基于随机切换的网络系统分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息通过共享网络交换的反馈控制系统称为网络控制系统(Networked ControlSystems,简称NCSs)。这种网络化的控制模式具有成本低、连接线数少、易于扩展维护、高效和信息资源共享等诸多优点,使得网络控制系统已在工业自动化、智能交通、机器人、航空航天、国防等领域获得了广泛的应用。然而,把网络的引入传统的反馈控制系统,也不可避免地把网络本身存在的问题带入控制系统中:如有限的通信带宽、网络传输时滞、数据丢包、多包传输、时钟异步等等。这些问题的存在,造成控制系统的控制指令往往不能够及时执行,其结果导致系统性能变差,严重的甚至会造成系统不稳定。以上问题在传统的控制系统中不存在或是可以忽略不计,因此基于传统的控制理论给出的控制设计和分析难以直接应用到网络控制系统中,迫切需要针对网络控制系统的特点发展系统分析与控制设计的新思想、新概念、新方法,研究开发适合于网络环境的控制策略。所以,对NCSs的分析与综合是当前控制理论研究的重要内容,也是国内外学者研究的热点问题之一。
     本文从控制理论及算法的角度出发,围绕NCSs中存在的一些基本问题:网络诱导时滞、丢包和数据无序传输等,利用时滞系统理论、线性跳变系统理论、Lyapunov稳定性理论及线性矩阵不等式(LMIs)方法、V-K迭代算法、自由权矩阵方法和贪婪算法等方法对NCSs的建模、稳定性、容错和控制进行了相关研究,并得到针对这些基本问题的一些研究结果。
     针对网络时滞问题建立了时变时滞NCSs的模型(包括确定系统和不确定系统),然后利用时滞系统理论、锥补线性化方法和自由权矩阵方法研究了NCSs的稳定性和镇定性问题,并基于LMIs形式给出具有较小保守性的时滞相关稳定和镇定条件。
     基于离散时间马尔可夫跳变线性系统理论,研究了在网络中的随机时滞、丢包和数据包无序传输随网络负载变化而改变的情况下,系统稳定性与控制器设计问题。提出一种能够根据网络负载变化而自动调节的智能随机切换控制器,使得系统在可镇定范围大大增加的同时具有较好的动态性能。
     提出一种新的依概率切换的随机切换模型用于研究网络控制系统中的执行器随机故障问题。利用V-K迭代算法,设计出能够在网络中多种随机因素干扰下诱发执行器随机故障时,保持网络控制系统均方稳定的模式依赖和模式独立容错控制器,并计算出系统对执行器随机故障的最大冗余度。
     针对网络控制系统的多率本质,提出一种新的多率方法用于镇定同时具有网络诱导时滞、丢包和数据包无序传输的网络控制系统。该方法可以建立一个统一的模型用于解决网络短时滞和长时滞的镇定性问题,并在转移概率矩阵已知的条件下给出系统均方稳定的充分条件。随后通过仿真实例说明在同等条件下,多率控制器比单率控制器具有更强的鲁棒性。
     基于Internet测试和分析得到的数据,把网络控制系统的一般性方法与具体的Internet特点相结合,设计出一种能够同时处理网络时滞的时变部分小于一个采样周期或大于一个采样周期且有界的一致方法。最后通过仿真比较,说明相对于一般的控制器,采用该方法设计的控制器具有较强的鲁棒性和较好的控制效果。
     充分考虑无线传感器网络中多检测信号传输,且各信号时滞变化规律不同的特性,建立能够较准确描述无线传感器网络特点的网络控制系统模型,并提出一种准确性与实时性兼顾的时滞相关加权均值法构建静态输出控制器,然后利用跳变线性系统理论研究了系统的均方稳定性和均方可镇定问题。最后通过仿真实例说明了基于加权均值融合技术设计的静态输出控制器的有效性。
     最后对全文进行了总结,并对今后NCSs进一步的研究和发展方向进行了展望。
Feedback control systems wherein the control loops are connected with a real-time network are called networked control systems (NCSs). The primary advantages of NCSs are low cost, reduced system wiring, simple installation and maintenances, high efficiency and shared information. As a result, NCSs have been widely applied to many complicated control systems, such as industrial automation, intelligent traffic, robot, aviation and aerospace fields, airplane manufacture. However, the insertion of the communication network in feedback control loop makes the analysis and design of NCSs complicate because it introduces some problems existing in network into control systems such as limited communication band width, network-induced delay, data packets dropout, disorder of data packets and clock asynchronous. These problems lead to control signal can not be executed immediately. As a result, performances of control systems become badly or even control system become instable. Because these problems do not exist or can be ignored in traditional feedback control systems, methods of control design and analysis based on traditional control theory is hardly applied into NCSs directly. So control strategies adapting for network environment should be found based on new ideas, new methods and new conceptions. Therefore, analysis and synthesis of NCSs have become one of the most important issues in control theories reasearch, and also have received considerable attention and interest by researchers in recent years.
