外部激励和惯性项对时滞神经网络动力学行为的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,在网络系统中时滞的引入往往会带来系统动力学性质上很大的变化,而由于信号传输速度的有限性,时滞对系统的影响是不得不考虑的一个因素。由于时滞神经网络是时滞大系统的一个重要组成部分,所以同样也具有非常丰富动力学性质,尤其是鉴于它在信号处理、动态图象处理以及全局优化等问题中的重要应用。时滞神经网络的动力学问题一直都是学术界广泛关注的话题,特别是对时滞神经网络平衡点的全局稳定性、局部稳定性(包括渐近稳定性、指数稳定性、绝对稳定性)以及时滞神经网络的分岔和混沌等动力学现象,都得到了广大科学工作者的深入研究并取得了一系列深刻而有实际意义的理论成果。本论文主要对两种类型的时滞神经网络(即Hopfield神经网络和惯性神经网络),从两个方面即自治系统平衡点的全局稳定性以及自治系统周期解的局部稳定性、Hopf分岔、共振余维二分岔和混沌,以及非自治系统周期解的局部稳定性和Hopf分岔进行了一系列的研究,获取了一些有意义的成果。
     本论文的主要内容和创新之处可概述如下:
     ①获得了分布时滞和有限时滞神经网络与时滞相关的全局稳定性和局部稳定性判据
     由于神经元之间有限的信息传输速度以及电路系统中放大器的有限开关速度,同时因为存在大量的并行旁路以及各种不同长度和大小的轴突神经网络在空间上的扩展,信号传输不可能在一定时间内完成,因此建模上仅仅依靠有限时滞(常数时滞或者时变时滞)是不完整的,较精确的模型应该还应该包括无限时滞(分布时滞)。本论文中采用通常的Lyapunov函数构造法分别对带分布时滞或有限时滞的神经网络模型进行探讨,获得了与时滞相关的全局稳定性和局部稳定性判定准则。本研究的意义有两个方面:一、从两种时滞的角度分别给出稳定性的判定准则,这样对于更加精确的建模并预测模型从稳定至不稳定的演变过程是十分有益的;二、给出了与时滞相关的稳定性判据,这种准则对于小时滞神经网络不会过于苛刻,对系统参数也没有过多的限制,有利于预测系统模型动力学行为的鲁棒性和稳定性。
     ②对惯性时滞神经网络的局部稳定性和Hopf分岔进行了研究
     惯性时滞神经网络具有较强的生物学背景,因此在满足一定条件的情况下,神经元的电路实现可以通过加入一个电感完成类似于带通滤波器、电调谐或者时空过滤的作用。由此我们研究了一个带有惯性项的时滞神经网络模型的局部稳定性和Hopf分岔,并用中心流形定理和正规型理论确定了分岔周期解的稳定性和分岔方向。其意义在于:一、由于Hopf分岔与振荡现象密切相关,对这种小规模网络Hopf分岔的研究可以使我们更好地解释现实世界中的许多大规模网络,如Internet、电网、生物神经网络中发生的对参数敏感的现象。二、若能深入地了解小规模网络中的分岔现象和规律,则通过利用比较成熟的分岔控制理论和方法,我们就可以将现实世界中大规模网络控制到所期望的有利的状态中去。
     ③对惯性神经网络的共振余维二分岔的研究
     如何在人工神经网络系统中去预测并避免共振是十分重要的一个课题。在本论文中对惯性时滞神经网络模型进行了分析,在以时滞参数作为分岔参数的条件下,将研究重点放在对模型特征方程的根的讨论上,从而获取系统能够出现两对纯虚根的条件,当频率比ω1 :ω2为有理数时系统将会产生共振现象,所以本现象的研究结果以及分析方法可以为系统振幅的耦合和频率同步以及减少系统出现的共振提供理论依据。
     ④对惯性时滞神经网络在外部周期激励影响下的局部稳定性和Hopf分岔的研究
     根据生物学实验,神经元在被施予外部周期激励时会产生同步振荡现象。因此作者研究了当惯性时滞神经网络引入了外部周期激励后,该非自治系统的局部稳定性以及周期解的存在和方向性。通过使用中心流形定理以及非线性振动中平均法技术的结合,我们首先获得了模型的中心流形,进而获取其平均方程,利用对方程的雅可比矩阵的分析得到分岔方程,由该分岔方程分析出周期解的方向和分岔点。由于目前主要的分岔理论都是针对自治系统的分岔问题,对非自治系统的分岔问题讨论的很少,本论文对这种类型系统的动力学性质做了一个初探,有利于为实际应用提供帮助。
     ⑤对Hopfield网络模型在时滞以及外部周期激励的共同影响下的局部稳定性和Hopf分岔的研究
     对于Hopfield神经网络模型,它的应用已经渗透到生物学、物理学、地质学等诸多领域,并在智能控制、模式识别、非线性优化等方面获得了广泛的应用,针对这种实际应用非常广泛的网络模型讨论它的动力学行为是非常有意义的。本论文对该模型除了引入时滞外还增加了外部的周期激励,同时采用中心流形定理结合平均法获得系统的分岔周期解。虽然本论文该内容的研究方法与上一章的内容类似,但是因为该网络模型在实际应用中十分广泛,更具有重要意义。
As we all know, the introduce of time delay often brings great changes on the dynamical behavior in the fields of network systems. But the time delay has to be considered into the factors which influence systems due to the limitation of the signal transformation velocity. The delayed neural network is an important part of the delayed large-scale system, which exhibits the rich and colorful dynamical behavior. Due to the important applications in signal processing, moving image processing as well as optimizing problems, the dynamical behavior of the delayed nueral network has been studied by many researchers all the time, especially the dynamical behaviors of the global stability, the local stability (including asymptotic stability, exponential stability and absolute stability) as well as bifurcation and chaos, and many intensive and valuable results have been derived. This thesis mainly focuced on two types of neural network(Hopfield neural network and Inertial neural network). On the one hand, we also studied the global stability, the local stability, the Hopf bifurcation, the resonant codimension two bifurcation and chaos for autonomous system; On the other hand, we studied the local stability and the Hopf bifurcation for the nonautonomous system.
