延迟容忍网络中路由与缓存管理算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延迟容忍网络(delay tolerant networks, DTN)是一种新型的网络体系结构。在这种类型的网络中,节点具有存储空间小、计算能力低的特点。由于节点频繁的移动、稀疏的分布或者节省能量等原因,经常造成链路中断、网络分割的现象。因此,源节点和目的节点之间长期不存在端到端的路径,从而导致消息在节点之间传输的延时非常大。消息传递的方式发生了重大的改变,传统的路由方式已经不能适应这样的网络。延迟容忍网络中如何将消息成功地发送到目的地是一个挑战性的问题。因此,路由是延迟容忍网络中最主要的问题。本文针对各种不同环境的延迟容忍网络的路由技术以及对路由性能影响很大的缓存管理技术进行了深入的研究,本文的主要研究工作包括以下几个方面的内容。
     (1)掌握节点的移动特征,有利于设计高效的路由算法。在网络状态未知的情况下,提出了一种基于节点运动移动范围感知的路由算法MSAR。不需要地理位置定位等硬件的支持,根据节点的历史相遇记录来比较消息携带节点和相遇节点的移动范围的相似性,以及消息携带节点和相遇节点两者与目的节点的移动相似性,并以此作为消息复制转发的依据。实验结果表明,MSAR路由算法能够有效的提高节点的交付比率并降低网络的开销。
     (2)通过实际的行踪数据分析发现,采用中心性作为路由度量尺度具有幂律分布的特点。如果采用中心性较大的节点作为中继节点,会使这些节点成为热区节点,造成网络的拥塞,导致消息大量的丢弃和重传而浪费网络资源。在中心性作为路由度量的基础上提出了一种负载感知的路由算法,该算法使用介数中心性和相似性以及节点的负载状况作为中继节点选择的依据,避免了消息传播能力强的节点产生严重的拥塞,均衡网络流量。仿真结果表明,该算法在容忍消息延时的情况下能够提高网络的交付比率,减小网络的开销。
     (3)针对基于固定消息副本数量的喷射与等待这类算法在节点密度较大的情况下会过早地将消息副本分发完毕,使消息局限于一个局部区域,会造成较大的延时并降低交付比率的问题,提出了一种基于节点密度自适应的喷射与转发路由算法DASF。DASF通过估计当前节点所在位置的节点密度,控制每次用于分配的消息副本数量,然后根据节点活跃程度按比例分配消息副本数量。仿真结果表明,该算法能够在提高交付比率的基础上,明显地减小消息传递的平均延时。
     (4)延迟容忍网络中节点采用“存储-携带-转发”的方式传递消息。在缓存空间有限时,不同的缓存管理策略对路由算法的性能有很大的影响。从整个网络的角度来看,一个消息过分地复制转发会耗尽节点的缓存,减少了其他消息对缓存使用的概率,从而导致了交付比率的下降。受微观经济学边际效用递减法则的启示,提出了一种分布式的基于消息传播状态的缓存管理方法。当缓存不够时,节点将消息复制数量多和传递速率快的消息丢弃,而在转发时则优先发送消息复制数量少和传递速率慢的消息,保证了副本数量较少的消息获得更多的传输机会。仿真实验结果表明,该方法能够提高消息的交付比率并且具有相对较小的开销比率。
     本文对延迟容忍网络中的路由和相关技术进行了深入的研究,这些研究工作能够较好地解决不同延迟容忍网络环境下的路由问题,为延迟容忍网络路由技术的发展提供有价值的参考。
Delay tolerant networks (DTN) are an emerging network architecture. In such type of networks, nodes have small storage capacity and limited processing capability. Network partition and link disconnection often occurs for the sake of nodes frequently moving, sparsely distributed, and energy saving. An end-to-end path from a source to a destination may not always exist. Traditional routing schemes do not accommandate such conditions, and they would not work efficiently. The message transfer paradigm is changed greatly. Routing is the main issues in DTN. This dissertation investigates routing schemes in different type of delay tolerant networks and buffer management schemes that have great impact on routing. The main contributions of this dissertation are concluded as follows.
