.
    [60]David E. Smith, Maria T. Zuber, Sean C.Solomon et al. The Global Topography of Mars and Implications for Surface Evolution[J].Science. Vol.284.1999.1495-1503.
    [61]T.F. Stepinski.Toward Machine Geomorphic Mapping of Planetary Surfaces[J].Computer and Geophysics.Vol.35.2007.1153-1154.
    [62]John P.Wilson,John C. Gallant. Terrain Analysis:Principles and Applications[M].John Wiley & Sons,Inc.2000.
    [63]Ryuzo Yokoyama, Michio Shirasawa, Richard J.Pike. Visualizing Topography by Openness:A New Application of Image Processing to Digital Elevation Models[J].Photogrammetric Engineering and Romote Sensing.Vol.68,No.3.2002.257-265.
    [64]R.Vilalta, T.F. Stepinski.Thematic Maps of Martian Topography Generated by A Clustering Algorithm[J].Lunar and Planetary Science ⅩⅩⅩⅤ(2003).#872
    [65]Scott C.Mest,David A. Crown. Millochau Crater,Mars:Infilling and Erosion of An Ancient. Highland Impact Crater[J].ICARUS.Vol,175.2005.335-359.
    [66]T.A.Mutch et al. The Geology of Mars[J].NASA,1976.
    [67]John.Frey, F.J.Erin. AMap of the Distribution of Large Surface-Visible Impact Structures[M]. NASA Goddard Center.2005.
    [68]C.R.Spitzer.Meteorite Impacts, Ctaters and Multi-Ring Basins[M].NASA.2000.
    [69]G.Komatsu, V.R. Baker.Formation of valleys and cataclysmic flood channels on Earth and Mars, In:Chapman, M.G. (ed), The Geology of Mars:Evidence from Earth-Based Analogs, Cambridge University Press,2007.297-321.
    [70]G.Caldarelli,P.De Los Rios,M.Montuori,et al.Statistical Features of Drainage Basins in Mars Channel Networks[J].The European Physical Journal B.Vol38,2004.387-391.
    [71]R.K.Mark. A Multidirectional,Oblique-Weighted,Shaded-Relief Image of the Island of Hawaii[J].U.S.Geological Survey Open-file Report.1992.92-422.
    [72]J.G. Moore,R.K.Mark.Morphology of the Island of Hawaii[J].GSA Today.2 (12) 1992.257-259.
    [73]J.R.Riehle,M.D.Fleming,B.F.Plafker et al.Digital Shaded-Relief Image of Alaska.U.S. Geological Survey Miscellaneous Investigations Map Ⅰ-2585,scale 1:2,500,000.
    [74]Stephen J.Ventura,Barbara J.Irvin.Automated Landform Classification Methods for Soil-landscape Studies[M].Terrain Analysis:Principles and Applications. John Wiley&Sons,Inc.2000.
    [75]R.V.Ruhe.Quaternary Landscapes[M].Iowa. Ames.IA. Iowa University Press.1969.
    [76]J.G.Speight. A Parametric Approach to Landform Regions.In:Brown E.H. Waters R.S(eds.)Progress in Geomorphology.London:Alden.213-230.
    [77]D.E. Wilhelms.Geologic Mapping. In:Greeley,R.Bastom,R.(Eds),Planetary Mapping[M]. Cambridge University Press,Cambridge,UK.1990.209-260.
    [78]K.L.Tanaka.The Venus Geologic Mappers'Handbook.U.S.Geological Survey Open File Report [M]1994.99-438
    [79]S.A.Ghosh Machine Learning Approach for Automated Geomorphic Map Generation [D]. 2006. The Faculty of the Department of Computer Science, University of Houston.
    [80]B.D.Bue,T.F.Stepinski.Automated Classification of Landforms on Mars[J].Computers and Geosiences.2005.1-11
    [81]Michael F. Hutchinson,John C.Gallant.Digital Elevation Models and Representation of Terrain Shape[M].TerrainAnalysis:Principles and Applications. JohnWiley&Sons.Inc.2000.
    [82]Tomasz Stepinski,Ricardo Vilalta.Digital Topography Models for Martian Surfaces[J].IEEE Geoscience and Remote Sensing Letters.Vol.X,No,X,2006.1-5.
    [83S.Ghosh,T.F.Stepinski,R,Vilalta.Automatic Mapping of Martian Landforms Using Segmentation-based Classification[J].Lunar and Planerary Science XXXVIII.2007.1200-1202.