     The main contents and originalities in this paper can be summarized as follows:①Delay-dependent asymptotic stability for neural networks with distributed delays and discrete delays
     Signal transformation can not be finished in time due to the finite signal propogation time in biological networks, or to the finite switching speed of amplifiers in electronic neural networks, so the models depending the discrete time delays are not complete, the more exact models should include the distributed time delays. Moreover, we study the delay-dependent asymptotic stability for neural networks with distributed delays and discrete delays via constructing suitable Lyapunov-Krasovskii functions. Our studies are very important, on the one hand, the stability criteria for two kinds of delays are derived, and it is significant to give the more exact models and to predict the dynamical behavior of the models; on the other hand, comparing with the delay-independent stability criteria, the delay-dependent stability criteria are easier to obtain for the small delay neural network and have less limitations for the parameters of system.
     ②Local stability and Hopf bifurcation in an inertial two-neuron system with time delay
     Under certain conditions, neurons exhibite a quasi-active membrane, which can be modeled by a phenonmenokogical inductance that allows the membrane to behave like a bandpass filter, enabling electrical tuning, or spatio-temporal filtering. So there are some strong biological backgrounds for the inertial delayed neural networks. In this thesis, we have studied the local stability and the existence of Hopf bifurcation at first, then we derived the direction of Hopf bifurcation and stability criterias of bifurcating periodic solutions by applying the center manifold theorem and the normal form theory. These studies are very important. On the one hand, bifurcations, which involve emergence of oscillatory behaviors, may provide an explanation for the parameter sensitivity observed in practice in many realistic small-scale networks such as the Internet, the electrical power grids, and the biological neural networks; and on the other hand, if we understand more about the bifurcation behaviors of small-scale networks, we can apply the existing effective bifurcation control method to achieve some desirable system behaviors that benefit the networks.
     ③Local stability and resonant codimension-two bifurcation in an inertial two-neuron system with time delay
     It is a very important topic to predict and avoid resonant in delayed neural network. In this dissertation, we focuse on the discussion for the roots of the system’s characteristic equation based on the studies of the above problem, then using the delay as bifurcation parameter, we derive the conditions for the occurrence of two pairs of pure imaginary roots(i.e.±iω1 ,±iω2) are derived. When the frequency ratioω1 :ω2 is rational number, the phenomena of resonant will occure. This result and analytical method can provide the theoretical basis for the couple of system amplitudes, the synchronization of frequency, and can also reduced the occurrence of system resonant.
     ④Local stability and Hopf bifurcation for delayed inertial neural network under periodic excitation
     There is evidence from the experimental studies that assemblies of cells in the visual cortex oscillate synchronously in response to external stimuli. So we have studied the local stability, the existence and the direction for bifurcating periodic solutions of delayed inertial neural model with periodic stimuli (non-autonomous system). By using the center manifold theorem and the averaged method in the theory of nonlinear oscillation, first we derived the center manifold of the system is derived. Then the averaged equations of the system are obtained. Finally the bifurcating equations via analyzing the Jacobian matrix for the averaged equations are obtained, furthermore we got the direction of the periodic solution and the bifurcating points from the bifurcation equations. Since most of the existing literature on theoretical studies of bifurcation problem is predominantly concerned with autonomous systems, Literature dealing with bifurcation for non-autonomous systems appears to be scarce. The analyzing method for the system’s dynamical behavior in this dissertation may be helpful to solve these problems.