     (1) Characteristics of node mobility are in favor of designing efficient routing algorithms in DTN. A routing algorithm based on mobility scope aware (MSAR) is proposed with uncertainty of network status. It does not need the support of geographical position location devices. It uses encounter histories as utility to analyze node mobility scope, and decide whether the node are chose to forward messages. It compares the mobility similarity between message carrier node and encounter node. It also compares mobility similarity between message carrier node and destination node with mobility similarity between encounter node and destination node. Simulation results show that MSAR may guarantee higher message delivery ratio and relative lower delays. It can greatly decrease the number of message copies distributed in the network and overhead ratio. It can be easily implemented with low overhead of control.
     (2) Through analyzing trace data in real world, we can observe that centrality has the characteristics of approximate distribution of power law. Centrality is used as routing metric in delay tolerant networks. The nodes that have higher centrality value will suffer great traffic loads and become hot spots. It will result in congestion in these nodes. A lot of messages are discarded and retransmitted, and then network resources are wasted. A social-based load aware routing algorithm is proposed to resolve this problem. The proposed routing algorithm uses two social metrics, i.e. betweenness centrality and social similarity, and node's load status to select relay nodes. It could avoid serious congestion in the nodes that have stronger ability of disseminate messages, and also balance traffic load. Simulation results show that the proposed routing algorithm could increase message delivery ratio and reduce network overhead.
     (3) When using quota-based routing algorithms, such as spray and wait, message copies would be premature to distribute in the case of higher node density. Message copies are limited to a local area that will cause a larger delay and decrease delivery ratio. A node density adaptive spray and focus (DASF) routing algorithm is proposed to address this problem. By estimating the node density of the current node location, DASF could control the available distributed number of message copies. And then it allocates message copies between encountered nodes according to the level of activity. Simulation results show that the proposed routing algorithm can reduce message transmission average delay significantly and improve delivery ratio.
     (4) As the storage-carry-forward paradigm is adopted to transfer messages in DTN, buffer management schemes greatly influence the performance of routing algorithms when nodes have limited buffer space. From a network-wide viewpoint, the excessive increase of a single message's copies will exhaust nodes'buffer space, thus reduces the probability of other messages to be buffered and forwarded and leads substantial decrease in their delivery ratio. Inspired by the law of diminishing marginal utility in economics, we propose a buffer management scheme based on estimated status of messages, e.g. the total number of copies in the network and the dissemination speed of a message. When performing buffer replacement and scheduling, nodes use encounter histories to estimate status of messages and act accordingly:when buffer overflow occurs, messages that have larger estimated number of copies and faster dissemination speed are replaced prior to and forwarded posterior to other messages. Simulation results show that our buffer management scheme can improve delivery ratio and has relative lower overhead ratio compared with other buffer management schemes.
     This dissertation focuses on the routing issues and related technologies in delay tolerant networks. These works could solve some routing problems in different DTN environments. It also provides valuable references for the development of routing technologies.
引文
[1]Fall K. A delay-tolerant network architecture for challenged Internets[C]. Proceedings of SIGCOMM'03. New York:ACM,2003: 27-34.
    [2]Cerf V, Burleigh S, Fall K, et al. Delay-tolerant networking architecture[S]. Draft-irtf-dtnrg-arch-03.txt,2006.
    [3]Matthew S. Storage usage of custody transfer in delay tolerant networks with intermittent connectivity[C]. Proceedings of the 2006 International Conference on Wireless Networks (ICWN'06). Las Vegas, Nevada: CSREA Press,2006:386-392.
    [4]Fall K, Hong W, Madden S. Custody transfer for reliable delivery in delay tolerant networks[R]. Intel Research, Berkeley-TR-03-030,2003.
    [5]Pelusi L, Passarella A, Conti M. Opportunistic networking:data forwarding in disconnected mobile ad hoc networks[J]. IEEE Communications Magazine,2006,44(11):134-141.
    [6]熊永平,孙利民,牛建伟,等.机会网络[J].软件学报,2009,20(1):124-137.
    [7]Kempe G. Communication in intermittently-connected networks[D]. Vancouver:The University of British Columbia,2005.
