时滞系统与复杂动力学网络的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Exploring Dynamics of Time-delay Systems and Complex Networks
  • 作者:祁伟
  • 论文级别:博士
  • 学科专业名称:理论物理
  • 学位年度:2009
  • 导师:汪映海
  • 学科代码:070201
  • 学位授予单位:兰州大学
  • 论文提交日期:2009-04-01
摘要
混沌控制与同步和复杂网络的研究都属于国际上的热点前沿课题.本文对时滞系统和复杂网络的动力学进行了研究,涉及时滞系统的混沌控制、复杂动态网络系统的同步与控制、复杂网络中的一致性问题.主要工作如下:
     1.深入研究了一类非线性时滞系统的混沌控制问题.这类系统在不同的时滞区域呈现出不同的动力学性质.除了基本解,在长时滞区域,还有奇倍频谐波解;在中时滞区域和短时滞区域还有两类不同的新解,这些解在非线性时滞系统中普遍存在.我们将多时滞反馈控制方法运用于这种无穷维的时滞系统.结果发现,在上述任何区域,这种方法都可以有效地抑制混沌运动,把系统稳定到不动点,尤其是控制超混沌的情况.这一工作把多时滞反馈控制方法从低维混沌系统推广到无穷维时滞系统。
     2.复杂网络在传输和响应过程中常常会由于传播速度的限制和网络拥塞的存在而产生时滞现象.已有的工作表明耦合时滞的存在有助于耦合混沌映射的同步,我们则进一步研究了节点含时滞的混沌系统在时滞耦合的小世界网络上的同步问题.结果表明,只要网络的耦合强度和耦合时滞的值足够大,网络都可以达到完全同步,并且与不存在耦合时滞的情况相比更容易同步.当耦合时滞的值满足随机分布时,整个系统都被稳定到单个节点的不稳定平衡点.可见耦合时滞效应的存在同样促进了复杂网络中时滞混沌系统间的同步.
     3.研究了无标度动力学网络的牵制控制问题.我们根据多时滞反馈控制方法设计了一种线性反馈控制器,针对性选择网络中度较大的若干关键节点施加控制,可有效抑制整个网络的混沌行为,并且将网络中的每个节点都稳定到单个节点动力学系统的一个不稳定平衡点.同时研究了无标度网络上节点动力学系统分别是Chua's混沌系统、Baier-Sahle超混沌系统、无穷维的Ikeda时滞系统的情形,所得结果很好地验证了这种方法对于无标度网络上的混沌行为实现牵制控制的有效性。
     4.研究了不对称加权对无标度网络的一致性影响.网络中每条连接权值的不对称和相连两个节点的度值有关,可根据其度值存在的次序关系选择网络中每条连接的权值,这样的加权方法使得网络从无向的BA网络变成了有向的加权网络。仿真结果表明,这种不对称加权方法对网络的一致性有很大的影响。当度值较大的节点驱动度值较小的节点的耦合占主导时,网络达到一致性的能力增强,整个网络达到全局一致性的收敛速度和对延迟时间的鲁棒性两个方面都有了提高.这一工作为如何在真实网络中选择权值快速实现网络的一致性提供了一定的理论指导.
Both fields of chaos control and synchronization and complex network studies are international hotspots. In this thesis,we did some deep and detailed studies on dynamics on time-delay systems and complex networks. Our work contains chaos control of time-delay systems, synchronization and pinning control on complex dynamical networks, and consensus problems of multi-agent systems.
     Firstly, we studied the chaos control of a time-delay system in detailed. The system has different dynamics in different delay regions. Besides the fundamental solutions, in the case of long-time delay we observe the odd harmonic solution. In moderate- and short-time delay regions, it exists two set of new attractors. The phenomena are found to be the general features of delayed feedback systems. We discuss the stabilization problem in the infinite-dimensional time-delay systems with MDFC. Studies show that MDFC works well for stabilizing (unstable) steady states in all delay regions, in particular for the hyper-chaotic case. So this work is mainly devoted to extending MDFC from low-dimensional chaotic systems to infinite-dimensional time-delayed systems.