     In the dissertation, some essential issues of NCSs are discussed from the point of view on control theory and arithmetic. Modeling, stability analysis, fault tolerant and control problems of NCSs are investigated based on time-delay system theory, jump linear system theory, Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques, V-K iterations, free weighting matrices approach and greedy algorithm. Some new results are given as to these basic problems based on analysis and synthesis of NCSs.
     As to problem of time varying delay existing in NCSs, a time-varying model including certain system and uncertain system are constructed firstly, and then stability and stabilization of these systems are discussed based on time-delay system theory, cone convex optimization theory and free weighting matrices approach. Conditions of time-dependent stability and stabilization with less conservative are given in the form of linear matrix inequalities.
     Based on discrete time Markov jump linear system theory, stability and controller designed are considered when time-induced delay, packet dropout and disorder of data packets exist in NCSs at the same time. An intelligent stochastic switching controller which can self-adjust adapted for different network load is proposed to stabilize NCSs. Compared normal feedback gain controller, stochastic switching controller not only has larger stability scope but better dynamic stability performances.
     A new switch model switched according to probability is proposed to discuss problem of stochastic fault about actuator. Using V-K iterations, mode-dependent and mode-independent fault tolerant controller are designed under some stochastic disturbances such as stochastic actuator fault and the maximum redundancy degree of system is given.
     As to the multirate essences of NCSs, a new multirate method is proposed to stabilize NCSs combined with time-induced delay, packet dropout and disorder of data packets. The advantage of this method is that, a unitized model which can describe short time delay and long time delay is constructed. Based on this unitized model, stability and stabilization of NCSs are discussed. Sufficient condition of mean square stability of NCSs is given when transition matrix is known. From simulation example we know, multirate controller has stronger robust performance compared with single controller under the same conditions.
     Based on analysis of data coming from test in internet and normal method developed from general NCSs, a unitized method which can deal with time varying part of time delay less than one sampling period or more than one sampling period but bounded is proposed . Finally from simulation we know, compared normal controller, controller designed with this method has strong robust performances.
     Consider the character of multi-signal transimisson and different statistic rules of every class of signal in wireless sensor network, a new model which can describe wireless sensor networked control systems accurately is constructed firstly. A static output feedback controller is designed through weighted mean method, and then stability and stabilization of wireless sensor network are disscussed using jump linear systems. Numerical examples and simulations show that the methods are effective.
     Finally, a summary has been done for all discussions in the dissertation. The research works in further study are presented.
引文
[1] 张庆灵,张雪峰.网络控制系统研究综述与前景展望.信息与控制,2007,36(3):364-370.
    [2] Walsh G C, Ye H. Scheduling of networked control systems. IEEE Control Systems Magazine, 2001, 21(1): 57-65.
    [3] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control Systems. IEEE Trans. Control Systems Technology, 2002, 10(3): 438-446.
    [4] Branicky M S, Philips S M, Zhang W. Stability of networked control systems: Explicit analysis of delay. Proceedings of American Control Conference, Chicago, Illinois, USA, 2000, 2352-2357.
    [5] Zhang W, Branicky M S, Philips S M. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21 (1): 84-99.