     ⑤Local stability and Hopf bifurcation in Hopfield neural network with time delay and periodic excitation
     The application of the Hopfield neural network has permeated many fields such as biology, physics, geology, etc. And it has also been widely applied to intelligent control, pattern recognition and nonlinear optimization. Moreover it is significant to study the dynamic behavior of this model which has wide use. In this dissertation, we study the dynamic behavior of the Hopfield model under the influence of time delay and periodic stimuli by using the center manifold theorem as well as the perturbation techniques.
引文
[1] B.De Vries, J.C.Principle. The gamma model—a new neural model for temporal precesing[J]. Neural Networks , 1992, 5: 565-576.
    [2] K.Gopalsamy. Stability and oscillations in delay differential equations of populations dynamics[M]. Kluwer, Dordrecht, The Netherlands, 1992.
    [3] K.Gopalsamy, X.He. Stability in asymmetric Hopfield networks with transmission delays[J]. Physica D , 1994, 76:344-358.
    [4] K.Gopalsamy, X.He. Delay-independent stability in bi-directional associative memory networks[J]. IEEE Trans. Neural Networks ,1994,5: 998-1002.
    [5] J.Hale, S.V.Lenel. Introduction to functional differential equations[M]. Springer, New York, 1993.
    [6] X.F.Liao, G.Chen. Hopf bifurcation and chaos analysis of Chen’s system with distributed delays[J]. Chaos, Solitons Fractals , 2005, 25(1) ,11-23.
    [7] X.F.Liao, G.Chen, E.N.Sanchez. Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach[J]. Neural Networks ,2002,15: 855-866.
    [8] X.F.Liao, G.Chen, E.N.Sanchez. LMI-based approach for asymptotically stability analysis of delayed neural networks[J]. IEEE Trans. Circuits Systems-I , 2002, 48: 1033-1039.
    [9] X.F.Liao, C.D.Li. An LMI approach to asymptotical stability of multi-delayed neural networks[J]. Phys.D, 2005, 200(1-2): 139-155.
    [10] X.F.Liao, S.W.Li, G.Chen. Bifurcation analysis on a two-neuron system with distributed delays in the frequency domain[J]. Neural Networks , 2004, 17(4): 1141-1154.
    [11] X.F.Liao, C.G.Li, K.W.Wong. Criteria for exponential stability of Cohen-Grossberg neural networks[J]. Neural Networks, 2004, 17: 1401-1414.
    [12] X.F.Liao, K.W.Wong. Robust stability of interval bi-directional associative memory neural networks with time delays[J]. IEEE Trans. System,Man Cybernetics , 2004, 34 (2) :1141-1154.
    [13] X.F.Liao, K.W.Wong, C.S.Leung, Z.F.Wu. Hopf bifurcation and chaos in a single delayed neuron equation with nonmontonic activation function[J]. Chaos, Solitons Fractals , 2001, 21: 1535-1547.
    [14] X.F.Liao, K.W.Wong, C.G.Li. Global exponential stability for a class of generalized neural networks with distributed delays[J]. Nonlinear Anal: Real World App., 2004, l5: 527-547.
    [15] X.F.Liao, K.W.Wong, Z.F.Wu. Bifurcation analysis in a two-neuron system with distributeddelays[J]. Physica D, 2001, 149: 123-141.
    [16] X.F.Liao, K.W.Wong, Z.F.Wu. Asymptotic stability criteria for a two-neuron network with different time delays[J]. IEEE Trans. Neural Networks, 2003, 14(1) : 222-227.
    [17] X.F.Liao, K.W.Wong, Z.F.Wu, G.Chen. Novel robust stability criteria for interval delayed Hopfield neural networks with time delays[J]. IEEE Tran. CAS-I, 2001, 48:1355-1359.
    [18] X.F.Liao, K.W.Wong, S.Z.Yang. Stability analysis for delayed cellular neural networks based on linear matrix inequality approach[J]. Int.J.Bifurcation Chaos. , 2004, 14(9),:3377-3384.
    [19] X.F.Liao, Z.F.Wu, J.B.Yu. Stability switches and bifurcation analysis of a neural network with continuously delay[J]. IEEE Trans. Syst.Man Cybernetics , 1999, 29: 692-696.
    [20] X.F.Liao, J.B.Yu. Robust interval stability analysis of Hopfield networks with time delays[J]. IEEE Trans. Neural Networks , 1998, 9:1042-1045.
    [21] X.F.Liao, J.B.Yu, G.Chen. Novel stability conditions for cellular neural networks with time delays[J]. Int.J.Bifurcation Chaos, 2001, 11(7): 1853-1864.
    [22] N.MacDonald. Time lags in biological models[C]. Lecture Notes in Bionmathematics, 1978, vol.27, Springer, Berlin.
    [23] R.M.May. Stability and complexity in model ecosystems[M]. Princeton University Press, Princeton, NJ, 1974.
    [24] K.Pakdaman, C.P.Malta, et al.. Transient oscillations in contimuous-time excitatory ring neural networks with delay[J]. Phys.Rev. , 1997, E55:3234-3248.