     Secondly, time delays naturally arise in the spreading and response among units of the network due to the finite speeds of transmission and spreading as well as Internet congestion. Some studies have shown that coupling delays can be conducive to synchronization of coupled chaotic maps. In this thesis, we further study synchronization of time-delay systems on small-world networks where the connections between units involve time delays. we found that for adequate coupling strength and time delay, the whole dynamical networks can not only synchronize in a spatially homogeneous state but also can lead to better synchronization than the undelayed case. Specifically, for randomly distributed delays, the whole system is quickly stabilized at a fixed point that is unstable for the uncoupled dynamical system. So synchronization of time-delay chaotic systems on complex systems is also facilitated by the presence of connection delays.
     Thirdly, we study the problem of pinning control of scale-free dynamical networks. Based on multiple delay feedback control, some linear state feedback controllers are constructed to effectively suppress the chaotic behavior of the whole network and stabilize every node to its equilibrium by specifically controlling a small amount of the key nodes with higher degree. For BA scale-free dynamical network, the effect of the proposed control scheme is demonstrated via simulations, using as the units the Chua's chaotic system, Baier-Sahle hyperchaotic system and even infinite-dimensional Ikeda model, respectively.
     Finally, we study consensus problems in weighted scale-free networks of asymmetrically coupled dynamical units, where the asymmetry in a given link is determined by the relative degree of the involved nodes. According to the presence of degree ordering among nodes of the network, we choose the weights over the network connections. The method makes the network become directed weighted network from undirected BA scale-free network. Numerical results show that the asymmetry of interactions has a great effect on the consensus. In the case that the interaction is dominant from higher- to lower-degree nodes, the consensus of such networks are improved, both the convergence speed and the robustness to communication delay are enhanced. The studies can provide some guidelines for assigning weights in real networks for achieving consensus rapidly.
引文
[1]陈关荣,吕金虎,Lorenz系统族的动力学分析、控制与同步(北京:科学出版社,2003,1-20).
    [2]陈士华,陆君安,混沌动力学初步(武汉,武汉水利电力大学出版社,1998,10-60).
    [3]Chen G.,Dong X.,From Chaos to Order:Methodologies,Perspectives,Application,(Singapore:World Scientific,1998,1-50).
    [4]Ott E.,Grebogi C.,Yorke J.A.,Controlling chaos,Phys.Rev.Lett 64,1196(1990).
    [5]Pecora L.M.,Carroll T.L.,Synchronization in chaotic systems,Phys.Rev.Lett 64,821(1990).
    [6]Pecora L.M.,Carroll T.L.,Driving systems with chaotic signals,Phys.Rev.A 44,2374(1991).
    [7]Chen G.,Controlling Chaos and Bifurcation in Engineering Systems(Boca Raton.FL:CRC Press,2000).
    [8]吕金虎,陆君安,陈士华,混沌时间序列的分析及其应用(武汉,武汉大学出版社,2002).
    [9]胡岗,萧井华,郑志刚,混沌控制(上海:上海科技教育出版社,2000).
    [10]Cuomo K.M.,Oppenheim A.V.,Circuit implementation of synchronized chaos with applications to communications,Phys.Rev.Lett 71,65(1993).
    [11]Waldrop M.M.,Complexity:the Emerging Science at the Edge of Order and Chaos(New York,Simon and Schuster,1997).
    [12]Kauffman S.A.,The Origins of Order:Self-organization and Selection in Evolution(New York:Oxford University Press,1993).
    [13]Bak P.,How Nature Works:The Science of Self-Organized Criticality(Copernicus,Springer,Berlin,New York,1996).
    [14]Watts D.J.,Strogatz S.H.,Collective dynamics of 'small-world' networks,Nature 393,440(1998).
    [15]Barabasi A.-L.,Albert R.,Emergence of Scaling in Random Networks,Science 286,509(1999).
    [16]Strogatz S.H.,Exploring complex networks,Nature 410,268(2001).
    [17]Albert R.,Barabasi A.-L.,Statistical mechanics of complex networks,Rev.Mod.Phys.74,47(2002).
    [18]Dorogovtsev S.N.,Mendes J.F.F.,Evolution of networks,Adv.Phys.51,1079(2002).
    [19]Newman M.E.J.,The structure and function of complex networks,SIAM Review 45,167(2003).
    [20]Boccaletti S.,Latora V.,Moreno Y.,Chavez M.,Hwang D.-U.,Complex networks:Structure and dynamics,Physics Reports 424,175(2006).
    [21]Newman M.E.J.,The structure of scientific collaboration networks,Proc.Natl.Acad.Sci.USA 98,404(2001).