    [6] Lian F L. Analysis, design, modeling, and control of networked control systems: [Ph.D. dissertation]. Department of Mechanical Engineering, University of Michigan, USA, 2001.
    [7] Halevi Y, Ray A. Integrated communication and control systems: Part Ⅰ-analysis. Journal of Dynamic Systems, Measurement, and Control, 1988, 110(4): 367-373.
    [8] Liou L W, Ray A. A stochastic regulator for integrated communication and control systems: Part Ⅰ-Formulation of control law. ASME Journal of Dynamic Systems, Measurement and Control, 1991, 113(4): 604-611.
    [9] Walsh G C, Ye H, Bushnell L G. Stability analysis of networked control systems. Proceedings. of the American Control Conference, San Diego, CA, USA, 1999, 2876-2880.
    [10] Yang L L, Yang S H. Multirate Control in Internet-Based Control Systems. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2007, 37:185-192.
    [11] Guan Z H, Yang S H. Robust passive control for Internet-based switching systems with time-delay. Chaos Solutions & Fractals, 2008, 36: 479-486.
    [12] Yang S H, Chen X, Alty J L. Design issues and implementation of Internet-based process control systems. Control Engineering Practice, 2003, 11(6): 709-720.
    [13] 邱占芝.广义网络控制系统分析、建模与控制:[博士学位论文].沈阳:东北大学,2006.
    [14] 严怀成.网络控制系统的分析与综合:[博士学位论文].武汉:华中科技大学,2007.
    [15] 王永骥,杨业,吴浩.基于Internet的网络化控制系统设计及控制研究.仪器仪表学报,2007,28(12):2120-2123.
    [16] Boskovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control and Dynamics, 2001, 24(1): 14-22.
    [17] Akyildiz I, Su W, Sanakarasubramaniam Yet al. Wirelss sensor networks: A survey. Computer Network, 2002, 38(4): 339-422.
    [18] Akyildiz I, Kasimoglu I H. Wireless sensor and actor networks: research challenges. Adhoc networks, 2004 2:351-367.
    [19] Walsh G C, Beldiman O, Bushnell L G. Asymptotic behavior of nonlinear networked control systems. IEEE Trans. on Automatic Control, 2001, 46 (7): 1093-1097.
    [20] Walsh G C, Beldiman O, Bushnell L G. Asymptotic behavior of networked control systems. Proceedings of IEEE Int. Conf. on Control Applications, Hawaii, USA, 1999, 1448-1453.
    [21] Walsh G C, Beldiman O, Bushnell L G. Error encoding algorithms for networked control systems. Proceedings of the 38th Conf. on Decision and Control. Phoenix, Arizona, USA, 1999, 4933-4938.
    [22] Wang J Chen T, Huang Biao, Multirate sampled-data systems: computing fast-rate models. Journal of process control, 2004, 14: 79-88.
    [23] Lee K C, Lee S, Hyung M. QoS-Based remote control of networked control systems via profibus token passing protocol, IEEE Trans. on Industrial Informatics, 2005, 1(3): 183-191.
    [24] Lee K C, Lee S, Hyung M. Remote control for guaranteeing QoC of networked control systems via profibus token passing protocol, Industrial Electronics Society.The 29th Annual Conference of the IEEE, 2003, 2(6): 1425-1430.
    [25] Lee K C, Lee S, Hyung M. A QoS management scheme for paralleled networked control systems with CAN bus. Industrial Electronics Society, The 29th Annual Conference of the IEEE, 2003,1(2): 842-847.
    [26] Sahebsara M, Chen T W, Shah S L. Optimal H_2 filtering in networked control systems with multiple packet dropout, IEEE Trans, on Automatic Control, 2007,52(8) :1508-1513.
    [27] Zhang W A, Yu Li. Output feedback stabilization of networked control systems with packet dropouts, IEEE Trans, on Automatic Control, 2007, 52(9): 1705-1710.
    [28] Hu S, Yan W Y, Stability robustness of networked control systems with respect to packet loss, Automatica, 2007, 43:1243- 1248.