    [25] Q.Zhang, X.P.Wei, Jin Xu. Delay-dependent exponential stability of cellular neural networks with time-varying delays[J]. Chaos, Solitons Fractals, 2005, 23(4): 1363-1369.
    [26] S.W.Li, X.F.Liao, C.G.Li. Hopf bifurcation in a Volterra prey-predator model with strong kernel[J]. Chaos, Solitons Fractal , 2004, 22(3) :713-722.
    [27] D.W.Tank, J.J.Hopfiel. Neural computational by concerntrating information in time[C]. Proc.Natl.Acad.Sci., 1987, 84: 1896-1991.
    [28] F.H.Tu, X.F.Liao. Estimation of exponential convergence rate and exponential stability for neural networks with time-varying delay[J]. Chaos, Solitons, Fractals, 2005, 26(5): 1499-1505.
    [29] F.H.Tu, X.F.Liao. Harmless delays for global asymptotic stability of Cohen-Grossberg neural networks[J]. Chaos, Solitons Fractal, 2005, 26(3) : 927-933.
    [30] P.Van den Driessche, X.Zou. Global attractivity in delayed Hopfield neural networks model[J]. SIAM J.Appl.Math., 1998, 58: 1878-1890.
    [31] J.J.Hopfield. Neurons with graded response have collective computational properties like those of two–state neurons[C]. Proc. National Academy of Sciences (USA), 1984, 81:3088-3092.
    [32] W.C.Schieve, A.R.Bulsara, G.M.Davis. Single effective neuron[J]. Phys. Rev. A , 1991, 43 :2613-2623.
    [33] Z.Zeng, W.C.Scheve, P.K.Das. Two neuron dynamics and Adiabatic elimination[J]. Physica D ,1993,67: 224-236
    [34] K.H.Kwek, J.Li. Periodic solution and dynamics in two neuron network system[J]. Neural Parallel Scientific Compute. , 1995, 3:189-203.
    [35] K.L.Babcock, R.M.Westervelt. Dynamics of simple electronic neural networks[J]. Physica D; 1987, 28:305-306
    [36] J.Tani. Model-based learning for mobile robot navigation from the dynamical systems perspective[J]. IEEE Trans. Systems Man Cybernet.1996; 26(3): 421-436
    [37] J.Tani, M.Fujita. Coupling of memory search and mental rotation by a nonequilibrium dynamics neural network[J]. IEICF Trans. Fund. Electron Commune Compute. Sci. E ,1992, 75-A(5):578-585
    [38] J.Tani. Proposal of chaotic steepest descent method for neural networks and analysis of their dynamics[J]. Electron. Comm.. Japan, 1992, 75(4):62-70
    [39] L.Olien, J.Belair. Bifurcations, stability and monotonicity properties of a delayed neural network model[J]. Physical D , 1997, 102:349-363
    [40] J.F.Ashmore, D.Attwell. Models for electrical tuning in hair cells[C]. Proc.Royal Soc.London B ,1985, 226:325-344
    [41] D.E.Angelaki, M.J.Correia. Models of membrane resonance in pigeon semicircular canal type II hair cells[J]. Biol. Cybernet, 1991, 65:1-10.
    [42] A.Mauro, F,Conti, F.Dodge, R.Schor. Subthreshold behavior and phenomenological impedance of the squid giant axon[J]. J. General Physical, 1970, 55:197-523.
    [43] I.Puil, B.Gimbarzevsky, I.Spigelman. Primary involvement of K ++ conductance in membraneresonance of trigeminal K ++ root ganglion neuron [J]. J. Neutop hysiology ,1998,59(1):77-89.
    [44] C.Koch. Cable theory in neurons with active, linear zed membrane[J]. Biol. Cybernet, 1984,50:15-33.
    [45] C.W.Eurich, M.C.Mackey, H.Schwegler. Recurrent inhibitory dynamics: The role of state dependent distribution of conduction delay terms[J]. J. Theor. Biol ,2002,216:31-50.
    [46] Van der Heiden. Analysis of Neural Networks[M]. Springer-Verlag, New York,1980.
    [47] B. D.Coleman, G.H.Renninger. Periodic solutions of Certain Nonlinear Integral Equations with a tine-lay.[J] SIAM J.Applied Math,1976, 31:111-120.
    [48] B.D.Coleman, G.H.Renninger. Consequences of Delayed Lateral Inhibition in the Retina of limulus.II. Theory of Spatially Uniform Fields, Assuming the 4-point property[J]. J. Theor. Biol., 1975, 51:267-291.
    [49] W.Wischert, A.Wunderlin, A.Pelster, M.Olivier, J.Grosambert. Delay-induced Instabilities in nonlinear feedback systems[J]. Phys. Rev. E.,1994,49:203.
    [50] M.Schanz, A.Pelster. Analysis and numerical investigations of the phase-locked loop with delay[J]. Phys. Rev. E.,2003, 67:0562051(1-8).