    [84]D.U.Wise,G.Minsowski.Dating Methodology of Small,Homogeneous Craters Population Applied to the Tempe-Utopia trough Region on Mars[J].NASA Goddard Space Flight Center,Greenbelt,MD.1980.122-124.
    [85]K.L.Tanaka.The Stratigraphy of Mars.[J].J.Geophys.Res.,Vol91 no.B13,1986.E139-E158.
    [86]L.A.Soderblom,C.D.Condit,R.A.West et al.Martian Planerwide Crater Distributions:Implica-tions for Geologic History and Surface Processes[J].ICARUS.Vol22.no3.1974.239-263.
    [87]M.J.Cintala,J.W.Head,T.A.Mutch.Martian Crater Depth/Diameter Relationship:Comparison with the Moon and Mercury[J].In Proc.Lunar Sci.Conf., Vol.7,1976.3375-3587.
    [88]M.J.Cintala,P.J.Mouginis-Mark.Martian Fresh Crater Depth:More Evidence for Subsurface Volatiles[J].Geophys.Res.Lett.,Vol,7.no.5.1980.329-332.
    [89]N.G.Barlow.Crater Size-Distributions and A Revised Martian Relative Chronology[J]. ICA-RUS.Vol.75,no.2.1988.285-305.
    [90]R.Honda,Y.Iijima,O.Konishi. Mining of Topographic Feature from Heterogeneous Imagery and Its Application to Lunar Craters[M]. In Progress in Discovery Seience:Final Report of the Japanese Discovery Science Project.New York:Springer-Verlag.2002.
    [91]Y.Cheng.A.E.Johnson,L.H.Matthies,C.F.Olsen.Optical Lanmark Detection for Spacecraft Navigation[M].In Proc of the 13th AAS/AIAA Space Flight Mechanics Meeting.Ponce,Puerto Rico.2003.1785-1803.
    [92]T.Barata,E.Ivo Alves,J.Saraiva et al. Automatic Recognition of Impact Craters on the Surface of Mars[M].In Proc.ICIAR,Porto,Portugal..2004.489-496.
    [93]J.R.Kim,J-P.Muller,S.Van Gasxelt et al. Automated Crater Detection, A New Tool for Mars Cartography and Chronology[J]. Photogramm. Eng. Remote Sens.,Vol.71,no,10,2005.1205-1217.
    [94]P.V.C.Hough.Mehod and Means for Recognizing Comlex Patterns[M]. U.S.Pat, Off. Washington DC.U.S.Patent,1962.
    [95]J.Earl,A.Chicarro,C.Koeberl et al.Automatic Recognition of Crater-Like Structures in Terrestrial and Planetary Images[M].Lunar Planetary Inst.Houston.2005.
    [96]B.Leroy,G.Medioni.A.E.Johnson et al. Crater Detection for Autonomous Landing on Asteroids[J]. Image Vis.Comput,,Vol,19.no.11.2001.787-792.
    [97]T.Vinogradova,M,Burl,E.Mjosness. Training of A Crater Detection Algorithm for Mars Crater Imagery[J].in Proc,IEEEAEROSP,Conf,Vol,7,2002.7-3201-7-3211.
    [98]C.Plesko,S.Brumby,E.Asphaug. et al. Automatic Crater Counts on Mars[J].Lunar and Planetary Science XXXV,2004.
    [99]P.G.Wetzler,B.Enke,W.J.Merline et al. Learning to Detect Small Impact Craters[J].In Proc.7th IEEE WACV/MOTION,Vol.1.2005.178-184.
    [100]M.Magee,C.R.Chapman,S.W.Dellenback et al. Automated Identification of Martian Craters Using Image Processing[J].Lunar and Planertary Science ⅩⅩⅩⅣ,Houston.2003.
    [101]G.G.Michael.Coordinate Registration by Automated Crater Recognition[J].Planet.Space Sci,.,Vol.51,no9/10.2003.563-569.
    [102]J.F.Rodionova,K.I.Dekchtyareva,A.A.Khramchikhin et al. Morphological Catalogue of the Craters of Mars. Noordwijk, The Netherlands:ESA-ESTEC.2000.
    [103]P.J.Mouginis-Mark,H.Garbeil,J.M.Boyce et al. Geometry of Martian Impact Craters:First Results form An Interactive Software Package[J].J,Geophys,Res.,Vol,109.no,E8.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700