    [8]InterPlaNetary Internet Project[EB/OL]. http://www.ipnsig.org/.
    [9]Juang P, Oki H, Wang Y, et al. Energy-efficient computing for wildlife tracking:design tradeoffs and early experiences with ZebraNet[J]. ACM Sigplan Notices,2002,37(10):96-107.
    [10]Small T, Haas Z J. The shared wireless infostation model:a new ad hoc networking paradigm (or where there is a whale, there is a way)[C]. Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking. New York:ACM,2003:233-244.
    [11]Shah R, Roy S, Jain S, et al. Data MULEs:modeling a three-tier architecture for sparse sensor networks [J]. Elsevier Ad Hoc Networks Journal,2003,1(2-3):215-233.
    [12]McDonald P, Geraghty D, Humphreys I. Sensor network with delay tolerance (SeNDT) [C]. Proceedings of the 16th International Conference on Computer Communications and Networks (ICCCN'07). Piscataway, NJ:IEEE Computer Society,2007:1333-1338.
    [13]Brewer E, Demmer M, Du B, et al. The case for technology in developing regions[J]. Computer,2005,38(6):25-38.
    [14]Burleigh S, Hooke A, Torgerson L, et al. Delay-tolerant networking:an approach to interplanetary internet[J]. IEEE Communication Magzine, 2003,41(6):128-136.
    [15]Wizzy Project[EB/OL].2004. http://www.wizzy.org.za/.
    [16]Doria A, Uden M, Pandey D P. Providing connectivity to the saami nomadic community[J]. Generations,2002,1(2):3.
    [17]Pentland A, Fletcher R, Hasson A. DakNet:rethingking connectivity in developing nations [J]. Computer,2004,37(1):78-83.
    [18]Tier project[EB/OL].2006. http://tier.cs.berkeley.edu/wiki/home/.
    [19]Delay tolerant networking research group[EB/OL].2012-02-23. http://www. dtnrg. o r g/.
    [20]Scott K, Burleigh S. Bundle protocol specification[S]. IETF RFC 5050, 2007.
    [21]Warthman F. Delay-tolerant networks (DTNs):a tutorial version 1.1[EB/OL].2003-03-05. http://www.dtnrg.org/wiki/docs/.
    [22]Farrell S, Cahill V, Geraghty D, et al. When TCP breaks:delay-and disruption-tolerant networking [J]. IEEE Internet Computing,2006, 10(4):72-78.
    [23]Burgess J, Gallagher B, Jensen D, et al. Maxprop:routing for vehicle-based disruption-tolerant networks[C]. Proceedings of INFOCOM'06. Piscataway, NJ:IEEE Computer Society,2006:1-11.
    [24]Spyropoulos T, Psounis K, Raghavendra C S. Efficient routing in intermittently connected mobile networks:the single-copy case[J]. IEEE/ACM Transactions on Networking,2008,16(1):63-76.
    [25]Spyropoulos T, Psounis K, Raghavendra C S. Efficient routing in intermittently connected mobile networks:the multiple-copy case[J]. IEEE/ACM Transactions on Networking,2008,16(1):77-90.
    [26]Zhang Z S. Routing in intermittently connected mobile ad hoc networks and delay tolerant networks:overview and challenges [J]. IEEE Communications Surveys & Tutorials,2006,8(1):24-37.
    [27]Jones E P C, Ward P A S. Routing strategies for delay-tolerant networks[EB/OL].2006-06-03. http://www.ccng.uwaterloo.ca/-pasward/publications.shtml.
    [28]Giaccone P, Hay D, Neglia G, et al. Routing in quasi-deterministic intermittently connected networks[J]. Bioinspired Models of Network, Information, and Computing Systems,2010,39(4):126-129.
    [29]Jain S, Fall K, Patra R. Routing in a delay tolerant network[C]. Proceedings of ACM SIGCOMM'04. New York:ACM,2004:145-158.
    [30]周晓波,卢汉成,李津生,等.AED:一种用于DTN的增强型Earliest-Delivery算法[J].电子与信息学报,2007,29(8):1956-1960
    [31]Xuan B B, Ferreira A, Jarry A. Computing shortest, fastest, and foremost journeys in dynamic networks[J]. International Journal of Foundations of Computer Science,2003,14(2):267-285.