    [51] P.K.DasII, W.C.Schieve, Z.J.Zeng. Chaos in an effective four-neuron neural network. [J] .Phys.Lett.A 1991; 161: 60-66.
    [52] D.W.Wheeler, W.C.Schieve. Stability and chaos in an inertial two-neuron system[J]. Physica D 1997; 105: 267-284.
    [53] C.M.Marcus, R.M.Westevelt. Stability of analog neural network with delay[J], Phys. Rev. A , 1989,39:347-359.
    [54] P.Baldi, A.Atiya. How delays affect neural dynamics and learning[J]. IEEE Trans. NN , 1994,5:612-621.
    [55] K.Pakdaman, C.P.Malta, C.Grotta-Ragazzo, O.Arino, J.F.Vibert. Transient oscillations in continuous-time excitatory ring neural networks with delay[J]. Phys. Rev. E, 1997, 55:3234-3248.
    [56] J.J.Wei, M.G.Velarde. Bifurcation analysis and existence of Periodic Solutions in a simple neural network with delays[J]. Chaos ,2004, 14(3):940-953.
    [57] J.J.Wei, M.Y.Li. Global existence of Periodic Solutions in a tri-neuron network model with delays[J]. Physica D,2004,198:109-119.
    [58] L.Wang, X.Zou. Hopf bifurcation in bi-directional associative memory neural networks with delays: Analysis and computation[J]. J.Comput. Appl. Math., 2004, 167:73-90.
    [59] S.Guo, L.Huang. Hopf bifurcating periodic orbits in a ring of neurons with delays[J], Physica D, 2003,183:19-44.
    [60] J.J.Wei, S.Ruan. Stability and bifurcation in a neural network model with two delays[J]. Physica D, 1999,130:255-272.
    [61] F.Giamnakopoulos, A. Zapp. Bifurcation in a planar system of differential delay equations modeling neural activity[J]. Physica D, 2001,159:15-232.
    [62] K.Gopalsamy, I.Lueng. Convergence under dynamical threshold with delays[J]. IEEE Trans. On Neural Networks, 1994,8: 341-348.
    [63] K.Gopalsamy, I.Lueng. Delay induced periodicity in a neural netlet of excitation and inhibition[J]. Physica D, 1996,89:395-426.
    [64] C.G.Li, G.R.Chen, X.F.Liao, J.b.Yu. Hopf bifurcation and chaos in a single inertial neuron model with time delay[J]. Eur. Phys. J. B., 2004,41: 337-343.
    [65] C.Chow, J.Mallet-Paret. Integral averaging and bifurcation[J]. Journal of Differential Equation, 1977,26:112-159.
    [66] G.Ioos, D.D.Joseph. Elementary stability and bifurcation theory[J]. Springer-Verlag, New York , 1980.
    [67] A. H.Nayfeh, C.M.Chin, J.Pratt. Perturbation methods in nonlinear dynamics—Application to machining dynamics[J]. Journal of Manufacturing Science and Engineering, 1997, 119:485-493.
    [68] G.Stepan. Retarded dynamical systems: stability and characteristic functions[M]. Longman Scientific & Technical, Essex, 1989.
    [69] B.D.Hassard, N.D.Kazarinoff, Y.H.Wan. Theory and applications of Hopf bifurcation Cambridge[M]: Cambridge University Press; 1981.
    [70] W.J.Freeman. The physiology of perception[J]. Sci. Amer., 1991, Feb.:34-41.
    [71] C.A.Skarda, W.J.Freeman. How brains make chaos in order to make sense of the world[J]. Behaviour Brain Sci., 1987,10:161-195.
    [72] W.J.Freeman. A proposed name for aperiodic brain activity: stochastic chaos[J]. Neural Networks,2000,13:11-13.
    [73] M.Ospeck, V.M.Eguiluz, M.O.Magnasco. Evidence of a Hopf Bifurcation in Frog Hair Cells[J]. Biophysical Journal, 2001,80:2597-2607.
    [74] D.J.Jagger, J.F.Ashmore. The fast activating potassium current, Ik,f in guinea-pig inner hair cells is regulated by protein kinase A[J]. Neuroscience Letters ,1999,263:145-148.
    [75] W.W.Yu, J.D.Cao. Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay[J]. Nonliear Analyis, 2005,62:141-165.
    [76] K.Gopalsamy, Sariyasa. Time delays and stimulus-dependent pattern formation in periodic enviroments in isolated neurons[J]. IEEE Trans. NN, 2002,13(3):551-563.
    [77] V.E.Bondarenko. Self-organization processes in chaotic neural networks under external periodic force[J]. Int. J. Bifur. chaos, 1997,7:1887-1895.
    [78] C.M.Gray, P.K?nig, A.K.Engel, W.Singer. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties[J]. Nature, 1989,338:334-337.