    [22]Newman M.E.J.,Scientific collaboration networks.Ⅰ.Network construction and fundamental results,Phys.Rev.E 64,016131(2001);
    Scientific collaboration networks.Ⅱ.Shortest paths,weighted networks,and centrality,Phys.Rev.E 64,016132(2001).
    [23]Amaral L.A.N.,Scala A.,Barthelemy M.,Stanley H.E.,Classes of small-world networks,Proc.Natl.Acad.Sci.USA 97,11149(2000).
    [24]Cancho R.F.,Sole R.V.,The small world of human language,Proc.R.Soc.Lond.B 268,2261(2001).
    [25]Sigman M.,Cecchi G.A.,Global organization of the Wordnet lexicon,Proc.Natl.Acad.Sci.USA 99,1742(2002).
    [26]Albert R.,Jeong H.,Barabasi A.-L.,Diameter of the World-Wide Web,Nature 401,130(1999).
    [27]Huberman B.A.,Adamic L.A.,Growth dynamics of the World-Wide Web,Nature 401,131(1999).
    [28]Huberman B.A.,Pirolli P.L.T.,Pitkow J.E.,Lukose R.M.,Strong Regularities in World Wide Web Surfing,Science 280,95(1999).
    [29]Caldarelli G.,Marchetti R.,Pietronero L.,The fractal properties of internet,Europhys.Lett.52,386(2000).
    [30]McCann K.,Hastings A.,Huxel G.R.,Ecology:Stability is woven by complex webs,Nature 395,794(1998).
    [31]Williams R.J.,Martinez N.D.,Simple rules yield complex foodwebs,Nature 404,180(2000).
    [32]Alon U.,Surette M.G.,Barkai N.,Leibler S.,Robustness in bacterial hemotaxis,Nature 397,168(1999).
    [33]Jeong H.,Tombor B.,Albert R.,Oltvai Z.N.,Barabasi A.-L.,The large-scale organization of metabolic networks,Nature 407,651(2000).
    [34]Jeong H.,Mason S.P.,BarabasiA.-L,,Oltvai Z.N.,Lethality and centrality in protein networks,Nature 411,41(2001).
    [35]Erd(o|¨)s P.,Renyi A.,On Random Graphs,I.Publ.Math.(Debrecen) 6,290(1959).
    [36]Erd(o|¨)s P.,Renyi A.,On the evolution of random graphs,Publ.Math.Inst.Hung.Acad.Sci 5,17(1960).
    [37]Pecora L.M.,Carroll T.L.,Master stability functions for synchronized coupled systems,Phys.Rev.Lett.80,2109(1998).
    [38]Wang X.F.,Chen G.,Synchronization in small-world dynamical networks,Int.J.Bifurcation and Chaos 9,1435(2002).
    [39]Wang X.F.,Chen G.,Synchronization in scale-free dynamical networks:Robustness and fragility,IEEE Trans.Circuit Syst.Ⅰ.49,54(2002).
    [40]Hu G.,Qu Z.L.,Controlling spatiotemporal chaos in coupled map lattice systems,Phys.Rev.Lett.72,68(1994).
    [41]Roy R.,Murphy T.W.,Jr.,Maier T.D.,Gills Z.,Dynamical control of a chaotic laser:Experimental stabilization of a globally coupled systems,Phys.Rev.Lett.68,1259(1992).
    [42]Nishikawa T.,Motter A.E.,Lai Y.C.,Hoppensteadt F.C.,Heterogeneity in oscillator networks:are smaller worlds easier to synchronize? Phys.Rev.Lett.91,014101(2003).
    [43]Chavez M.,Hwang D.-U.,Amann A.,Hentschel H.G.E.,Boccaletti S.,Synchronization is enhanced in weighted complex networks,Phys.Rev.Lett.94,218701(2005).
    [44]Hwang D.U.,Chavez M.,Amann A.,Boccaletti S.,Synchronization in complex networks with age ordering,Phys.Rev.Lett.94,138701(2005).
    [45]Motter A.E.,Zhou C.,Kurths J.,Network synchronization,diffusion,and the paradox of heterogeneity,Phys.Rev.E.71,016116(2005).
    [46]Grebogi C.,Yorke J.A.著,杨立,刘巨斌译,混沌对科学和社会的冲击(长沙,湖南科学出版社,2001,1-50).