    [32]Ferreira A. Building a reference combinatorial model for MANETs[J]. IEEE Network,2004,18(5):24-29.
    [33]Shao Y, Wu J. Understanding the tolerance of dynamic networks:a routing-oriented approach[C]. Proceeding of the 28th International Conference on Distributed Computing Systems Workshops (ICDCS'08). Piscataway, NJ:IEEE Computer Society,2008:180-185.
    [34]Erramilli V, Chaintreau A, Crovella M, et al. Diversity of forwarding paths in pocket switched networks[C]. Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. New York:ACM, 2007:161-174.
    [35]Hay D, Giaccone P. Optimal routing and scheduling for deterministic delay tolerant networks[C]. Proceedings of 6th International Conference on Wireless On-Demand Network Systems and Services. Piscataway, NJ: IEEE Computer Society,2009:27-34.
    [36]Handorean R, Gill C, Roman G C. Accommodating transient connectivity in ad hoc and mobile settings[C]. Proceedings of Pervasive Computing. Berlin:Springer-Verlag,2004:305-322.
    [37]Liu C, Wu J. Scalable routing in delay tolerant networks[C]. Proceedings of the 8th ACM International Symposium on Moble Ad Hoc Networking and Computing (MobiHoc'07). New York:ACM,2007: 51-60.
    [38]Yuan Q, Cardei I, Wu J. Predict and relay:an efficient routing in disruption-tolerant networks[C]. Proceedings of the 10th ACM international symposium on Mobile ad hoc networking and computing. New York:ACM,2009:95-104.
    [39]Liu C, Wu J. Routing in a cyclic MobiSpace[C]. Proceedings of the 9th ACM International symposium on Mobile Ad Hoc Networking and Computing. New York:ACM,2008:351-360.
    [40]Cardei I, Liu C, Wu J, et al. DTN routing with probabilistic trajectory prediction[C]. Proceedings of the 3rd International Conference on Wireless Algorithms, Systems, and Applications. Berlin: Springer-Verlag,2008:40-51.
    [41]Xiao M J, Huang L S, Dong Q F, et al. Leapfrog:optimal opportunistic routing in probabilistically contacted delay tolerant networks [J]. Journal of Computer Science and Technology,2009,24(5):975-986.
    [42]Demers A, Greene D, Houser C, et al. Epidemic algorithms for replicated database maintenance [J]. ACM SIGOPS Operating System Review,1988,22(1):8-32.
    [43]Vahdat A, Becker D. Epidemic routing for partially connected ad hoc networks[R]. Durham NC:Department of Computer Science, Duke University,2000.
    [44]Spyropoulos T, Psounis K, Raghavendra C S. Single-copy routing in intermittently connected mobile networks[C]. Proceedings of Sensor and Ad Hoc Communications and Networks (SECON). Piscataway, NJ: IEEE Computer Society,2004:235-244.
    [45]Spyropoulos T, Psounis K, Raghavendra C S. Spray and wait:an efficient routing scheme for intermittently connected mobile networks[C]. Proceedings of ACM SIGCOMM Workshop on Delay-Tolerant Networking. New York:ACM,2005:252-259.
    [46]Thrasyvoulos Spyropoulos, Konstantinos Psounis, Cauligi S. Raghavendra. Spray and focus:efficient mobility-assisted routing for heterogeneous and correlated mobility [C]. Proceedings of the 5th Annual IEEE International Conference on Pervasive Computing and Communications Workshops. Piscataway, NJ:IEEE Computer Society, 2007:79-85.
    [47]Samuel C. Nelson, Mehedi Bakht, Robin Kravets. Encounter-Based Routing in DTNs[C]. Proceedings of INFOCOM'09. Piscataway, NJ: IEEE Computer Society,2009:846-854.
    [48]王建新,朱敬,刘耀.基于副本限制和社会性的延迟容忍网络路由算法[J].华南理工大学学报(自然科学版),2009,37(5):84-89.