    [79] C.X.Huang, Y.G.He, L.H.Huang. New results on network of neurons with delayed feedback: Periodical switching of excitation and inhibition[J]. Phys.Lett.A 2007,366:190-194.
    [80] A.H.Nayfeh, D.T.Mook. Nonlinear Oscillations[M]. Wiley, New York, 1979.
    [81] J.Xu, K.W.Chung. Effects of time delayed position feedback on a van der Pol-Dyffing oscillator[J]. Physica D , 2003,180:17-39.
    [82] J.C.Ji, C.H.Hansen, X.Y.Li. Effect of external excitations on a nonlinear system with time delay[J]. Nonlinear Dynamics, 2005,41:385-402.
    [83] J.C.Ji, C.H.Hansen. Hopf bifurcation of a magnetic bearing system with delay[J]. Transactions of the ASME, 2005, 127:362-369.
    [84] J.K.Hale. Delay differential equations with applications in population dynamics[M]. San Diego: Academic Press; 1993.
    [85] H.S.Y.Chan, K.W.Chung, D.W.Qi. Some bifurcation diagrams for limit cycles of quadratic differential systems[J]. Int.J.Bifurc.Chaos, 2001,11:197-206.
    [86] Q.Liu, X.F.Liao, G.Y.Wang, Y.Wu. Research for Hopf bifurcation of an inertial two-neuron system with time delay[C]. IEEE Proceeding GRC2006, 420-423.
    [87] J.C.Ji, C.H.Hansan. Stability and dynamics of a controlled van der Pol-Duffing oscillator[J]. Chaos, Soliton & Fractals ,2006,28:555-570.
    [88] Q.Liu, X.F.Liao, D.G.Yang, S.T.Guo. The research for Hopf bifurcation in a single inertial neuron model with external forcing[C]. IEEE Proceeding GRC2007,528-533.
    [89] X.F.Liao, Q.Liu, W.Zhang. Delayed-dependent asymptotic stability for neural networks with distributed delays[J]. Nonlinear Analysis: Real World Applications ,2006,7:1178-1192.
    [90] D.K.Arrowsmith, C.M.Place. An Introduction to Dynamical systems[M]. Cambridge Univ.Press, 1990.
    [91] K.L.Babcock, R.M.Westervelt. Complex dynamics in simple neural circuits[J]. Neural Networks for Computing, 1986, 288-293.
    [92] K.L.Babcock, R.M.Westervelt. Dynamics of simple electronic neural networks with added inertia[J]. Physica D,1987,23:464-469.
    [93] J.C.Ji, N.Zhang. Additive resonances of a controlled van der Pol-Duffing oscillator[J]. Journal of sound and vibration, 2008,315:22-33.
    [94] C.X.Huang, Y.G.He, L.H.Huang, W.J.Zhu. Pth moment stability analysis of stochastic recurrent with time-varying delays[J]. Information sciences, 2008,178:2194-2203.
    [95] J.Hale, H.Kocak. Dynamics and bifurcations Texts in applied mathematics 23[M]. New York, Springer, 1991.
    [96] D.Kleinfield, H.Sompolinsky. Associate neural network model for the generation of temporal patterns[J]. Biophys.J., 1988,45:1039-1051.
    [97] Q.Liu, X.F.Liao, S.T.Guo, Y.Wu. Stability of bifurcating periodic solutions for a single delayed inertial neuron model under periodic excitation[J]. Nonlinear Analysis: Real worldapplications (In press).
    [98] Z.Yi, K.K.Tan. Convergence analysis of recurrent neural networks[M]. Kluwer Academic Publisher, Boston,2004.
    [99] T.P.Vogels, K.Rajan, L.F.Abbortt. Neural network dynamics[J]. Annual Review Neuroscience, 2005,28:357-376.
    [100] G.Buzsaki, A.Draguhn.Neural oscillations in cortical networks[J]. Science, 2004, 304:1926-1929.
    [101] D.K.Chaturvedi, O.P.Malik. Generalized euron-based adaptive PSS for multimachine environment[J]. IEEE Trans. Neural Networks, 2005,20:358-366.
    [102] A.W.Przybyszewshki, P.S.Linsay, P.Gaudiano, C.M.Wilson. Basic difference between brain and computer: integration of asynchronous processes implemented as hardware model of the retina[J]. IEEE Trans. Neural Networks, 2007,18: no.1.
    [103] G.He, M.D.Shrimali, K.Aihara. Partial state feedback control of chaotic neural network and its application[J]. Physics Letters A, 2007,371:228-233.
    [104] W.Yu, J.Cao. Cryptography based on delayed chaotic neural networks[J]. Physics Letters A, 2006,356:333-338.
    [105] H.O.Wang, E.H.Abed. Bifurcation control of a chaotic system[J]. Automatica, 1995, 31(9):1213–1226.
    [106] H.S.Seung. Continous attractors and occulomotor control[J]. Neural Networks, 1988,11:1253-1258.