    [47]Kolmogorov A.N.,Preservation of conditionally periodic movements with small change in the Hamilton function,Dokl.Akad.Nauk.Sssr 98,527(1954).
    [48]Arnold V.I.,Proof ofA.N.Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian,Russian Mathematical surveys 18,91(1963).
    [49]Moser J.,Wiss N.A.,On invariant curves of area-preserving mappings of an annulus,Gottingen.math.Phys.Kl.1,1(1962).
    [50]Lorenz E.N.,Deterministic non-periodic flow,J.Atmospheric Science 20,130(1963).
    [51]Ruelle D.,Takens F.,On the nature of turbulence,Commun.Math.Phys.20,167(1971).
    [52]Li T.Y.,Yorke J.A.,Period three means chaos,Amer Math Monthly 82(10),985(1975).
    [53]蒋品群,混沌系统和复杂网络系统的控制、同步和演化研究膊士学位论列(合肥,中国科学技术大学,2005.4).
    [54]Hubler A.W.,Adaptive control of chaotic systems,Helvetica Physica Acta 62,343(1989).
    [55]Pyragas K.,Continuous control of chaos by self-controlling feedback,Phys.Lett.A 170,421(1992).
    [56]Pyragas K.,Experimental control of chaos by delayed self-controlling feedback,Phys.Rev.A 180,99(1993).
    [57]Ahlborn A.,Parlitz U.,Stabilizing Unstable Steady States Using Multiple Delay Feedback Control,Phys.Rev.Lett.93,264101(2004).
    [58]Ahlborn A.,Parlitz U.,Controlling dynamical systems using multiple delay feedback control,Phys.Rev.E 72,016206(2005).
    [59]Kocarev L.,Parlitz U.,General approach for chaotic synchronization with applications to communication,Phys.Rev.Lett.74,5028(1995).
    [60]Rosenblum M.G.,Pikovsky A.S.,Kurths J.,Phase synchronization of chaotic oscillators,Phys.Rev.Lett.76,1804(1996).
    [61]Pikovsky A.S.,Rosenblum M.G.,Osipov G.V.,Kurths J.,Phase synchronization of chaotic oscillators by external driving,Physica D 104,219(1997).
    [62]Chen J.Y.,Wong K.W.,Cheng L.M.,Shuai J.W.,A secure communication scheme based on the phase synchronization of chaotic systems,Chaos 13,508(2003).
    [63]Beck M.,Josic K.,A geometric theory of chaotic phase synchronization,Chaos 13,247(2003).
    [64]Rosenblum M.G.,Pikovsky A.S.,Kurths J.,From phase to lag synchronization in coupled chaotic oscillators,Phys.Rev.Lett.78,4193(1997).
    [65]Shahverdiev E.M.,Sivaprakasam S.,Shore K.A.,Lag synchronization in time-delayed systems,Phys.Rev.A 292,320(2002).
    [66]Rulkov N.F.,Sushchik M.M.,Tsimring L.S.,Abarbanel H.D.I.,Generalized synchronization of chaos in directionally coupled chaotic systems,Phys.Rev.E 51,980(1995).
    [67]Yang T.,Chua L.O.,Channel-independent chaotic secure communication,Int.J.Bifurcation and chaos 6(12),2653(1996).
    [68]Hunt B.R.,Ott E.,Yorke J.A.,Differentiable generalized synchronization of chaos,Phys.Rev.E 55(4),4029(1997).
    [69]Kittel A.,Parisi J.,Pyragas K.,Generalized synchronization of chaos in electronic circuit experiments,Physica D 112,459(1998).
    [70].Yah Z.Y.,Q-S(lag or anticipated) synchronization backstepping scheme in a class of continuoustime hyperchaos systems-A symbolic-numeric computation approach,Chaos 15,023902(2005).
    [71]Yah Z.Y.,Chaos Q-S synchronization between R(o|¨)ssler system and the new unified chaotic system,Phys.Lett.A 334,406(2005).
    [72]Brown R.,Kocarev L.,A unifying definition of synchronization for dynamical systems,Chaos 10(2),334(2000).
    [73]Ikeda K.,Matsumoto K.,High-dimensional chaotic behavior in systems with time-delayed feedback,Physica D 29,223(1987).