    [49]党斐,阳小龙,隆克平.喷射转发算法:一种基于Markov位置预测模型的DTN路由算法[J].中国科学:信息科学,2010,40(10):1312-1320.
    [50]徐佳,孙力娟,王汝传,等.机会网络中基于种子喷雾的自适应路由协议[J].电子学报,2010,38(10):2315-2321.
    [51]彭敏,洪佩琳,薛开平,等.基于投递概率预测的DTN高效路由[J].计算机学报,2011,34(1):174-181.
    [52]Tang L, Zheng Q, Liu J, et al. Selective message forwarding in delay-tolerant networks[J]. Mobile Networks and Applications,2009,14(4): 387-400.
    [53]Tournoux P, Leguay J, Benbadis F, et al. The accordion phenomenon: analysis, characterization, and impact on DTN routing[C]. Proceedings of INFOCOM'09. Piscataway, NJ:IEEE,2009:1116-1124.
    [54]Bulut E, Wang Z, Szymanski B K. Cost effective multi-period spraying for routing in delay tolerant networks [J]. IEEE/ACM Transaction on Networking,2010,18(5):1530-1543.
    [55]Lindgren A, Doria A, Schelen O. Probabilistic routing in intermittently connected networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review,2003,7(3):19-20.
    [56]Musolesi M, Hailes S, Mascolo C. Adaptive routing for intermittently connected mobile ad hoc networks[C]. Proceedings of the 6th IEEE International Symposium on World of Wireless Mobile and Multimedia Networks (WoWMoM'05). Piscataway, NJ:IEEE Computer Society, 2005:183-189.
    [57]Erramilli V, Crovella M, Chaintreau A, et al. Delegation forwarding[C]. Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'08). New York:ACM Press, 2008:251-260.
    [58]Chen X, Shen J, Groves T, et al. Probability delegation forwarding in delay tolerant networks[C]. Proceedings of the 18th International Conference on Computer Communications and Networks (ICCCN'09). Piscataway, NJ:IEEE,2009:1-6.
    [59]Balasubramanian A, Levine B N, Venkataramani A. Replication routing in DTNs:a resource allocation approach[J]. IEEE/ACM Transaction on Networking,2010,18(2):596-609.
    [60]王博,黄传河,杨文忠.时延容忍网络中基于效用转发的自适应机会路由算法[J].通信学报,2010,31(10):36-47.
    [61]Wang Y, Jain S, Martonosi M, et al. Erasure-coding based routing for opportunistic networks[C]. Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking. New York:ACM,2005: 229-236.
    [62]Chen L J, Yu C H, Sun T, et al. A hybrid routing approach for opportunistic networks[C]. Proceedings of the 2006 SIGCOMM Workshop on Challenged Networks. New York:ACM,2006:213-220.
    [63]Jain S, Demmer M, Patra R, et al. Using redundancy to cope with failures in a delay tolerant network[J]. ACM SIGCOMM Computer Communication Review,2005,35(4):109-120.
    [64]Vellambi B N, Subramanian R, Fekri F, et al. Reliable and efficient message delivery in delay tolerant networks using rateless codes[C]. Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking. New York:ACM,2007:91-98.
    [65]Widmer J, Le Boudec J Y. Network coding for efficient communication in extreme networks[C]. Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking. New York:ACM,2005: 284-291.
    [66]Altman E, De Pellegrini F, Sassatelli L. Dynamic control of coding in delay tolerant networks[C]. Proceedings of INFOCOM'10. Piscataway, NJ:IEEE Computer Society,2010:1-5.
    [67]Li Q, Rus D. Sending messages to mobile users in disconnected ad-hoc wireless networks[C]. Proceedings of the 6th Annual International Conference on Mobile Computing and Networking. New York:ACM, 2001:44-55.
    [68]Zhao W, Ammar M. Message ferrying:proactive routing in highly-partitioned wireless ad hoc networks[C]. Proceedings of the 9th IEEE International Workshop on Future Trends of Distributed Computing Systems. Piscataway, NJ:IEEE Computer Society,2003: 308-314.
    [69]Zhao W, Ammar M, Zegura E. A message ferrying approach for data delivery in sparse mobile ad hoc networks[C]. Proceedings Of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York:ACM,2004:187-198.