    [107] H.S.Seung. How the brain keeps the eyes still[C]. Proc. National Academy of Science USA,1996,93:13339-13344.
    [108] R.Douglas, C.Koch, M.Mahowald, K.Martin, H.Suarez. Recurrent excitation in neocortical circuits[J]. Science, 1995,269:981-985.
    [109] R.Hahnoloser, R.Sarpeshkar, M.A.Mahowald, R.J.Douglas, H.S.Seung. Digital selection and analogue amplification coexist in a cortexinspired silicon circuit[J]. Nature, 2000, 405:947-951.
    [110] Z.Yi, K.K.Tan, T.H.Lee. Multistability analysis for recurrent neural networks with unsaturation piecewise linear transfer functions[J]. Neural Computation, 2003,15.
    [111] Z.Yi, K.K.Tan. Dynamical stability conditions for Lotka-Volterra recurrent neural networks with delays[J]. Physical Review E, 2000,66:011910(1-8).
    [112] M.L.V.Quyen, A.Bragin. Analysis of dynamic brain oscillations:methodological advances[J]. Trands in Neurosciences, 2007,30:365-373.
    [113] R.Ilin, R.Kozma, W.J.Freeman. Studies on the conditions of limit cycle oscillations in K2models of neural populations[C]. Proc.IEEE IJCNN,2004.
    [114] M.Gilli, M.Bonnin, P.P.Civalleri, F.Corinto. Oscillatory behavior in two-dimensional weakly connected cellular nonlinear networks[C]. International Workshop on Cellular Neural Networks and Their Applications, 2005.
    [115] K.Nakada, K.Miura, H.Hayashi. Theoretical analysis of synchronization phenomena in two pulse-coupled tesonate-and-fire neurons[C]. Proc.IJCNN, Orlando, Florida, USA, 2007.
    [116] M.R.Guevara, L.Glass, M.C.Mackey, A.Shrier. Chaos in neurobiology[J]. IEEE Trans. Systems, Man, and Cybernetics, 1983,13:790-798.
    [117] C.A.Skarda, W.J.Freeman. How brains make chaos in order to make sense of the world[J]. Behavioral and Brain Science, 1987,10:161-195.
    [118] Y.M.Sandler. Model of neural networks with selective memorization and chaotic behavior[J]. Physics Letters A, 1990,144:462-466.
    [119] Y.Tada, Y.Uwate, Y.Nishio. Effective search with hopping chaos for Hopfield neural networks solving QAP[C]. Proc.IEEE ISCS, 2007.
    [120] M.Bonnin, F.Corinto. Periodic oscillations in weakly connected cellular nonlinear networks[J]. IEEE Tran. Circuits and systems, 2008,55:1671-1684.
    [121] E.Salinas. Background synaptic activity as a switch between dynamical states in a network[J]. Neural Computation, 2003,15:1439-1475.
    [122] X.F.Yang, M.B.Yang, H.Y.Liu, X.F.Liao. Bautin bifurcation in a class of two-neuron networks with resonant bilinear terms[J]. Chaos, Solitons, Fractals, 2008,38:575-589.
    [123] S.T.Guo, X.F.Liao, C.D.Li, D.G.Yang. Stability analysis of a novel exponential-RED model with heterogeneous delays[J]. Computer Communications, 2007,30:1058-1074.
    [124] M.Gilli, M.Bonnin, F.Corinto. On global dynamics\ behavior of weakly connected oscillatory networks[J]. Int.J.Bifurc.Chaos., 2005,15:1377-1393.
    [125] M.Gilli. Investigation of chaos in large arrays of Chua’s circuits via a spectral technique[J]. IEEE Trans. Circuits Sys. I,Fundam. Theory Appl., 1995,42:802-806.
    [126] H.O.Wang, D.S.Chen. Bifurcation Control: Theory and Applications[A]. Springer, 2004,293:229-248 .
    [127] C.M.Postlethwaite, M. Silber. Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control[J]. Physical Review E, 2007,76:056214.
    [128] T.Dahms, P.H?vel, E.Sch?ll. Control of unstable steady states by extended time-delayed feedback[J]. Physical Review E, 2007,76: 056201.
    [129] S.Yanchuk, M.Wolfrum, P.H?vel, E.Sch?ll. Control of unstable steady states by long delay feedback[J]. Physical Review E, 2006,74:026201.
    [130] J.Xu, P.Yu. Delay-induced bifurcation in a nonautonomous system with delayed velocity feedbacks[J]. International Journal of Bifurcation and Chaos, 2004,14:2777-2798.
    [131] S.A.Campbell, J.Belair. Resonant co-dimension two bifurcation in the harmonic oscillator with delayed forcing[J]. Canadian Applied Mathematics Quarterly, 1999,7:218-238.
    [132] D.S.Chen, H.O.Wang, G.Chen. Anti-Control of Hopf bifurcation[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2001, 48(6):661- 672.