    [74]Hale J.K.,Theory of function differential equation(New York:Springer-Verlag,1977).
    [75]Just W.,Bernard T.,Ostheimer M.,Reibold E.,Benner H.,Mechanism of time-delayed feedback control,Phys.Rev.Lett.78,203(1997).
    [76]Chen G.,Yu X.,On time delayed feedback control of chaotic systems,IEEE Trans.Circuit Syst.46,767(1999).
    [77]Ikeda K.,Daido H.,Akimoto O.,Optical turbulence:Chaotic behavior of transmitted light from a ring cavity,Phys.Rev.Lett.45,709(1980).
    [78]Ikeda K.,Kondo K.,Akimoto O.,Successive higher-harmonic bifurcations in systems with delayed feedback,Phys.Rev.Lett.49,1467(1982).
    [79]Gibbs H.M.,Hopf F.A.,Kaplan D.L.,Shoemaker R.L.,Observation of Chaos in Optical Bistability,Phys.Rev.Lett.46,474(1981).
    [80]Hopf F.A.,Kaplan D.L.,Gibbs H.M.,Shoemaker R.L.,Bifurcations to chaos in optical bistability,Phys.Rev.A 25,2172(1982).
    [81]Griffith J.S.,Mathematical Neurobiology(Academic,London,1971).
    [82]May R.,in Proceedings of the Les Houches Summer School on Chaotic Behavior of Deterministic Systems,July 1981.
    [83]Vallee R.,Delisle C.,Periodicity windows in a dynamical system with a delayed feedback,Phys.Rev.A 34,309(1986).
    [84]Yang H.Y.,Tian Y.P.,Hopf bifurcation in REM algorithm with communication delay,Chaos,Solitons and FractaIs 25,1093(2005).
    [85]Liao X.F.,Wong K.W.,Bifurcation analysis on a two-neuron system with distributed delays,Physica D 149,123(2001).
    [86]Zhou L.,Tang Y.B.,Hussein S.,Stability and Hopf bifurcation for a delay competition diffusion system,Chaos,Solitons and Fractals 14,1201(2002).
    [87]Campbell S.A.,Belair J.,Ohira T.,Milton J.,Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback,Chaos 5,640(1995).
    [88]Stepan G.,Haller G.,Quasiperiodic oscillation in robot dynamics,Nonlinear Dynamics 8,513(1995).
    [89]Moiola J.L.,Chert G.,Hopf bifurcation in time-delayed nonlinear feedback control systems,Proceedings of the 34th conference on Decision and Control.New Orleans,1995,942.
    [90]Heiden U.,Walther H.O.,Existence of chaos in control system with delayed feedback,J.of Diff.Equations 47,273(1983).
    [91]汪芙平,王赞基,郭静波,Mackey-Grass系统的间歇驱动同步实现混沌通信(清华大学学报,2003,43:296-300).
    [92]Li J.N.,Hao B.L.,Bifurcation spectrum in a delay-differential system,Commun.Thero.Phys.11,265(1989).
    [93]Zhao H.,Zhang F.Z.,Yan J.,Wang Y.H.,Nonlinear differential delay equations using the poincare section,Phys.Rev.E 54,6925(1996).
    [94]Zhao H.,Liu Y.W.,Wang Y.H.,Hu.B.B.,Dynamics in a system with time-delayed feedback,Phys.Rev.E 58,4383(1998).
    [95]Qi W.,Zhang Y.,Wang Y,H.,Controlling a time-delay system using multiple delay feedback control,Chin.Phys.16,2259(2007).
    [96]Bollobas B.,Random Graphs,(New York:Academic Press,2nd ed.,2001).
    [97]Newman M.E.J.,Watts D.J.,Renormalization group analysis of the small-world network model,Phys.Lett.A 263,341(1999).
    [98]Newman M.E.J.,Watts D.J.,Scaling and percolation in the small-world network model,Phys.Rev.E 60,7332(1999).
    [99]Wang X.F.,Complex networks:topology,dynamics and synchronization,Int.J.Bifurcation and Chaos,12,885(2002).
    [100]Newman M.E.J.,Moore C.,Watts D.J.,Mean-field solution of small-world networks,Phys.Rev.Lett.84,3201(2000).
    [101]Barrat A.,Weigt M.,On the properties of small world networks,Eur.Phys.J.B 13,547(2000).