    [70]Zhao W, Ammar M, Zegura E. Controlling the mobility of multiple data transport ferries in a delay-tolerant network[C]. Proceedings of INFOCOM'05. Piscataway, NJ:IEEE Computer Society,2005: 1407-1418.
    [71]Tariq M, Ammar M, Zegura E. Message ferry route design for sparse ad hoc networks with mobile nodes[C]. Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'06). New York:ACM,2006:37-48.
    [72]Burns B, Brock O, Levine B N. MV Routing and capacity building in disruption tolerant networks[C]. Proceedings of INFOCOM'05. Piscataway, NJ:IEEE Computer Society,2005:398-408.
    [73]Polat B K, Sachdeva P, Ammar M H, et al. Message ferries as generalized dominating sets in intermittently connected mobile networks[C]. Proceedings of the 2nd International Workshop on Mobile Opportunistic Networking. New York:ACM,2010:22-31.
    [74]Chuah M C, Ma W B. Integrated buffer and route management in a DTN with message ferry[C]. Proceedings of IEEE Military Communications Conference.Washington DC:IEEE Computer Society,2006:1-7.
    [75]Leguay J, Friedman T, Conan V. DTN Routing in a Mobility Pattern Space[C]. Proceedings of ACM SIGCOMM Workshop on Delay-Tolerant Networking. New York:ACM,2005:276-283.
    [76]Leguay J, Friedman T, Conan V. Evaluating mobility pattern space routing for DTNs[C]. Proceedings of INFOCOM'06. Piscataway, NJ: IEEE Computer Society,2006:1-10.
    [77]Ghosh J, Philip S J, Qiao C. Sociological orbit aware location approximation and routing in MANET[J]. Ad Hoc Networks,2007,5(2): 189-209.
    [78]Hui P, Crowcroft J, Yoneki E. Bubble rap:social-based forwarding in delay tolerant networks[C]. Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'08). New York:ACM,2008:241-250.
    [79]Daly E, Haahr M. Social network analysis for routing in disconnected delay-tolerant MANETs[C]. Proceedings of the 8th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'07). New York:ACM,2007:32-40.
    [80]牛建伟,周兴,刘燕,等.一种基于社区机会网络的消息传输算法[J].软件学报,2009,46(12):2068-2075.
    [81]Gao W, Cao G. On exploiting transient contact patterns for data forwarding in delay tolerant networks[C]. Proceedings of the 18th IEEE International Conference on Netwok Protocols (ICNP'10). Piscataway, NJ:IEEE Computer Society,2010:193-202.
    [82]Bulut E, Szymanski B K. Friendship based routing in delay tolerant mobile social networks[C]. Proceedings of the 2010 IEEE Global Telecommunications Conference (Globecom'10). Piscataway, NJ:IEEE Computer Society,2010:1-5.
    [83]Abdelkader T, Naik K, Nayak A, et al. A socially-based routing protocol for delay tolerant networks[C]. Proceedings of the 2010 IEEE Global Telecommunications Conference (Globecom'10). Piscataway, NJ:IEEE Computer Society,2010:159-162.
    [84]Li Q, Zhu S, Gao G. Routing in socially selfish delay tolerant networks[C]. Proceeding of INFOCOM'10. Piscataway, NJ:IEEE Computer Society,2010:1-9.
    [85]于海征,马建峰,边红.容迟网络中基于社会网络的可靠路由[J].通信学报,2010,31(12):20-26.
    [86]Perkins C E, Belding-Royer E M. Ad-hoc on-demand distance vector routing[C]. Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications. Piscataway, NJ:IEEE Computer Society,1999:90-100.
    [87]Johnson D B, Maltz D A. Dynamic source routing in ad hoc wireless networks[J]. Mobile Computing,1996:153-181.
    [88]Perkins C E, Bhagwat P. Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers[J]. ACM SIGCOMM Computer Communication Review,1994,24(4):234-244.
    [89]Grossglauser M, Tse D. Mobility increases the capacity of ad hoc wireless networks[J]. IEEE/ACM Transaction on Networking,2002, 10(4):477-486.