    [29] Gaid M E M B, Cela A, Hamam Y. Optimal integrated control and scheduling of networked control systems with communication constraints: application to a car suspension system, IEEE Trans, on control system technology, 2006, 14(4):776-787.
    [30] Bao Y, Dai Q Q, Cui Y 1 et al. Fault detection based on robust Hoo states observer on networked control systems. 2005 International Conference on Control and Automation, Budapest, Hungary, 2005. 1237-1241.
    [31] Zhu Z, Zhou X. Robust fault detection on networked control systems with uncertain long time-delay. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, 5670-5674.
    [32] Zhang L Q, Shi Y, Chen T et al. A new method for stabilization of networked control systems with random delays. IEEE Trans, on Automatic Control, 2005,50(8): 1177-1181.
    [33] Wu J, Deng F Q. Finite horizon optimal control of networked control systems with markov delays. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, 4513-4517.
    [34] Liu F C, Yao Y. Modeling and analysis of networked control systems using hidden markov models, Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005.928-931.
    [35] Montestruque L A, Antsaklis P. Stability of model-based networked control systems with time-varying transmission times. IEEE Trans. on Automatic Control, 2004, 49(9): 1562-1572.
    [36] Hideaki I. H∞ control with limited communication and message losses. Systems &Control Letters, doi: 10.1016/j.sysconle.2007.09.007.
    [37] Naghshtabrizi P, Hespanha J P, Teel A. R. Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems & Control Letters, doi: 10.1016/j.sysconle. 2007.10.009.
    [38] 黄剑,关治洪,王仲东.基于脉冲微分系统模型的有损网络控制系统研究.控制理论与应用,2006,23(1):69-73.
    [39] Peng C, Tian Y. networked H∞ control of linear systems with state quantization. Information Sciences, 2007, 177: 5763-5774.
    [40] Dacic D B, Nesic D. Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design. Automatica, 2007, 43:1145-1155.
    [41] Nilsson J. Real-time control systems with delays: [Ph.D. dissertation]. Department of Automatic Control, Lund Institute of Technology, Lund, Sweden, 1998.
    [42] Gao H, Chen T, Lam J. A new delay system approach to network-based control. Automatica, 2008, 44(2):39-52.
    [43] Wu M, He Y, She J H et al. Delay-dependent criteria for robust stability of time-varying delays systems. Automatica, 2004, 40: 1435-1439.
    [44] He Y, Wang Q G, Xie L H et.al. Further improvement of free-weighting matrices technigue for systems with time-varying delay. IEEE Trans. on Automatic Control, 2007, 52(2): 293-299.
    [45] 俞立.鲁棒控制--线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [46] Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays. Automatica, 1998, 34(1): 57-64.
    [47] 朱其新,胡寿松,刘亚.无限时间长时滞网络控制系统的随机最优控制.控制理 论与应用,2004,21(3):321-326.
    [48] Yu M, Wang L, Chu T, Xie G. Stabilization of networked control systems with data packet dropout and network delays via switching system approach. In 43rd IEEE conference on decision and control Atlantis, Paradise Island, Bahamas, 2004, 3539 - 3544.
    [49] Seiler P, Sengupta R. An H∞ approach to networked control. IEEE Trans. on Automatic Control, 2005, 50(3): 356-364.
    [50] Xiong J, Lam J. Stabilization of linear systems over networks with bounded packet loss. Automatica, 2007, 43: 80-86.
    [51] Xiao L, Hassibi A, How J P.Control with random communication delays via a discrete-time jump system approach. Proceeding of the 2000 American Control Conference, Chicago, 2000, 2199-2204.
    [52] Xie L, Zhao W, Ji Z. Optimal control for networked control system via delta-operator formulation. Proceeding of the 2006 IEEE International Conference on Automation Science and Engineering, Shanghai, China, 2006, 656-660.
    [53] Zhao W, Xie L, Ji Z. LQ Control for networked control system with random delays via delta-operator formulation, Proceedings of the 2006 IEEE International Conference on Information Acquisition, Weihai, Shandong, China, 2006, 1349-1353.