    [133] X.F.Liao, G.R.Chen. Local stability, Hopf and resonant codimension-two bifurcation in a harmonic oscillator with two time delays[J]. International Journal of Bifur. and Chaos, 2001,11(8):2105-2121.
    [134] J.Guckenheimer, P.Holmes. Nonlinear oscillations, dynamic systems and bifurcation of vector fields[A]. New York-Heidelberg-Berlin: Springer-Verlag, 1983, 397-405.
    [135] S.Guo, X Liao, Q.Liu, C.Li. Necessary and sufficient conditions for Hopf bifurcation in exponential RED algorithm with communication delay[J]. Nonlinear Analysis: Real World Applications, In Press, Corrected Proof, Available online 3 June 2007.
    [136] V.G.Leblanc, W.F.Landford. Classification and unfoldings of 1:2 resonant Hopf bifurcation[J]. Arch. Rational Mech. Anal., 1996,136(4):305-357.
    [137] K.Gopalsamy, I.Leung. Delay induced periodicity in a neural netlet of excitation and inhibition[J]. Physica D, 1996,89: 395-426.
    [138] C.G.Li, L.N.Chen, K.Y.Aihara. Stability of genetic networks with SUM regulatory logic: Lur’e system and LMI approach[J]. IEEE Trans. on circuits and systems, 2006,53 (11):2451-2458.
    [139] C.G.Li, X.F.Liao. Passivity analysis of neural networks with time delay[J]. IEEE Trans. on circuits and systems, 2005,52(8): 471-475.
    [140] J.Belair, S.A.Campbell. Stability and bifurcations of equilibria in a multiple-delayed differential equation[J]. SIAM Journal on Applied Mathematics, 1994,54(5):402-424.
    [141] D.Ghosh, A.R.Chowdhury, P.Saha. Bifurcation continuation,chaos and chaos control in nonlinear Bloch system[J]. Nonliear Science and Numerical Simulation, 2008,13:1461-1471.
    [142] T.K.Nagy, G.Stephan, F.C.Moon. Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations[J]. Nonliear Dynamics, 2001,26:121-142.
    [143] Q Liu, X.F.Liao, X.Yang. A novel clustering algorithm by using hypergraph based on granular computing[J]. International Journal of Intelligent systems, In Press.
    [144] G.Chen et.al.. Controlling Chaos and Bifurcation in engineering systems[M]. CRC Press, Boca Raton, FL, USA, 1999.
    [145]徐鉴,陆启韶.非自治时滞反馈控制系统的周期解分岔和混沌[J].力学学报,2003, 35(4):443-451.
    [146]王青云,陆启韶,郑艳红.时滞援助的两抑制性突触耦合的chay神经元的同步[J].物理学学报,2005, 22(6):449-456.
    [147]焦映厚,陈照波,夏松波等.转子—非圆轴承系统非线性动力学行为的研究[J].航空动力学报, 2000,15(4):413-418.
    [148]周尚波,廖晓峰,虞厥邦.具有任意激活函数的时延神经元方程的Hopf分岔[J].电子与信息学报, 2002, 24(9):1209-1217.
    [149]周尚波,廖晓峰,虞厥邦.具有时延的简单神经元模型的混沌行为[J].电子与信息学报, 2002, 24(10):1341-1345.
    [150]徐鉴,陈予恕.时滞速度反馈对强迫自持系统动力学行为的影响[J].应用数学和力学, 2004, 25(5):455-466.
    [151]裴利军,徐鉴. Stuart—Landau时滞系统非共振双Hopf分岔[J].振动工程学报, 2005, 18(1):24-29.
    [152]吕建成,章毅.神经网络的动力学行为研究与发展趋势[J].中国计算机学会通讯, 2008, 4(3):70-73.
    [153]韩景龙,朱德懋.非线性振动系统的规范形与平均法[J].振动工程学报, 1996, 9(4):371-377.
    [154]彭军,廖晓峰,吴中福等.一个时延混沌系统的耦合同步及其在保密通信中的应用[J].计算机研究与发展, 2003, 40(2): 263-268.
    [155]杨万利,王铁宁.非线性动力学理论方法及应用[M].国防工业出版社, 2007.
    [156]罗冠炜,谢建华.碰撞振动系统的周期运动和分岔[M].科学出版社, 2004.
    [157]刘延柱,陈立群.非线性振动[M].高等教育出版社, 2001.
    [158]刘式适,刘式达.物理学中的非线性方程[M].北京大学出版社, 2000.
    [159]张琪昌,王洪礼,竺致文,沈菲等.分岔与混沌理论及应用[M].天津大学出版社, 2005.
    [160]刘延柱,陈立群.非线性动力学[M].上海交通大学出版社, 2000.
    [161]陈关荣,吕金虎. LORENZ系统族的动力学分析、控制与同步[M].科学出版社, 2003.
    [162]李伟固.正规型理论及其应用[M].科学出版社, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700