    [90]Grossglauser M, Vetterli M. Locating nodes with EASE:last encounter routing through mobility diffusion[C]. Proceedings of IEEE INFOCOM'03. Piscataway, NJ:IEEE Computer Society,2003: 1954-1964.
    [91]Dubois-Ferriere H, Grossglauser M, Vetterli M. Age matters:efficient route discovery in mobile ad hoc networks using encounter ages[C]. Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'03). New York:ACM,2003: 257-266.
    [92]Dubois-Ferriere H, Grossglauser M, Vetterli M. Space-Time routing in ad hoc networks[J]. Ad-Hoc, Mobile, and Wireless Networks,2003, 2865:1-11.
    [93]Camp T, Boleng J, Davies V A. A survey of mobility models for ad hoc network research[J]. Wireless Communications and Mobile Computing, 2002,2(5):483-502.
    [94]Hog X, Gerla M, Pei G, et al. A group mobility model for ad hoc wireless networks[C]. Proceedings of the 2nd ACM International workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems. New York:ACM,1999:53-60.
    [95]Musolesi M, Mascolo C. A community based mobility model for ad hoc network research[C]. Proceedings of 2nd ACM/SIGMOBILE International Workshop on Multi-hop Ad Hoc Networks:From Theory to Reality. New York:ACM,2006:31-38.
    [96]Hsu W, Spyropoulos T, Psounis K. Modeling time-variant user mobility in wireless mobile networks[C]. Proceedings INFOCOM'07. Piscataway, NJ:IEEE Computer Society,2007:758-766.
    [97]Habetha J, Nadler M, Calvo D. Dynamic clustering with quality of service guarantees and forwarder selection in wireless ad hoc networks[C]. Proceedings of Asia Pacific Conference on Communications.2000.
    [98]Minder D, Marron P J, Lachenmann A, et al. Experimental construction of a meeting model for smart office environments [R]. Stockholm, Sweden:Proceedings of First Workshop on Real-World Wireless Sensor Networks,2005.
    [99]Ekman F, Keranen A, Karvo J, et al. Working day movement model[C]. Proceedings of the 1st ACM SIGMOBILE Workshop on Mobility Models. New York:ACM,2008:33-40.
    [100]Karagiannis T, Le Boudec J Y, Vojnovic M. Power law and exponential decay of inter contact times between mobile devices [J]. IEEE Transactions on Mobile Computing,2010,9(10):1377-1390.
    [101]Spyropoulos T, Psounis K, Raghavendra C S. Performance analysis of mobility-assisted routing[C]. Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM Press,2006.49-60.
    [102]Keranen A, Ott J, Karkkainen T. The ONE simulator for DTN protocol evaluation[C]. Proceedings of the 2nd International Conference on Simulation Tools and Techniques. Brussels:ICST,2009:1-10.
    [103]Hui P, Chaintreau A, Scott J, et al. Pocket switched networks and human mobility in conference environments[C]. Proceedings of the ACM SIGCOMM'05 Workshop on Delay-tolerant networking. New York: ACM Press,2005:244-251.
    [104]Motani M, Srinivasan V, Nuggehalli P S. PeopleNet:engineering a wireless virtual social network[C]. Proceedings of the 11th Annual International Conference on Mobile Computing and Networking (MobiCom'05). New York:ACM Press,2005:243-257.
    [105]Ekman F, Keranen A, Karvo J. Working day movement model[C]. Proceedings of the 1st ACM SIGMOBILE Workshop on Mobility Models. New York:ACM Press,2008:33-40.
    [106]Hui P, Crowcroft J. How small labels create big improvements[C]. Proceedings of 5th Annual IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops. Piscataway, NJ:IEEE,2007:65-70.
    [107]Pujol J M, Toledo A L, Rodriguez. Fair routing in delay tolerant networks[C]. Proceedings of the 28th International Conference on Computer Communications. Piscataway, NJ:IEEE,2009:837-845.
    [108]Ghosh J, Ngo H Q, Qiao C. Mobility profile based routing within intermittently connected mobile ad hoc networks (ICMAN)[C]. Proceedings of the 2006 International Wireless Communications Conference and Mobile Computing Conference. New York:ACM,2006: 551-556.