    [54] Naghshtabrizi P, Hespanha, J P.Teel A R. Stability of delay impulsive systems with application to networked control systems. Proceeding of the 2007 American Control Conference, New York, 2007, 4899 - 4904.
    [55] Luck R, Ray A. An observer based compensation for distributed delays. Automatica, 1990, 26(5): 903-908.
    [56] Shen J H, Ray, A. Extended discrete-time LTR synthesis of delayed control systems, Automatica, 1993, 29(2):431-438.
    [57] 于之训,陈辉堂,王月娟.具有随机通讯延迟和噪声干扰的网络系统控制.控制与决策,2000,15(5):518-522.
    [58] Chan H , (O|¨)zg(u|¨)ner (U|¨). Closed-loop control of systems over a communication network with queues. International Journal of Control, 1995, 62(3): 493-510.
    [59] Li X, de Souza C E. Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach. IEEE Trans. on Automatic Control, 1997, 42(8): 1144-1148.
    [60] De Souza C E, Li X. Delay-dependent robust H∞ control of uncertain linear state delayed systems. Automatica, 1999, 22(7): 1313-1321.
    [61] Moon Y S, Park P G, Kwon W H et al. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 2001, 74(14): 1447-1455.
    [62] Park J H. A new delay-dependent criterion for neutral systems with multiple delays. Journal of Computational and Applied Mathematics, 2001, 136(1): 177-184.
    [63] Yan H, Huang X, Wang M. Delay-dependent robust stability of uncertain networked control systems with multiple state time-delays. Journal of Control Theory and Applications, 2007, 5(2): 159-163.
    [64] Li S, Wang Z, Sun Y X. Guaranteed cost control and its application to networked control systems. Proceedings on IEEE International Symposium on Industrial Electronics, 2004, 1: 591-596.
    [65] 姜培刚,姜偕富,李春文,徐文立.基于LMI方法的网络化控制系统的H∞鲁棒控制.控制与决策,2004,19(1):17-26.
    [66] 黄剑,关治洪,王仲东.不确定网络控制系统具有H∞性能界的鲁棒控制.控制与决策.2005,20(9):1002-1005.
    [67] 谢林柏,方华京,纪志成等.时滞网络化控制系统的H2/H∞混合控制.控制理论与应用,2004,21(6):1020-1024.
    [68] 于之训,陈辉堂,王月娟.基于H∞和μ综合的闭环网络控制系统的设计.同济大学学报,2001,29(3):307-311.
    [69] 于之训,陈辉堂,王月娟.基于Markov延迟特性的闭环网络控制系统研究.控制理论与应用,2002,19(2):263-267.
    [70] Zhang W. Stability analysis of networked control systems: [Ph.D. dissertation]. Department of Electrical and Computer Science, Case Western Reserve University, USA, 2001.
    [71] Yue D, Han Q, Peng C. State feedback controller design of networked control systems. IEEE Trans. Circuits and Systems, 2004, 51(11): 640-644.
    [72] Ne(?)ic D, Teel A R. Input-output stability properties of networked control systems. IEEE Control Systems Magazine, 2004, 49(10): 1650-1667.
    [73] Almutairi N B, Chow M Y. PI parameterization using adaptive fuzzy modulation for networkedcontrol systems-Part Ⅰ: partial adaptation. In IEEE 2002 28th Annual Conference of the Industrial Electronics Society, 2002, 4:3152-3157.
    [74] Lee K.C., Lee S., Remote controller design of networked control system using genetic algorithm. Proceedings on IEEE International Symposium on Industrial Electronics, Pusan, Korea, 2001, 3:1845-1850.
    [75] Zheng Y, Fang H J, Hua O. W. Takagi-sugeno fuzzy-model-based fault detection for networked control systems with Markov delays. IEEE Trans. on System Man and Cybernetics-Part B, 2006, 36(4): 924-929.
    [76] Hong S H. Scheduling algorithm of data sampling times in the integrated communication and control systems. IEEE Trans. on Control Systems Technology, 1995, 3(2): 225-230.