    [102]Barabasi A.L.,Albert R.,Jeong H.,Mean-field theory for scale-free random networks,Physica A 272,172(1999).
    [103]Bollobas B.,Riordan O.,Mathematical results on scale-free random graphs,Handbook of graphs and networks:from the genome to the internet,Berlin:Wiley-VCH,1(2003).
    [104]Cohen R.,Havlin S.,Scale-free networks are ultrasmall,Phys.Rev.Lett.86,3682(2003).
    [105]Fronczak A.,Fronczak P.,Holyst J.A.,Mean-field theory for clustering coefficients in Barabasi-Albert networks,Phys.Rev.E 68,046126(2003).
    [106]Barahona M.,Pecora L.M.,Synchronization in Small-world Systems,Phys.Rev.Lett.89,054101(2002).
    [107]Chen Y.,Rangarajan G.,Ding M.,General stability analysis of synchronized dynamics in coupled systems,Phys.Rev.E 67,026209(2003).
    [108]Li C.,Chen G.,Synchronization in general complex dynamical networks with couplings delays,Physica A 343,263(2004).
    [109]Atay EM.,Jost J.,Wende A.,Delays,connection topology,and synchronization of coupled chaotic maps,Phys.Rev.Lett.92,144101(2004).
    [110]Masoller C.,Marti A.C.,Random Delays and the Synchronization of Chaotic Maps,Phys.Rev.Lett.94,134102(2005).
    [111]Marti A.C.,Ponce M.,Masoller C.,Chaotic maps coupled with random delays:Connectivity,topology,and network propensity for synchronization,Physica A 371,104(2006).
    [112]Dhamala M.,Jirsa V.K.,Ding M.,Enhancement of neural synchrony by time delay,Phys.Rev.Lett.92,074104(2004).
    [113]Ikeda K.,Matsumoto K.,Study of a high-dimensional chaotic attractor,J.Stat.Phys.44,955(1986).
    [114]Buric N.,Todorovic D.,Synchronization of hyperchaotic systems with delayed bidirectional coupling,Phys.Rev.E 68,066218(2003).
    [115]Wang X.F.,Chen G.,Pinning control of scale-free dynamical networks,Physica A 310,521(2002).
    [116]Li X.,Wang X.F.,Chen G.,Pinning a complex dynamical network to its equilibrium,IEEE Trans.on Circuits and Systems-Ⅰ 51,2074(2004).
    [117]Liu Z.X.,Chert Z.Q.,Yuan Z.Z.,Pinning control of weighted general complex dynamical networks with time delay,Physica A 375,345(2007).
    [118]Yao J.,Guan Z.H.,Hill D.V.,Wang H.O.,On passivity and impulsive control of complex dynamical networks with couphng delays,Proceedings of the 44th IEEE conference on Decision and control,and the European Control Conference 2005,Seville,Spain,December,2005,1595.
    [119]姚静,关治洪,拓扑切换网络的脉冲控制,复杂系统与复杂性科学2,24(2005).
    [120]Guan Z.H.,Zhang H.,Stabilization of complex network with hybrid impulsive and switching control,Chaos,Solitons and Fractals 37,1372(2008).
    [121]Li Z.,Chen G.,Robust adaptive synchronization of uncertain dynamical networks,Physics Letters A 324,166(2004).
    [122]陈振毅,汪小帆,无尺度网络中的拥塞及其控制,系统工程学报20,132(2005).
    [123]Olfati-Saber R.,Murray R.M.,Consensus problems in networks of agents with switching topology and time-delays,IEEE Transactions on Automatic Control 49,1520(2004).
    [124]Olfati-Saber R.,Ultrafast consensus in small-world networks,Proceedings of the 2005 American Control Conference 4,2371(2005).
    [125]Ren W.,Beard R.W.,Consensus seeking in multiagent systems under dynamically changing interaction topologies,IEEE Transactions on Automatic Control 50,655(2005).
    [126]Hatano Y.,Mesbahi M.,Agreement over random networks,IEEE Transactions on Automatic Control 50,1867(2005).
    [127]Yang W.,Cao L.,Wang X.F.,Li X.,Consensus in a heterogeneous influence network,Phys.Rev.E 74,037101(2006).
    [128]Tan F.X.,Guan X.P.,Liu D.R.,Consensus protocol for multi-agent continuous systems,Chin.Phys.17,3531(2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700