    [109]Grundy A, Radenkovic M. Promoting congestion control in opportunistic networks[C]. Proceedings of the 6th International Conference on Wireless and Mobile Computing, Networking and Communications. Piscataway, NJ:IEEE,2010:324-330.
    [110]Seligman M, Fall K, Mundur P. Alternative custodians for congestion control in delay tolerant networks[C]. Proceedings of the 2006 Special Interest Group on Data Communication Workshop on Challenged Networks. New York:ACM,2006:229-236.
    [111]Freeman L C. A set of measures of centrality based on betweenness[J]. Sociometry,1977,40(1):35-41.
    [112]Freeman L C. Centrality in social networks conceptual clarification[J]. Social Networks,1979,1(3):215-239.
    [113]Merrer E L, Tredan G. Centralities:capturing the fuzzy notion of importance in social graphs[C]. Proceedings of the 2nd ACM EuroSys Workshop on Social Network Systems. New York:ACM,2009:33-38.
    [114]Marsden. Egocentric and sociocentric measures of network centrality[J]. Social Networks,2002,24(4):407-422.
    [115]Chaintreau A, Hui P, Crowcroft J, et al. Impact of human mobility on the design of opportunistic forwarding algorithms[J]. IEEE Transactions on Mobile Computing,2007,6(6):606-620.
    [116]Leguay J, Lindgren A, Scott J, et al. Opportunistic content distribution in an urban setting[C]. Proceedings of the Special Interest Group on Data Communication Workshop on Challenged Networks. New York: ACM,2006:205-212.
    [117]Dartmouth College. A community resource for archiving wireless data at Dartmouth[EB/OL]. [2009-05-29]. http://crawdad.cs.dartmouth.edu/index.php.
    [118]Kretschmer H, Kretshmer T. Application of a new centrality measure for social network analysis to bibliometric and webometric data[C]. Proceedings of the 1st International Conference on Digital Information Management. Piscataway, NJ:IEEE,2006:199-204.
    [119]Goh K I, Oh E, Kahng B, et al. Betweenness centrality correlation in social networks[J]. Physical Review E,2003,67(1):171011-171014.
    [120]Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks[J]. Physical Review Letters,2001,87(27):278701.
    [121]Zhang X, Neglia G, Kurose J, et al. Performance modeling of epidemic routing[J]. Computer Networks,2007,51(10):2867-2891.
    [122]Krifa A, Barakat C, Spyropoulos T. Optimal buffer management policies for delay tolerant networks[C]. Proceedings of the 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Piscataway, NJ:IEEE,2008.260-268.
    [123]Li Y, Qian M, Jin D, et al. Adaptive optimal buffer management policies for realistic DTN[C]. Proceedings of IEEE Global Telecommunicaions Conference (GLOBECOM'09). Piscataway, NJ:IEEE,2009:1-5.
    [124]Lindgren A, Phanse K S. Evaluation of queueing policies and forwarding strategies for routing in intermittently connected networks[C]. Proceedings of the 1st International Conference on Communication System Software and Middleware. Piscataway, NJ: IEEE,2006:1-10.
    [125]Khelil A, Marr'on P J, Becker C, et al. Hypergossiping:a generalized broadcast strategy for mobile ad hoc networks[J]. Ad Hoc Networks, 2007,5(5):531-546.
    [126]Khelil A. Contact-based buffering for delay-tolerant ad hoc broadcasting[J]. Computer Communications,2007,30(16):3144-3153.
    [127]Erramilli V, Crovella M. Forwarding in opportunistic networks with resource constraints[C]. Proceedings of the 14th Annual International Conference on Mobile Computing and Networking Workshop on Challenged Networks. New York:ACM Press,2008.41-48.
    [128]Groenevelt R, Nain P, Koole G. Message delay in MANET[J]. ACM SIGMETRICS Performance Evaluation Review,2005,33(1):412-413.
    [129]Chaintreau A, Hui P, Crowcroft J, et al. Impact of human mobility on opportunistic forwarding algorithms[J]. IEEE Transactions on Mobile Computing,2007,6(6):606-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700