    [77] Ye H, Walsh G C, Bushnell L. Wireless local area networks in the manufacturing industry. Proceedings of the ACC, Chicago, Illinois, 2000, 2363-2367.
    [78] Branicky M S, Phillps S M, Zhang W. Scheduling and feedback co-design for networked control systems, Proceedings of 41th IEEE Conference on Decision and Control, Las, Vegas, USA, 2002: 10-13.
    [79] Limn H, Axelsson J. A comparison of fixed-priority and static cyclic scheduling for distributed automotive control applications. Proceedings the Eleventh Euromicro Conference on Real-Time Systems, York, England, 1999. 142-149.
    [80] Jonsson J, Lonn H, Shin KG. Non-preemptive scheduling of real-time threads on multi-level-context architectures. Proceedings of the 7th International Workshop on Parallel and Distributed Real-Time Systems, Puerto Rico, 1999.
    [81] 谢林柏,方华京,王华.网络化控制系统的信息调度及稳定性研究.控制与决策,2004,19(5):589-591.
    [82] Yan H, Huang X, Wang Met al. Delay-dependent stability criteria for a class of networked control systems with multi-input and multi-output. Chaos, Solitons and Fractals, 2007, 34(3): 997-1005.
    [83] Phoojaruenchanachai S, Furuta K. Memoryless stabilization of uncertain time varying state delays, IEEE Trans. on Automatic Control, 1992, 37(5): 1022 -1026.
    [84] Kim J H, Jeung E T, Park H B. Robust control for parameter uncertain delay systems in state and control input. Automatica, 1996, 32:1337-1339.
    [85] Park J H. Robust stabilization for dynamic systems with multiple time varying delays and nonlinear uncertainties. Journal Optimization Theory Applications, 2001, 108(4): 155-174.
    [86] Lien C H, Chen J D. Discrete-delay-independent and discrete delay dependent criteria for a class of neutral systems. Journal Dynamic System Measure, Control, 2003, 125(3): 33-41.
    [87] Park P.A delay-dependent stability criterion for systems with uncertain time invariant delays. IEEE Trans. on Automatic Control, 1999, 44(4): 876 -877.
    [88] 赵虹,吴敏,刘国平.一种获取网络化控制系统最大允许延迟时间的新方法.信息与控制.2005,34(5):539-542.
    [89] 胡中功,杨春曦,戴克中.线性时滞不确定系统的记忆与无记忆复合控制器设计.计算技术与自动化,2005,24(2):16-21.
    [90] Costa O L V, Fragoso M D, Marques R P.Discrete-Time Markov Jump Linear Systems, Springer-Verlag London Limited, 2005.
    [91] Chen C, Hirche S, Buss M. Stability, stabilization and experiments for networked control systems with random time delay, in Proceeding of the 2008 American Control Conference, Washington, 2008.1552-1557.
    [92] Wang C, Wang Y, Ma G. Compensation time-varying delays in networked control systems via jump linear system approach, in Proceeding of the 5th World Congress on Intelligent Control and Automation, Hangzhou, P.R. China, 2004. 1343-1347.
    [93] Wang C. and Chen H. H∞ control of networked control system with long time delay, in Proceeding of the 7th World Congress on Intelligent Control and Automation, Chongqing, P.R. China, 2008. 5457-5462.
    [94] Yu M, Wang L, Chu T et al. Modelling and control of networked systems via jump system approach. IET Control Theory and Applications, 2008, 2(6): 535 - 541.
    [95] Carlos E. de Souza. Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems. IEEE Transaction on Automatic Control, 2006,51(5): 836-841.
    [96] Pan Y, Marquez H J, Chen T.Stabilization of remote control systems with unknown time varying delays by LMI techniques, International journal of control, 2006,79(7):752-763.
    [97] Zhu Q, Lu G, Cao J Y et al. Stability analysis of networked control systems with markov delay, International Conference on Control and Automation, 2005,720-724.
    [98] Liu L, Tong C, Zhang H. Analysis and design of network control systems with long delays based on markovian jump model. Proceeding of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, 2005, 953-959.
    [99] Charlier B. The greedy algorithms class: Formalization, synthesis and generalization. Technical Report B-1348, Universit(?) Catholique de Louvain, 1995.
    [100] Feng X, Loparo K A, Ji Y D et al. Stochastic stability properties of jump linear systems. IEEE Transaction on Automatic Control, 1992, 37(1): 38- 52.
    [101] Costa O L V, Fragoso M D. Stability results for discrete-time linear systems with Markovian jumping parameters. Journal of mathematical analysis and applications,1993, 17(9): 155- 177.
    [102] Fang Y, Loparo K A. Stochastic stability of jump linear systems. IEEE Transaction on Automatic Control, 2002, 47(7): 1204-1208.
    [103] Izadi I, Zhao Q, Chen T. An opimal scheme for fast rate fault detection based on multirate sampled data, Journal of process control, 2005, 15: 307-319.
    [104] Hu L, Shi P, Biao H, Stochastic stability and robust control for sampled-date systems with Markovian jump parameters. Journal of mathematical analysis and applications, 2006, 313: 504-517.
    [105] Izadi I, Zhao Q, Chen T W. An H∞ approach to fast rate fault detection for multirate sampled-data systems, Journal of process control, 2006, 16: 651-658.
    [106] Lin H, Zhai G, Antsaklis P J. Robust stability and attenuation analysis of a class of networked control systems, Proceedings of 42nd IEEE Conference on Decision and Control Maui,Hawaii USA, December 2003.1182-1187.
    [107] 周晓兵.基于TCP/IP网络的延时建模及网络先进PID控制器研究:[博士学位论文].上海:上海大学,2006.
    [108] 孙利民,李建中,陈渝等.无线传感器网络.清华大学出版社,2005.
    [109] 崔丽,鞠海玲,苗勇等.无线传感器网络研究进展.计算机研究与发展,2005,42(1):163-174.
    [110] Rahimi M, Shah H, Sukhatme G S etal. Studying the feasibility of energy harvesting in a mobile sensor network. Proceedings of IEEE International Conference on Robotics and Automation, Taipei, 2003: 19-24.
    [111] Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks. Proceedings of 21st Int'l Annual Joint conference IEEE computer and communications societies, New York, USA, June, 2002:53-63.
    [112] Hedetniemi S, Liestman A. A survey of gossiping and broadcasting in communication networks. Network, 1998, 18(4):319-349.
    [113] Younis O, Krunz M, Ramasubramanian S. Node clustering in wireless sensor networks: recent developments and deployment challenges. IEEE networks 2006, 20(3): 20-25.
    [114] Shu T, Krunz M, Vrudhula S. Power balanced coverage-time optimization for clustered wireless sensor networks. Proceedings of the 6th ACM international symposium on Mobile hoc, Illinois, May, 2005:111-120.
    [115] Schenato L. Optimal sensor fusion for distributed sensors subject to random delay and packet loss. In Proceedings of the 46th IEEE Conference on Decision and Control, 2007, New Orleans, LA, USA, Dec., 2007: 1547-1552.
    [116] Vellidis G, Tucker M and Perry C, etal. A real-time wireless smart sensor array for scheduling irrigation. Computers and Electronics in Agriculture, 2008, 61(1): 44-50.
    [117] ARC Advisory Group, http://www.arcweb.com/.
    [118] Willig, A., Matheus, K., Wolisz, A. A wireless technology in industrial networks.Proceedings of IEEE 2005, 93(6): 1130-1151.
    [119] Xia F, Tian Y C, Li Y, Sun Y. Wireless Sensor/ Actuator Network Design for Mobile Control Applications. Sensors 2007, 7, 2157-2173.
    [120] Li S F Wireless sensor actuator network for light monitoring and control application. Proceeding of. 3rd IEEE Consumer Communications and Networking Conf. 2006, 2: 974- 978.
    [121] El Ghaoui L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans, on Automatic Control, 1997, 42 (8): 1171-1176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700